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What is this Course About

� Often in follow-up studies different types of outcomes are collected

� Explicit outcomes

◃ multiple longitudinal responses (e.g., markers, blood values)

◃ time-to-event(s) of particular interest (e.g., death, relapse)

� Implicit outcomes

◃ missing data

◃ random visit times

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) v



What is this Webinar About (cont’d)

� Methods for the separate analysis of such outcomes are well established in the
literature

� Survival data:

◃ Cox model, accelerated failure time models, . . .

� Longitudinal data

◃ mixed effects models, GEE, marginal models, . . .
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What is this Webinar About (cont’d)

Purpose of this webinar is to present the state of the art in

Joint Modeling Techniques
for Longitudinal and Time-to-Event Data
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Learning Objectives

� After this webinar the participants will

◃ be familiarized with joint modeling framework,

◃ know how predictions are derived from joint models

◃ know how to evaluate the accuracy of these predictions, and

◃ be able to fit joint models in R and derive predictions
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Part I

Introduction

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) 1



1.1 Motivating Longitudinal Studies

� AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine
therapy (AZT) (Abrams et al., NEJM, 1994)

� The aim of this study was to compare the efficacy and safety of two alternative
antiretroviral drugs, didanosine (ddI) and zalcitabine (ddC)

� Outcomes of interest:

◃ time to death

◃ randomized treatment: 230 patients ddI and 237 ddC

◃ CD4 cell count measurements at baseline, 2, 6, 12 and 18 months
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

� Research Questions:

◃ How strong is the association between CD4 cell count and the risk of death?

◃ Is CD4 cell count a good biomarker?

* if treatment improves CD4 cell count, does it also improve survival?

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) 5



1.1 Motivating Longitudinal Studies (cont’d)

� PBC: Primary Biliary Cirrhosis:

◃ a chronic, fatal but rare liver disease

◃ characterized by inflammatory destruction of the small bile ducts within the liver

� Outcomes of interest:

◃ time to death or liver transplantation

◃ randomized treatment: 158 patients received D-penicillamine and 154 placebo

◃ longitudinal bilirubin levels, cholesterol, prothrombin time (continuous)

◃ longitudinal ascites, hepatomegaly, edema (categorical)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

� Research Questions:

◃ How strong is the association between bilirubin and the risk of death?

◃ How the observed serum bilirubin levels could be utilized to provide predictions of
survival probabilities?

◃ Can bilirubin discriminate between patients of low and high risk?
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1.2 Research Questions

� Depending on the questions of interest, different types of statistical analysis are
required

� We will distinguish between two general types of analysis

◃ separate analysis per outcome

◃ joint analysis of outcomes

� Focus on each outcome separately

◃ does treatment affect survival?

◃ are the average longitudinal evolutions different between males and females?

◃ . . .

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) 10



1.2 Research Questions (cont’d)

� Focus on multiple outcomes

◃ Complex effect estimation: how strong is the association between the
longitudinal evolution of CD4 cell counts and the hazard of death?

* endogenous vs. exogenous time-varying covariates

◃ Handling implicit outcomes: focus on longitudinal outcomes but with dropout
or random visit times

* missing not at random vs. missing at random
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Part II

The Basic Joint Model
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2.1 Joint Modeling Framework

� To account for the special features of endogenous covariates a new class of models
has been developed

Joint Models for Longitudinal and Time-to-Event Data

� Intuitive idea behind these models

1. use an appropriate model to describe the evolution of the covariate/marker over
time for each patient

2. the estimated evolutions are then used in a Cox model

� Feature: covariate level’s are not assumed constant between visits
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2.1 Joint Modeling Framework (cont’d)
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2.1 Joint Modeling Framework (cont’d)

� Some notation

◃ T ∗
i : True event time for patient i

◃ Ti: Observed event time for patient i

◃ δi: Event indicator, i.e., equals 1 for true events

◃ yi: Longitudinal covariate

� We will formulate the joint model in 3 steps – in particular, . . .

