
Tutorial I: Motivation for Joint Modeling & Joint Models for
Longitudinal and Survival Data

Dimitris Rizopoulos
Department of Biostatistics, Erasmus University Medical Center

d.rizopoulos@erasmusmc.nl

Joint Modeling and Beyond
Meeting and Tutorials on Joint Modeling With Survival, Longitudinal, and Missing Data

April 14, 2016, Diepenbeek



Contents

1 Introduction 1

1.1 Motivating Longitudinal Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Joint Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Linear Mixed-Effects Models 18

2.1 Features of Longitudinal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The Linear Mixed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 ii



2.3 Missing Data in Longitudinal Studies . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Missing Data Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Relative Risk Models 37

3.1 Features of Survival Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Relative Risk Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Time Dependent Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Extended Cox Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 The Basic Joint Model 54

4.1 Joint Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 iii



4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 A Comparison with the TD Cox . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Joint Models in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Connection with Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 iv



What are these Tutorials About

• Often in follow-up studies different types of outcomes are collected

• Explicit outcomes

◃ multiple longitudinal responses (e.g., markers, blood values)

◃ time-to-event(s) of particular interest (e.g., death, relapse)

• Implicit outcomes

◃ missing data (e.g., dropout, intermittent missingness)

◃ random visit times
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What are these Tutorials About (cont’d)

• Methods for the separate analysis of such outcomes are well established in the
literature

• Survival data:

◃ Cox model, accelerated failure time models, . . .

• Longitudinal data

◃ mixed effects models, GEE, marginal models, . . .
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What are these Tutorials About (cont’d)

Purpose of these tutorials is to introduce the basics of popular

Joint Modelings Techniques
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Chapter 1

Introduction
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1.1 Motivating Longitudinal Studies

• AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine
therapy (AZT) (Abrams et al., NEJM, 1994)

• The aim of this study was to compare the efficacy and safety of two alternative
antiretroviral drugs, didanosine (ddI) and zalcitabine (ddC)

• Outcomes of interest:

◃ time to death

◃ randomized treatment: 230 patients ddI and 237 ddC

◃ CD4 cell count measurements at baseline, 2, 6, 12 and 18 months

◃ prevOI: previous opportunistic infections
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

• Research Questions:

◃ How strong is the association between CD4 cell count and the risk for death?

◃ Is CD4 cell count a good biomarker?

* if treatment improves CD4 cell count, does it also improve survival?
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1.1 Motivating Longitudinal Studies (cont’d)

• PBC: Primary Biliary Cirrhosis:

◃ a chronic, fatal but rare liver disease

◃ characterized by inflammatory destruction of the small bile ducts within the liver

• Data collected by Mayo Clinic from 1974 to 1984 (Murtaugh et al., Hepatology, 1994)

• Outcomes of interest:

◃ time to death and/or time to liver transplantation

◃ randomized treatment: 158 patients received D-penicillamine and 154 placebo

◃ longitudinal serum bilirubin levels

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 6



1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

• Research Questions:

◃ How strong is the association between bilirubin and the risk for death?

◃ How the observed serum bilirubin levels could be utilized to provide predictions of
survival probabilities?

◃ Can bilirubin discriminate between patients of low and high risk?
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1.2 Research Questions

• Depending on the questions of interest, different types of statistical analysis are
required

• We will distinguish between two general types of analysis

◃ separate analysis per outcome

◃ joint analysis of outcomes

• Focus on each outcome separately

◃ does treatment affect survival?

◃ are the average longitudinal evolutions different between males and females?

◃ . . .
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1.2 Research Questions (cont’d)

• Focus on multiple outcomes

◃ Complex hypothesis testing: does treatment improve the average longitudinal
profiles in all markers?

◃ Complex effect estimation: how strong is the association between the longitudinal
evolution of CD4 cell counts and the hazard rate for death?

◃ Association structure among outcomes:

* how the association between markers evolves over time (evolution of the
association)

* how marker-specific evolutions are related to each other (association of the
evolutions)
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1.2 Research Questions (cont’d)

◃ Prediction: can we improve prediction for the time to death by considering all
markers simultaneously?

◃ Handling implicit outcomes: focus on a single longitudinal outcome but with
dropout or random visit times
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1.3 Recent Developments

• Up to now emphasis has been

◃ restricted or coerced to separate analysis per outcome

◃ or given to naive types of joint analysis (e.g., last observation carried forward)

• Main reasons

◃ lack of appropriate statistical methodology

◃ lack of efficient computational approaches & software
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1.3 Recent Developments (cont’d)

• However, recently there has been an explosion in the statistics and biostatistics
literature of joint modeling approaches

• Many different approaches have been proposed that

◃ can handle different types of outcomes

◃ can be utilized in pragmatic computing time

◃ can be rather flexible

◃ most importantly: can answer the questions of interest
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1.4 Joint Models

• Let Y1 and Y2 two outcomes of interest measured on a number of subjects for which
joint modeling is of scientific interest

◃ both can be measured longitudinally

◃ one longitudinal and one survival

• We have various possible approaches to construct a joint density p(y1, y2) of {Y1, Y2}
◃ Conditional models: p(y1, y2) = p(y1)p(y2 | y1)

◃ Copulas: p(y1, y2) = c{F(y1),F(y2)}p(y1)p(y2)

But Random Effects Models have (more or less) prevailed
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1.4 Joint Models (cont’d)

• Random Effects Models specify

p(y1, y2) =

∫
p(y1, y2 | b) p(b) db

=

∫
p(y1 | b) p(y2 | b) p(b) db

◃ Unobserved random effects b explain the association between Y1 and Y2

◃ Conditional Independence assumption

Y1 ⊥⊥ Y2 | b
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1.4 Joint Models (cont’d)

• Features:

◃ Y1 and Y2 can be of different type

* one continuous and one categorical

* one continuous and one survival

* . . .

◃ Extensions to more than two outcomes straightforward

◃ Specific association structure between Y1 and Y2 is assumed

◃ Computationally intensive (especially in high dimensions)
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Chapter 2

Linear Mixed-Effects Models
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2.1 Features of Longitudinal Data

• Repeated evaluations of the same outcome in each subject in time

◃ CD4 cell count in HIV-infected patients

◃ serum bilirubin in PBC patients

Measurements on the same subject are expected to
be (positively) correlated

• This implies that standard statistical tools, such as the t-test and simple linear
regression that assume independent observations, are not optimal for longitudinal
data analysis.
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2.2 The Linear Mixed Model

• The direct approach to model correlated data ⇒ multivariate regression

yi = Xiβ + εi, εi ∼ N (0, Vi),

where

◃ yi the vector of responses for the ith subject

◃ Xi design matrix describing structural component

◃ Vi covariance matrix describing the correlation structure

• There are several options for modeling Vi, e.g., compound symmetry, autoregressive
process, exponential spatial correlation, Gaussian spatial correlation, . . .

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 20



2.2 The Linear Mixed Model (cont’d)

• Alternative intuitive approach: Each subject in the population has her own
subject-specific mean response profile over time
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2.2 The Linear Mixed Model (cont’d)
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2.2 The Linear Mixed Model (cont’d)

• The evolution of each subject in time can be described by a linear model

yij = β̃i0 + β̃i1tij + εij, εij ∼ N (0, σ2),

where

◃ yij the jth response of the ith subject

◃ β̃i0 is the intercept and β̃i1 the slope for subject i

• Assumption: Subjects are randomly sampled from a population ⇒ subject-specific
regression coefficients are also sampled from a population of regression coefficients

β̃i ∼ N (β,D)

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 23



2.2 The Linear Mixed Model (cont’d)

• We can reformulate the model as

yij = (β0 + bi0) + (β1 + bi1)tij + εij,

where

◃ βs are known as the fixed effects

◃ bis are known as the random effects

• In accordance for the random effects we assume

bi =

bi0
bi1

 ∼ N (0, D)
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2.2 The Linear Mixed Model (cont’d)

• Put in a general form
yi = Xiβ + Zibi + εi,

bi ∼ N (0, D), εi ∼ N (0, σ2Ini),

with

◃ X design matrix for the fixed effects β

◃ Z design matrix for the random effects bi

◃ bi ⊥⊥ εi
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2.2 The Linear Mixed Model (cont’d)

• Interpretation:

◃ βj denotes the change in the average yi when xj is increased by one unit

◃ bi are interpreted in terms of how a subset of the regression parameters for the ith
subject deviates from those in the population