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) 15



2.1 Joint Modeling Framework (cont’d)

� Step 1: Let’s assume that we know mi(t), i.e., the true & unobserved value of the
covariate at time t

� Then, we can define a standard relative risk model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

where

◃ Mi(t) = {mi(s), 0 ≤ s < t} longitudinal history

◃ α quantifies the association between the time-varying covariate and the risk of an
event

◃ wi baseline covariates
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2.1 Joint Modeling Framework (cont’d)

� Step 2: From the observed longitudinal data yi(t) reconstruct the covariate history
for each subject

� Mixed effects model (we focus, for now, on continuous covariates)

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t), εi(t) ∼ N (0, σ2),

where

◃ xi(t) and β: Fixed-effects part

◃ zi(t) and bi: Random-effects part, bi ∼ N (0, D)
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2.1 Joint Modeling Framework (cont’d)

� Step 3: The two processes are associated ⇒ define a model for their joint
distribution

� Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

p(yi, Ti, δi) =

∫
p(yi | bi)

{
h(Ti | bi)δi S(Ti | bi)

}
p(bi) dbi,

where

◃ bi a vector of random effects that explains the interdependencies

◃ p(·) density function; S(·) survival function
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2.1 Joint Modeling Framework (cont’d)

� Key assumption: Full Conditional Independence ⇒ random effects explain all
interdependencies

◃ the longitudinal outcome is independent of the time-to-event outcome

◃ the repeated measurements in the longitudinal outcome are independent of each
other

p(yi, Ti, δi | bi) = p(yi | bi) p(Ti, δi | bi)

p(yi | bi) =
∏
j

p(yij | bi)

Caveat: CI is difficult to test
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2.1 Joint Modeling Framework (cont’d)

� The censoring and visiting∗ processes are assumed non-informative:

� Decision to withdraw from the study or appear for the next visit

◃ may depend on observed past history (baseline covariates + observed
longitudinal responses)

◃ no additional dependence on underlying, latent subject characteristics
associated with prognosis

∗The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which

longitudinal measurements are collected.

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) 20



2.1 Joint Modeling Framework (cont’d)

� Joint models require a full specification of the joint distribution

◃ we need an assumption for the baseline hazard

� General Advice: Use a parametric but flexible model for h0(t):

log h0(t) = γh0,0 +

Q∑
q=1

γh0,qBq(t, v),

where

◃ Bq(t, v) denotes the q-th basis function of a B-spline with knots v1, . . . , vQ

◃ γh0 a vector of spline coefficients
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2.1 Joint Modeling Framework (cont’d)

� Penalize spline coefficients for smoothness

p(γh0 | τh) ∝ τ
ρ/2
h exp

(
−τh

2
γ⊤
h0
∆⊤

r ∆rγh0

)
,

where

◃ τh smoothing parameter

◃ ∆r denotes r-th differences penalty matrix

◃ ρ rank of ∆⊤
r ∆r
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2.2 Bayesian Estimation

� Under the Bayesian paradigm both θ and {bi, i = 1, . . . , n} are regarded as
parameters

� Inference is based on the full posterior distribution

p(θ, b | T, δ, y) =

∏
i p(Ti, δi | bi; θ) p(yi | bi; θ) p(bi; θ) p(θ)∏

i p(Ti, δi, yi)

∝
n∏

i=1

{
p(Ti, δi | bi; θ) p(yi | bi; θ) p(bi; θ)

}
p(θ)
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2.2 Bayesian Estimation (cont’d)

� Model comparison: Information Criteria for Predictive Accuracy

◃ Deviance information criterion (DIC)

◃ Watanabe-Akaike information criterion (WAIC)

◃ log pseudo-marginal likelihood (LPML)
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2.3 A Comparison with the TD Cox

� Example: To illustrate the virtues of joint modeling, we compare it with the standard
time-dependent Cox model for the AIDS data

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp{γddIi + αmi(t)},
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2.3 A Comparison with the TD Cox (cont’d)