• Advantageous feature: population + subject-specific predictions

◃ β describes mean response changes in the population

◃ β + bi describes individual response trajectories
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2.2 The Linear Mixed Model (cont’d)

• Example: We fit a linear mixed model for the AIDS dataset assuming

◃ different average longitudinal evolutions per treatment group (fixed part)

◃ random intercepts & random slopes (random part)


yij = β0 + β1tij + β2{ddIi × tij} + bi0 + bi1tij + εij,

bi ∼ N (0, D), εij ∼ N (0, σ2)

• Note: We did not include a main effect for treatment due to randomization
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2.2 The Linear Mixed Model (cont’d)

Value Std.Err. t-value p-value

β0 7.189 0.222 32.359 < 0.001

β1 −0.163 0.021 −7.855 < 0.001

β2 0.028 0.030 0.952 0.342

• No evidence of differences in the average longitudinal evolutions between the two
treatments
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2.3 Missing Data in Longitudinal Studies

• A major challenge for the analysis of longitudinal data is the problem of missing data

◃ studies are designed to collect data on every subject at a set of prespecified
follow-up times

◃ often subjects miss some of their planned measurements for a variety of reasons
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2.3 Missing Data in Longitudinal Studies (cont’d)

• Implications of missingness:

◃ we collect less data than originally planned ⇒ loss of efficiency

◃ not all subjects have the same number of measurements ⇒ unbalanced datasets

◃ missingness may depend on outcome ⇒ potential bias

• For the handling of missing data, we introduce the missing data indicator

rij =

 1 if yij is observed

0 otherwise
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2.3 Missing Data in Longitudinal Studies (cont’d)

• We obtain a partition of the complete response vector yi

◃ observed data yoi , containing those yij for which rij = 1

◃ missing data ymi , containing those yij for which rij = 0

• For the remaining we will focus on dropout ⇒ notation can be simplified

◃ Discrete dropout time: rdi = 1 +
ni∑
j=1

rij (ordinal variable)

◃ Continuous time: T ∗
i denotes the time to dropout
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2.4 Missing Data Mechanisms

• To describe the probabilistic relation between the measurement and missingness
processes Rubin (1976, Biometrika) has introduced three mechanisms

• Missing Completely At Random (MCAR): The probability that responses are missing
is unrelated to both yoi and ymi

p(ri | yoi , ymi ) = p(ri)

• Examples

◃ subjects go out of the study after providing a pre-determined number of
measurements

◃ laboratory measurements are lost due to equipment malfunction
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2.4 Missing Data Mechanisms (cont’d)

• Missing At Random (MAR): The probability that responses are missing is related to
yoi , but is unrelated to ymi

p(ri | yoi , ymi ) = p(ri | yoi )

• Examples

◃ study protocol requires patients whose response value exceeds a threshold to be
removed from the study

◃ physicians give rescue medication to patients who do not respond to treatment
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2.4 Missing Data Mechanisms (cont’d)

• Missing Not At Random (MNAR): The probability that responses are missing is
related to ymi , and possibly also to yoi

p(ri | ymi ) or p(ri | yoi , ymi )

• Examples

◃ in studies on drug addicts, people who return to drugs are less likely than others
to report their status

◃ in longitudinal studies for quality-of-life, patients may fail to complete the
questionnaire at occasions when their quality-of-life is compromised
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2.4 Missing Data Mechanisms (cont’d)

• Features of MNAR

◃ The observed data cannot be considered a random sample from the target
population

◃ Only procedures that explicitly model the joint distribution {yoi , ymi , ri} provide
valid inferences ⇒ analyses which are valid under MAR will not be valid
under MNAR
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2.4 Missing Data Mechanisms (cont’d)

We cannot tell from the data at hand whether the
missing data mechanism is MAR or MNAR

Note: We can distinguish between MCAR and MAR
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Chapter 3

Relative Risk Models
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3.1 Features of Survival Data

• The most important characteristic that distinguishes the analysis of time-to-event
outcomes from other areas in statistics is Censoring

◃ the event time of interest is not fully observed for all subjects under study

• Implications of censoring:

◃ standard tools, such as the sample average, the t-test, and linear regression
cannot be used

◃ inferences may be sensitive to misspecification of the distribution of the event
times
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3.1 Features of Survival Data (cont’d)

• Several types of censoring:

◃ Location of the true event time wrt the censoring time: right, left & interval

◃ Probabilistic relation between the true event time & the censoring time:
informative & non-informative (similar to MNAR and MAR)

Here we focus on non-informative right censoring

• Note: Survival times may often be truncated; analysis of truncated samples requires
similar calculations as censoring
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3.1 Features of Survival Data (cont’d)

• Notation (i denotes the subject)

◃ T ∗
i ‘true’ time-to-event

◃ Ci the censoring time (e.g., the end of the study or a random censoring time)

• Available data for each subject

◃ observed event time: Ti = min(T ∗
i , Ci)

◃ event indicator: δi = 1 if event; δi = 0 if censored

Our aim is to make valid inferences for T ∗
i but using

only {Ti, δi}
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3.2 Relative Risk Models

• Relative Risk Models assume a multiplicative effect of covariates on the hazard
scale, i.e.,

hi(t) = h0(t) exp(γ1wi1 + γ2wi2 + . . . + γpwip) ⇒

log hi(t) = log h0(t) + γ1wi1 + γ2wi2 + . . . + γpwip,

where

◃ hi(t) denotes the hazard for an event for patient i at time t

◃ h0(t) denotes the baseline hazard

◃ wi1, . . . , wip a set of covariates
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3.2 Relative Risk Models (cont’d)

• Cox Model: We make no assumptions for the baseline hazard function

• Parameter estimates and standard errors are based on the log partial likelihood
function

pℓ(γ) =

n∑
i=1

δi

[
γ⊤wi − log

{ ∑
j:Tj≥Ti

exp(γ⊤wj)
}]

,

where only patients who had an event contribute
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3.2 Relative Risk Models (cont’d)

• Example: For the PBC dataset were interested in the treatment effect while
correcting for sex and age effects

hi(t) = h0(t) exp(γ1D-penici + γ2Femalei + γ3Agei)

Value HR Std.Err. z-value p-value

γ1 −0.138 0.871 0.156 −0.882 0.378

γ2 −0.493 0.611 0.207 −2.379 0.017

γ3 0.021 1.022 0.008 2.784 0.005
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3.3 Time Dependent Covariates

• Often interest in the association between a time-dependent covariate and the risk for
an event

◃ treatment changes with time (e.g., dose)

◃ time-dependent exposure (e.g., smoking, diet)

◃ markers of disease or patient condition (e.g., blood pressure, PSA levels)

◃ . . .

• Example: In the PBC study, are the longitudinal bilirubin measurements associated
with the hazard for death?
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3.3 Time Dependent Covariates (cont’d)

• To answer our questions of interest we need to postulate a model that relates

◃ the serum bilirubin with

◃ the time-to-death

• The association between baseline marker levels and the risk for death can be
estimated with standard statistical tools (e.g., Cox regression)

• When we move to the time-dependent setting, a more careful consideration is
required
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3.3 Time Dependent Covariates (cont’d)

• There are two types of time-dependent covariates
(Kalbfleisch and Prentice, 2002, Section 6.3)

◃ Exogenous (aka external): the future path of the covariate up to any time t > s is
not affected by the occurrence of an event at time point s, i.e.,

Pr
{
Yi(t) | Yi(s), T

∗
i ≥ s

}
= Pr

{
Yi(t) | Yi(s), T

∗
i = s

}
,

where 0 < s ≤ t and Yi(t) = {yi(s), 0 ≤ s < t}

◃ Endogenous (aka internal): not Exogenous
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3.3 Time Dependent Covariates (cont’d)

• It is very important to distinguish between these two types of time-dependent
covariates, because the type of covariate dictates the appropriate type of analysis

• In our motivating examples all time-varying covariates are Biomarkers ⇒ These are
always endogenous covariates

◃ measured with error (i.e., biological variation)

◃ the complete history is not available

◃ existence directly related to failure status
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3.3 Time Dependent Covariates (cont’d)
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3.4 Extended Cox Model

• The Cox model presented earlier can be extended to handle time-dependent
covariates using the counting process formulation

hi(t | Yi(t), wi) = h0(t)Ri(t) exp{γ⊤wi + αyi(t)},

where

◃ Ni(t) is a counting process which counts the number of events for subject i by
time t,