JM Cox

log HR (std.err) log HR (std.err)

Treat 0.33 (0.2) 0.31 (0.15)

CD41/2 −0.29 (0.04) −0.19 (0.02)

� Clearly, there is a considerable effect of ignoring the measurement error, especially for
the CD4 cell counts
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2.3 A Comparison with the TD Cox (cont’d)

� A unit decrease in CD41/2, results in a

◃ Joint Model: 1.33-fold increase in risk (95% CI: 1.24; 1.43)

◃ Time-Dependent Cox: 1.21-fold increase in risk (95% CI: 1.16; 1.27)

� Which one to believe?

◃ a lot of theoretical and simulation work has shown that the Cox model
underestimates the true association size of endogenous time-varying covariates
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2.4 Joint Models in R

R> Joint models are fitted using function jm() from package JMbayes2, e.g.,

lmeFit <- lme(CD4 ~ obstime + obstime:drug, data = aids,

random = ~ obstime | patient)

CoxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id)

jointFit <- jm(CoxFit, lmeFit, time_var = "obstime")

summary(jointFit)
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2.4 Joint Models in R (cont’d)

R> The data frame given in lme() should be in the long format, while the data frame
given to coxph() should have one line per subject∗

◃ the ordering of the subjects needs to be the same

R> The scale of the time variables in the mixed and Cox models need to be the same

◃ i.e., both in months, or both in years, etc.

R> Argument time var specifies the time variable in the linear mixed model

∗ Unless you want to include exogenous time-varying covariates or handle competing risks
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2.4 Joint Models in R (cont’d)

R> Useful functions

◃ summary(): summarizes the fitted model

◃ compare jm(): compares fitted models using DIC and WAIC

◃ coef(), fixef(), ranef(): extract estimated coefficients and random effects

◃ traceplot() & ggtraceplot: produces traceplots

◃ densplot() & ggdensityplot(): produces density plots

◃ predict(): calculates predictions
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Part III

Functional Forms
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3.1 Functional Forms

� The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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3.1 Functional Forms (cont’d)
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3.1 Functional Forms (cont’d)

� The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}

Is this the only option? Is this the most
optimal choice?
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3.1 Functional Forms (cont’d)

� Note: Inappropriate modeling of time-varying covariates may result in surprising
results

� Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to
test the effect of cigarette smoking on survival of patients who underwent coronary
artery surgery

◃ the estimated effect of current cigarette smoking was positive on survival although
not significant (i.e., patient who smoked had higher probability of survival)

◃ most of those who had died were smokers but many stopped smoking at the last
follow-up before their death
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3.1 Functional Forms (cont’d)

We need to carefully consider the functional form of
time-varying covariates

� Let’s see some possibilities. . .
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3.1 Functional Forms (cont’d)

� Lagged Effects: The hazard of an event at t is associated with the level of the marker
at a previous time point:

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t
c
+)},

where

tc+ = max(t− c, 0)
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3.1 Functional Forms (cont’d)
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3.1 Functional Forms (cont’d)

� Time-dependent Slopes: The hazard of an event at t is associated with both the
current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α1mi(t) + α2m
′
i(t)},

where

m′
i(t) =

d

dt
{x⊤i (t)β + z⊤i (t)bi}
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3.1 Functional Forms (cont’d)
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3.1 Functional Forms (cont’d)

� The definition of the slope is

m′
i(t) = lim

ϵ→0

mi(t + ϵ)−mi(t)

ϵ

the change in the longitudinal profile as ϵ approaches zero

� It can be challenging to interpret

◃ it is the ‘current’ slope

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) 41



3.1 Functional Forms (cont’d)

� Time-dependent Slopes 2: The hazard of an event at t is associated with the change
of the trajectory the last year:

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α∆mi(t)},

where

∆mi(t) = mi(t)−mi(t− 1)
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3.1 Functional Forms (cont’d)

� Cumulative Effects: The hazard of an event at t is associated with the whole area
under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

mi(s) ds
}

� Area under the longitudinal trajectory taken as a summary of Mi(t)
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3.1 Functional Forms (cont’d)
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3.1 Functional Forms (cont’d)

� Cumulative Effects 2: The hazard of an event at t is associated with the whole area
under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp

{
γ⊤wi + α

∫ t

0 mi(s) ds

t

}

� We account for the observation period
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3.1 Functional Forms (cont’d)

� Weighted Cumulative Effects (convolution): The hazard of an event at t is associated
with the area under the weighted trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

ϖ(t− s)mi(s) ds
}
,

where ϖ(·) an appropriately chosen weight function, e.g.,

◃ Gaussian density

◃ Student’s-t density

◃ . . .
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3.1 Functional Forms (cont’d)

R> In JMbayes2 the specification of functional forms is done via the
functional forms argument

◃ e.g., the following code includes the area and slope in the linear predictor, and the
interaction of the former with sex

jm(CoxFit, lmeFit, time_var = "time",

functional_forms = ~ area(y) + value(y) + area(y):sex)
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3.1 Functional Forms (cont’d)

R> The area() function calculates the Cumulative Effects 2 functional form, where
the integral is divide by the length of the period

R> The slope() function can be used for the Time-dependent Slopes 2 functional
form via

slope(..., eps = 1, direction = "back")
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Part IV

Dynamic Predictions
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4.1 Survival Probabilities

� Nowadays there is great interest for prognostic models and their application to
personalized medicine

� Examples are numerous

◃ cancer research, cardiovascular diseases, HIV research, . . .

Physicians are interested in accurate prognostic tools that will
inform them about the future prospect of a patient in order to

adjust medical care
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4.1 Survival Probabilities (cont’d)

� We are interested in predicting survival probabilities for a new patient j with serum
bilirubin measurements up to time t

� Example: Patients 2 and 25 from the PBC dataset have 9 and 12 serum bilirubin
measurements, respectively

◃ Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded

� We need to account for the endogenous nature of the covariate

◃ providing measurements up to time point t ⇒ the patient was still alive at time t
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4.1 Survival Probabilities (cont’d)
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4.1 Survival Probabilities (cont’d)

� More formally, for a new subject j we have available measurements up to time point t

Yj(t) = {yj(s), 0 ≤ s ≤ t}

and we are interested in

πj(u | t) = Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
,

where

◃ where u > t, and

◃ Dn denotes the sample on which the joint model was fitted
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4.1 Survival Probabilities (cont’d)

� We assume that the joint model has been fitted to the data at hand

� Based on the fitted model, we can estimate the conditional survival probabilities
(Rizopoulos, 2011, Biometrics)
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4.1 Survival Probabilities (cont’d)

� It is convenient to proceed using a Bayesian formulation of the problem ⇒
πj(u | t) can be written as

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
=

∫
Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
p(θ | Dn) dθ

� The first part of the integrand takes the form

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
=

=

∫
Sj

{
u | Mj(u, bj, θ); θ

}
Sj

{
t | Mj(t, bj, θ); θ

} p(bj | T ∗
j > t,Yj(t);θ) dbj
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4.1 Survival Probabilities (cont’d)

� A Monte Carlo estimate of πj(u | t) can be obtained using the following simulation
scheme:

Step 1. draw θ(ℓ) ∼ [θ | Dn]

Step 2. draw b
(ℓ)
j ∼ [bj | T ∗

j > t,Yj(t), θ
(ℓ)]

Step 3. compute π
(ℓ)
j (u | t) = Sj

{
u | Mj(u, b

(ℓ)
j , θ(ℓ)); θ(ℓ)

}/
Sj

{
t | Mj(t, b

(ℓ)
j , θ(ℓ)); θ(ℓ)

}
� Repeat Steps 1–3, ℓ = 1, . . . , L times, where L denotes the number of Monte Carlo
samples
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4.1 Survival Probabilities (cont’d)

� Example: Dynamic predictions of survival probabilities for Patients 2 & 25 from the
PBC dataset: We fit the joint model

� Longitudinal submodel

◃ fixed effects: intercept & natural cubic splines of time with 3 d.f., sex, and
interaction of the time effect with sex

◃ random effects: intercept, natural cubic splines of time with 3 d.f.