◃ hi(t) denotes the intensity process for Ni(t),

◃ Ri(t) denotes the at risk process (‘1’ if subject i still at risk at t), and

◃ yi(t) denotes the value of the time-varying covariate at t
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3.4 Extended Cox Model (cont’d)

• Interpretation:

hi(t | Yi(t), wi) = h0(t)Ri(t) exp{γ⊤wi + αyi(t)}

exp(α) denotes the relative increase in the risk for an event at time t that results
from one unit increase in yi(t) at the same time point

• Parameters are estimated based on the log-partial likelihood function

pℓ(γ, α) =

n∑
i=1

∫ ∞

0

{
Ri(t) exp{γ⊤wi + αyi(t)}

− log
[∑

j

Rj(t) exp{γ⊤wj + αyj(t)}
]}

dNi(t)
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3.4 Extended Cox Model (cont’d)

• How does the extended Cox model handle time-varying covariates?

◃ assumes no measurement error

◃ step-function path

◃ existence of the covariate is not related to failure status
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3.4 Extended Cox Model (cont’d)
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3.4 Extended Cox Model (cont’d)

• Therefore, the extended Cox model is only valid for exogenous time-dependent
covariates

Treating endogenous covariates as exogenous may
produce spurious results!

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 53



Chapter 4

The Basic Joint Model
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4.1 Joint Modeling Framework

• To account for the special features of endogenous covariates a new class of models
has been developed

Joint Models for Longitudinal and Time-to-Event Data

• Intuitive idea behind these models

1. use an appropriate model to describe the evolution of the marker in time for each
patient

2. the estimated evolutions are then used in a Cox model

• Feature: Marker level’s are not assumed constant between visits
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4.1 Joint Modeling Framework (cont’d)
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4.1 Joint Modeling Framework (cont’d)

• Some notation

◃ T ∗
i : True event time for patient i

◃ Ti: Observed event time for patient i

◃ δi: Event indicator, i.e., equals 1 for true events

◃ yi: Longitudinal responses

• We will formulate the joint model in 3 steps – in particular, . . .
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4.1 Joint Modeling Framework (cont’d)

• Step 1: Let’s assume that we know mi(t), i.e., the true & unobserved value of the
marker at time t

• Then, we can define a standard relative risk model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

where

◃ Mi(t) = {mi(s), 0 ≤ s < t} longitudinal history

◃ α quantifies the strength of the association between the marker and the risk for
an event

◃ wi baseline covariates
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4.1 Joint Modeling Framework (cont’d)

• Step 2: From the observed longitudinal response yi(t) reconstruct the covariate
history for each subject

• Mixed effects model (we focus, for now, on continuous markers)

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t), εi(t) ∼ N (0, σ2),

where

◃ xi(t) and β: Fixed-effects part

◃ zi(t) and bi: Random-effects part, bi ∼ N (0, D)

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 59



4.1 Joint Modeling Framework (cont’d)

• Step 3: The two processes are associated ⇒ define a model for their joint
distribution

• Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

p(yi, Ti, δi) =

∫
p(yi | bi)

{
h(Ti | bi)δi S(Ti | bi)

}
p(bi) dbi,

where

◃ bi a vector of random effects that explains the interdependencies

◃ p(·) density function; S(·) survival function
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4.1 Joint Modeling Framework (cont’d)

• Key assumption: Full Conditional Independence ⇒ random effects explain all
interdependencies

◃ the longitudinal outcome is independent of the time-to-event outcome

◃ the repeated measurements in the longitudinal outcome are independent of each
other

p(yi, Ti, δi | bi) = p(yi | bi) p(Ti, δi | bi)

p(yi | bi) =
∏
j

p(yij | bi)

Caveat: CI is difficult to be tested
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4.1 Joint Modeling Framework (cont’d)

• The censoring and visiting∗ processes are assumed non-informative:

• Decision to withdraw from the study or appear for the next visit

◃ may depend on observed past history (baseline covariates + observed
longitudinal responses)

◃ no additional dependence on underlying, latent subject characteristics
associated with prognosis

∗The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which

longitudinal measurements are collected.
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4.1 Joint Modeling Framework (cont’d)

• The survival function, which is a part of the likelihood of the model, depends on the
whole longitudinal history

Si(t | bi) = exp

(
−
∫ t

0

h0(s) exp{γ⊤wi + αmi(s)} ds

)

• Therefore, care in the definition of the design matrices of the mixed model

◃ when subjects have nonlinear profiles ⇒

◃ use splines or polynomials to model them flexibly

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 63



4.1 Joint Modeling Framework (cont’d)

• Assumptions for the baseline hazard function h0(t)

◃ parametric ⇒ possibly restrictive

◃ unspecified ⇒ within JM framework underestimates standard errors

• It is advisable to use parametric but flexible models for h0(t)

◃ splines

log h0(t) = γh0,0 +

Q∑
q=1

γh0,qBq(t, v),

where

* Bq(t, v) denotes the q-th basis function of a B-spline with knots v1, . . . , vQ

* γh0 a vector of spline coefficients
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4.1 Joint Modeling Framework (cont’d)

• It is advisable to use parametric but flexible models for h0(t)

◃ step-functions: piecewise-constant baseline hazard often works satisfactorily

h0(t) =

Q∑
q=1

ξqI(vq−1 < t ≤ vq),

where 0 = v0 < v1 < · · · < vQ denotes a split of the time scale
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4.2 Estimation

• Mainly maximum likelihood but also Bayesian approaches

• The log-likelihood contribution for subject i:

ℓi(θ) = log

∫ { ni∏
j=1

p(yij | bi; θ)
}{

h(Ti | bi; θ)δi Si(Ti | bi; θ)
}
p(bi; θ) dbi,

where

Si(t | bi; θ) = exp

(
−
∫ t

0

h0(s; θ) exp{γ⊤wi + αmi(s)} ds

)
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4.2 Estimation (cont’d)

• Both integrals do not have, in general, a closed-form solution ⇒ need to be
approximated numerically

• Standard numerical integration algorithms

◃ Gaussian quadrature

◃ Monte Carlo

◃ . . .

• More difficult is the integral with respect to bi because it can be of high dimension

◃ Laplace approximations

◃ pseudo-adaptive Gaussian quadrature rules
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4.2 Estimation (cont’d)

• To maximize the approximated log-likelihood

ℓ(θ) =

n∑
i=1

log

∫
p(yi | bi; θ)

{
h(Ti | bi; θ)δi Si(Ti | bi; θ)

}
p(bi; θ) dbi,

we need to employ an optimization algorithm

• Standard choices

◃ EM (treating bi as missing data)

◃ Newton-type

◃ hybrids (start with EM and continue with quasi-Newton)
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4.3 A Comparison with the TD Cox

• Example: To illustrate the virtues of joint modeling, we compare it with the standard
time-dependent Cox model for the AIDS data

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp{γddIi + αmi(t)},

where

◃ h0(t) is assumed piecewise-constant
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4.3 A Comparison with the TD Cox (cont’d)

JM Cox

log HR (std.err) log HR (std.err)

Treat 0.33 (0.16) 0.31 (0.15)

CD41/2 −0.29 (0.04) −0.19 (0.02)

• Clearly, there is a considerable effect of ignoring the measurement error, especially for
the CD4 cell counts
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4.3 A Comparison with the TD Cox (cont’d)

• A unit decrease in CD41/2, results in a

◃ Joint Model: 1.3-fold increase in risk (95% CI: 1.24; 1.43)

◃ Time-Dependent Cox: 1.2-fold increase in risk (95% CI: 1.16; 1.27)

• Which one to believe?

◃ a lot of theoretical and simulation work has shown that the Cox model
underestimates the true association size of markers
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4.4 Joint Models in R

R> Joint models are fitted using function jointModel() from package JM. This
function accepts as main arguments a linear mixed model and a Cox PH model based
on which it fits the corresponding joint model

lmeFit <- lme(CD4 ~ obstime + obstime:drug,

random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

jointFit <- jointModel(lmeFit, coxFit, timeVar = "obstime",

method = "piecewise-PH-aGH")

summary(jointFit)
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4.4 Joint Models in R (cont’d)

R> The data frame given in lme() should be in the long format, while the data frame
given to coxph() should have one line per subject∗

◃ the ordering of the subjects needs to be the same

R> In the call to coxph() you need to set x = TRUE (or model = TRUE) such that
the design matrix used in the Cox model is returned in the object fit

R> Argument timeVar specifies the time variable in the linear mixed model

∗ Unless you want to include exogenous time-varying covariates or handle competing risks
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4.4 Joint Models in R (cont’d)