� Survival submodel

◃ sex effect + underlying serum bilirubin level
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4.1 Survival Probabilities (cont’d)

� Based on the fitted joint model we estimate πj(u | t) for Patients 2 and 25

� We use 500 Monte Carlo samples, and we took as estimate

π̂j(u | t) = mean{π(ℓ)
j (u | t), ℓ = 1, . . . , L}

and calculated a corresponding 95% pointwise CIs
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4.1 Survival Probabilities (cont’d)
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4.1 Survival Probabilities (cont’d)
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4.1 Survival Probabilities (cont’d)
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4.1 Survival Probabilities (cont’d)
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4.1 Survival Probabilities (cont’d)
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4.1 Survival Probabilities (cont’d)
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4.1 Survival Probabilities (cont’d)
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4.1 Survival Probabilities (cont’d)

R> Individualized predictions of survival probabilities are computed by function
predict() – for example, for Patient 2 from the PBC dataset we have

sfit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],

process = "event", return_newdata = TRUE)

sfit

plot(sfit)
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4.2 Functional Forms

� All previous predictions were based on the standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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4.2 Functional Forms (cont’d)

� We have seen earlier that there are several alternative functional forms (see Section 5.1)

� Relevant questions:

◃ Does the assumed functional form affect predictions?

◃ Which functional form is the most optimal?

� Example: We compare predictions for the longitudinal and survival outcomes under
different parameterizations for Patient 51 from the PBC study
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4.2 Functional Forms (cont’d)
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4.2 Functional Forms (cont’d)

� Predictions based on five joint models for the PBC dataset

◃ the same longitudinal submodel as before, and

◃ relative risk submodels:

hi(t) = h0(t) exp{γD-pnci + α1mi(t)},

hi(t) = h0(t) exp{γD-pnci + α2m
′
i(t)},

hi(t) = h0(t) exp{γD-pnci + α1mi(t) + α2m
′
i(t)}
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4.2 Functional Forms (cont’d)

hi(t) = h0(t) exp

{
γD-pnci + α3

∫ t

0 mi(s)ds

t

}
,

hi(t) = h0(t) exp

{
γD-pnci + α1mi(t) + α3

∫ t

0 mi(s)ds

t

}
,
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4.2 Functional Forms (cont’d)

1yr−window Predictions
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4.2 Functional Forms (cont’d)

The chosen functional form can influence the derived
predictions
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4.2 Functional Forms (cont’d)

� We compare the models using the information criteria

DIC WAIC LPML

value + slope 5322.683 22104.998 −5535.420

area 5346.029 23268.436 −5560.009

slope 5645.578 29600.396 −7353.621

value + area 5388.139 29840.361 −9110.958

value 5439.294 30513.206 −7230.238

� The value + slope model seems to be the ‘best’
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4.3 Discrimination

� We have seen how to calculate predictions of conditional survival probabilities

◃ however, to use these predictions in practice we need to evaluate their accuracy

� Predictive accuracy measures

◃ Discrimination: sensitivity, specificity, ROC and AUC

◃ Calibration: comparison between predicted and observed probabilities

◃ Overall: combination of discrimination and calibration
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4.3 Discrimination (cont’d)

� To assess the discriminative power of the model, we assume the following setting

◃ using the available longitudinal data up to time t,

◃ we are interested in events occurring in a medically-relevant interval (t, t +∆t]

� Based on the fitted joint model and for a particular threshold value c ∈ [0, 1], we can
term subject j a case if

πj(t +∆t | t) ≤ c
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4.3 Discrimination (cont’d)