R> Argument method specifies the type of relative risk model and the type of numerical
integration algorithm – the syntax is as follows:

<baseline hazard>-<parameterization>-<numerical integration>

Available options are:

◃ "piecewise-PH-GH": PH model with piecewise-constant baseline hazard

◃ "spline-PH-GH": PH model with B-spline-approximated log baseline hazard

◃ "weibull-PH-GH": PH model with Weibull baseline hazard

◃ "weibull-AFT-GH": AFT model with Weibull baseline hazard

◃ "Cox-PH-GH": PH model with unspecified baseline hazard

GH stands for standard Gauss-Hermite; using aGH invokes the pseudo-adaptive
Gauss-Hermite rule
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4.4 Joint Models in R (cont’d)

R> Joint models under the Bayesian approach are fitted using function
jointModelBayes() from package JMbayes. This function works in a very similar
manner as function jointModel(), e.g.,

lmeFit <- lme(CD4 ~ obstime + obstime:drug,

random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

jointFitBayes <- jointModelBayes(lmeFit, coxFit, timeVar = "obstime")

summary(jointFitBayes)
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4.4 Joint Models in R (cont’d)

R> JMbayes is more flexible (in some respects):

◃ directly implements the MCMC

◃ allows for categorical longitudinal data as well

◃ allows for general transformation functions

◃ penalized B-splines for the baseline hazard function

◃ . . .
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4.4 Joint Models in R (cont’d)

R> In both packages methods are available for the majority of the standard generic
functions + extras

◃ summary(), anova(), vcov(), logLik()

◃ coef(), fixef(), ranef()

◃ fitted(), residuals()

◃ plot()

◃ xtable() (you need to load package xtable first)
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4.5 Connection with Missing Data

• So far we have attacked the problem from the survival point of view

• However, often, we may be also interested on the longitudinal outcome

• Issue: When patients experience the event, they dropout from the study

◃ a direct connection with the missing data field
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4.5 Connection with Missing Data (cont’d)

• To show this connection more clearly

◃ T ∗
i : true time-to-event

◃ yoi : longitudinal measurements before T
∗
i

◃ ymi : longitudinal measurements after T
∗
i

• Important to realize that the model we postulate for the longitudinal responses is
for the complete vector {yoi , ymi }

◃ implicit assumptions about missingness
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4.5 Connection with Missing Data (cont’d)

• Missing data mechanism:

p(T ∗
i | yoi , ymi ) =

∫
p(T ∗

i | bi) p(bi | yoi , ymi ) dbi

still depends on ymi , which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show
different longitudinal evolutions than patients who do not
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4.5 Connection with Missing Data (cont’d)

• Joint models belong to the class of Shared Parameter Models

p(yoi , y
m
i , T

∗
i ) =

∫
p(yoi , y

m
i | bi) p(T ∗

i | bi) p(bi)dbi

the association between the longitudinal and missingness processes is explained by
the shared random effects bi
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4.5 Connection with Missing Data (cont’d)

• The other two well-known frameworks for MNAR data are

◃ Selection models

p(yoi , y
m
i , T

∗
i ) = p(yoi , y

m
i ) p(T

∗
i | yoi , ymi )

◃ Pattern mixture models:

p(yoi , y
m
i , T

∗
i ) = p(yoi , y

m
i | T ∗

i ) p(T
∗
i )

• These two model families are primarily applied with discrete dropout times and
cannot be easily extended to continuous time
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4.5 Connection with Missing Data (cont’d)

• Example: In the AIDS data the association parameter α was highly significant,
suggesting nonrandom dropout

• A comparison between

◃ linear mixed-effects model ⇒ MAR

◃ joint model ⇒ MNAR

is warranted

• MAR assumes that missingness depends only on the observed data

p(T ∗
i | yoi , ymi ) = p(T ∗

i | yoi )
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4.5 Connection with Missing Data (cont’d)

LMM (MAR) JM (MNAR)

value (s.e.) value (s.e)

Inter 7.19 (0.22) 7.22 (0.22)

Time −0.16 (0.02) −0.19 (0.02)

Treat:Time 0.03 (0.03) 0.01 (0.03)

• Minimal sensitivity in parameter estimates & standard errors

⇒ Warning: This does not mean that this is always the case!
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The End of Tutorial I!
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