� Following, we can define sensitivity

SN∆t
t (c) = Pr

{
πj(t +∆t | t) ≤ c | T ∗

j ∈ (t, t +∆t]
}
,

specificity

SP∆t
t (c) = Pr

{
πj(t +∆t | t) > c | T ∗

j > t +∆t
}
,

and the corresponding AUC

AUC∆t
t

= Pr
[
πi(t +∆t | t) < πj(t +∆t | t) | {T ∗

i ∈ (t, t +∆t]} ∩ {T ∗
j > t +∆t}

]
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4.3 Discrimination (cont’d)

� To estimate the sensitivity, specificity and the AUC, we need to account for censoring

� Two main approaches

◃ model-based weights

◃ inverse probability of censoring weighting (IPCW)
(using Kaplan-Meier or other non-parametric estimators)
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4.3 Discrimination (cont’d)

� IPCW

◃ Advantage: it provides unbiased estimates even when the model is misspecified

◃ Disadvantage: it requires that the model for the weights is correct

* in settings where joint models are used, challenging because censoring may
depend on the longitudinal outcomes in a complex manner

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) 74



4.3 Discrimination (cont’d)

� Model-based Weights

◃ Advantage: it allows censoring to depend on the longitudinal history (in any
possible manner)

◃ Disadvantage: it requires that the model is well calibrated
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4.3 Discrimination (cont’d)

Because censoring often depends on the longitudinal history,
we opt for model-based weights
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4.3 Discrimination (cont’d)

� For the R(t) subjects at risk at time t (i.e., Ti > t), sensitivity is estimated as

ŜN
∆t

t (c) =

∑
i:Ti≥t

I{π̂i(t +∆t | t) ≤ c} × Ωi∑
i:Ti≥t

Ωi

,

where

Ωi =

 1, if Ti ≤ t +∆t and δi = 1

1− π̂i(t +∆t | Ti), if Ti ≤ t +∆t and δi = 0
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4.3 Discrimination (cont’d)

� And specificity as

ŜP
∆t

t (c) =

∑
i:Ti≥t

I{π̂i(t +∆t | t) > c} × Φi∑
i:Ti≥t

Φi

,

where

Φi =

 1, if Ti > t +∆t

π̂i(t +∆t | Ti), if Ti ≤ t +∆t and δi = 0
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4.3 Discrimination (cont’d)

� Example: For the joint model fitted to the PBC dataset we have seen earlier

◃ we estimate dynamic sensitivity, specificity and the ROC curve

◃ at follow-up times t = 3, 5, and 7

◃ for ∆t = 2
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4.3 Discrimination (cont’d)
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4.3 Discrimination (cont’d)
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4.3 Discrimination (cont’d)
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4.3 Discrimination (cont’d)

� The corresponding AUCs are

Time AUC

t = 3 0.86

t = 5 0.81

t = 7 0.75
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4.3 Discrimination (cont’d)

R> For a fitted joint model, we calculate the ROC curve and the corresponding AUC
with the syntax

roc <- tvROC(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)

roc

plot(roc)

tvAUC(roc)
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4.4 Calibration

� Another relevant measure for quantifying predictive ability is calibration, i.e.,

◃ how well can the joint model accurately predict future events

� Typically, calibration is assessed via graphical calibration curves

◃ a plot of observed vs predicted cumulative risk probabilities

◃ we have good calibration when the points are distributed along the main diagonal
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4.4 Calibration (cont’d)

� In the context of survival analysis, the construction of these curves is complicated by
censoring

� To account for censoring, we follow the recent approach of Austin et al. (SiM, 2020)

1. we select a follow-up time t and a medically relevant interval ∆t
we only consider the subjects at risk at time t

2. we calculate risk probabilities {1− π̂i(t +∆t | t)} from the joint model

3. we transform these probabilities using the cloglog link, i.e.,
log[− log{π̂i(t +∆t | t)}]
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4.4 Calibration (cont’d)

4. we fit a Cox model with predictor a natural cubic spline with 3 d.f. for the
transformed probabilities

5. we set as the predicted probabilities a regular sequence between
min{1− π̂i(t +∆t | t)} and max{1− π̂i(t +∆t | t)}

6. we calculate the observed probabilities : cumulative risk probabilities from the Cox
model for getting the event before t +∆t with input variable the predicted
probabilities regular sequence

7. we create the curve of the observed vs predicted probabilities
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4.4 Calibration (cont’d)

� Note: we account for censoring via the Cox model

◃ censoring is not allowed to depend on the longitudinal history
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4.4 Calibration (cont’d)

� Example: For the joint model fitted to the PBC dataset we have seen earlier

◃ we estimate dynamic calibration curves

◃ at follow-up times t = 3, 5, and 7

◃ for ∆t = 2
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4.4 Calibration (cont’d)
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4.4 Calibration (cont’d)
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4.4 Calibration (cont’d)
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4.4 Calibration (cont’d)

R> For a fitted joint model, we calculate the calibration plot with the syntax

calibration_plot(jointFit, newdata = pbc2, Tstart = 3, Dt = 2)
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4.5 Prediction Error

� We have covered discrimination and calibration separately

� In standard survival analysis there are measures that combine the two concepts into
one metric

◃ the most-well know measure that achieves that is the Brier score
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4.5 Prediction Error (cont’d)

� In the joint modeling framework, we need to take into account the dynamic nature of
the longitudinal marker

� The expected quadratic error of prediction (Brier score) has the form

PE(t +∆t | t) = E
[
{Ni(t +∆t)− πi(t +∆t | t)}2

]
where

◃ Ni(t) = I(T ∗
i > t) is the “true” event status at time t
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4.5 Prediction Error (cont’d)

� An estimator for PE(t +∆t | t) that accounts for censoring

P̂E(t +∆t | t) = {R(t)}−1
∑
i:Ti≥t

I(t +∆t > u){1− π̂i(t +∆t | t)}2

+ δiI(Ti < t +∆t){0− π̂i(t +∆t | t)}2

+ (1− δi)I(Ti < t +∆t)
[
π̂i(t +∆t | Ti){1− π̂i(t +∆t | t)}2

+{1− π̂i(t +∆t | Ti)}{0− π̂i(t +∆t | t)}2
]
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4.5 Prediction Error (cont’d)

where

◃ R(t) denotes the number of subjects at risk at t

◃ red part: subjects still event-free at t +∆t

◃ blue part: subjects who had the event before t +∆t

◃ green part: subject censored before t +∆t

� The weights used to account for censoring are model-based

◃ censoring is allowed to depend on the longitudinal history in any possible manner

◃ the model needs to be well specified
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4.5 Prediction Error (cont’d)

� Example: For the joint model fitted to the PBC dataset we have seen earlier

◃ we estimate the dynamic Brier score

◃ at follow-up times t = 3, 5, and 7

◃ for ∆t = 2
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4.5 Prediction Error (cont’d)

� The estimated Brier scores are

Time Brier Score

t = 3 0.10

t = 5 0.11

t = 7 0.12
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4.5 Prediction Error (cont’d)

R> For a fitted joint model, we calculate the time-varying Brier score with the syntax

predErr <- tvBrier(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)

predErr
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4.6 Validation

To obtain an objective assessment of the model’s predictive capability,
we need to validate the predictive accuracy measures

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) 97



4.6 Validation (cont’d)

� Internal validation of the predictive accuracy measures can be achieved with standard
re-sampling techniques

◃ cross-validation (leave-one-out or better 10-fold)

◃ Bootstrap

� In general time consuming because it requires fitting the joint model many times

◃ take advantage of parallel computing (e.g., using package parallel)
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4.6 Validation (cont’d)

� For external validation we calculate the predictive accuracy measures in a dataset
from another cohort

◃ perhaps after re-calibration
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4.6 Validation (cont’d)

R> Functions tvROC(), tvAUC(), calibration plot() and tvBrier() facilitate
this via their newdata argument

◃ in newdata you can provide a dataset other than the one used to fit the model
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Part V

Closing
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5.1 Concluding Remarks

� When we need joint models for longitudinal and survival outcomes?

◃ to handle endogenous time-varying covariates in a survival analysis context

◃ to account for nonrandom dropout in a longitudinal data analysis context

� How joint models work?

◃ a mixed model for the longitudinal outcome

◃ a relative risk model for the event process

◃ explain interrelationships with shared random effects
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5.1 Concluding Remarks (cont’d)

� Where to pay attention when defining joint models?

◃ model flexibly the subject-specific evolutions for the longitudinal outcome

◃ consider how to model the association structure between the two processes
⇒ Functional Forms

� Extensions

◃ under the full conditional independence assumption we can easily extend the basic
joint model

◃ multiple longitudinal outcomes and/or multiple failure times

◃ though more computationally intensive
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5.1 Concluding Remarks (cont’d)

� Individualized predictions

◃ joint models can provide subject-specific predictions for the longitudinal and
survival outcomes

◃ these are dynamically updated as extra information is recorded for the subjects

◃ joint models constitute an excellent tool for personalized medicine
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The End!
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Part VI

Practicals
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6.1 R Practical: Dynamic Predictions

� We will work with the Liver Cirrhosis dataset

◃ a placebo-controlled randomized trial on 488 liver cirrhosis patients

� Start R and load package JMbayes2, using library("JMbayes2")

� The longitudinal (long format) and survival information for the liver cirrhosis patients
can be found in data frames prothro and prothros, respectively

◃ the variables that we will need are:
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6.1 R Practical: Dynamic Predictions (cont’d)

◃ prothro

* id: patient id number

* pro: prothrombin measurements

* time: follow-up times in years

* treat: randomized treatment

◃ prothros

* Time: observed event times in years

* death: event indicator with 0 = ‘alive’, and 1 = ‘dead’

* treat: randomized treatment
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6.1 R Practical: Dynamic Predictions (cont’d)

� We will fit the following joint model to the Liver Cirrhosis dataset

◃ longitudinal submodel: linear subject-specific random slopes for prothrombin levels
allowing for different average evolutions in the two treatment groups

yi(t) = mi(t) + εi(t)

mi(t) = β0 + β1t + β2{Trti × t} + bi0 + bi1t

◃ survival submodel: treatment effect & true effect of prothrobin

hi(t) = h0(t) exp{γTrti + αmi(t)}
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6.1 R Practical: Dynamic Predictions (cont’d)

� T1: Fit the linear mixed model using lme(), the Cox model using coxph(), and the
corresponding joint model using jm()

� We are interested in producing predictions of survival probabilities for Patient 155

� T2: Extract the data of Patient 155 using the code and drop the survival information

dataP155 <- prothro[prothro$id == 155, ]

dataP155$Time <- dataP155$death <- NULL
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6.1 R Practical: Dynamic Predictions (cont’d)

� T3: Using the first measurement of Patient 155, and the fitted joint model calculate
his conditional survival probabilities using function predict() and plot it using the
plot method (see p. 61)

� T4: Combine the predictions in one plot

◃ say Spred are the survival predictions, and Lpred the longitudinal ones

◃ use plot(Lpred, Spred)
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6.1 R Practical: Dynamic Predictions (cont’d)

� T5: Repeat the same procedure by including each time the next measurement of
Patient 155 and see how his survival probabilities evolve dynamically over time as
extra prothrombin measurements are recorded

◃ first using only the first measurement,

◃ and following update the predictions after each new longitudinal measurement has
been recorded

◃ use a for loop to achieve this

Dynamic Risk Predictions from Joint Models: March 9, 2023, ASA Risk Analysis Section (online) 122



6.1 R Practical: Dynamic Predictions (cont’d)

� T6: Calculate the ROC and the corresponding AUC under the postulated model at
year 3 and with a 1-year window (see p. 82)

� T7: Do the calibration plot for the same period (see p. 89)

� T8: Calculate the prediction error for the same period (see p. 96)
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