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What is this Course About

� Often in follow-up studies different types of outcomes are collected

� Explicit outcomes

◃ multiple longitudinal responses (e.g., markers, blood values)

◃ time-to-event(s) of particular interest (e.g., death, relapse)

� Implicit outcomes

◃ missing data

◃ random visit times
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What is this Course About (cont’d)

� Methods for the separate analysis of such outcomes are well established in the
literature

� Survival data:

◃ Cox model, accelerated failure time models, . . .

� Longitudinal data

◃ mixed effects models, GEE, marginal models, . . .
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What is this Course About (cont’d)

Purpose of this course is to present the state of the art in

Joint Modeling Techniques
for Longitudinal and Time-to-Event Data
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Learning Objectives

� Goals: After this course participants will be able to

◃ identify settings in which a joint modeling approach is required,

◃ construct and fit an appropriate joint model, and

◃ correctly interpret the obtained results

� The course will be explanatory rather than mathematically rigorous

◃ emphasis is given on sufficient detail in order for participants to obtain a clear
view on the different joint modeling approaches, and how they should be used in
practice
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Agenda

� Part I: Introduction

◃ Data sets that we will use throughout the course

◃ Research questions

� Part II: (brief) Review of Linear Mixed Models

◃ Features of repeated measurements data

◃ Linear mixed models

◃ Missing data in longitudinal studies
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Agenda (cont’d)

� Part III: (brief) Review of Relative Risk Models

◃ Features of survival data

◃ Relative risk models

◃ Time-varying covariates

� Part IV: The Basic Joint Model

◃ Definition

◃ Estimation

◃ Connection with the missing data framework
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Agenda (cont’d)

� Part V: Extensions of the Basic Joint Model

◃ Functional forms

◃ Multivariate joint models

� Part VI: Dynamic Predictions

◃ Individualized predictions

◃ Effect of the functional forms

◃ Accuracy measures
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Structure of the Course & Material

� Lectures & short software practicals using the R package JMbayes2

� Material (also available in http://www.drizopoulos.com/):

◃ Course Notes

◃ R code in soft format

� Within the course notes there are several examples of R code which are denoted by
the symbol ‘R> ’
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Part I

Introduction
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1.1 Motivating Longitudinal Studies

� AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine
therapy (AZT) (Abrams et al., NEJM, 1994)

� The aim of this study was to compare the efficacy and safety of two alternative
antiretroviral drugs, didanosine (ddI) and zalcitabine (ddC)

� Outcomes of interest:

◃ time to death

◃ randomized treatment: 230 patients ddI and 237 ddC

◃ CD4 cell count measurements at baseline, 2, 6, 12 and 18 months

◃ prevOI: previous opportunistic infections
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

� Research Questions:

◃ How strong is the association between CD4 cell count and the risk of death?

◃ Is CD4 cell count a good biomarker?

* if treatment improves CD4 cell count, does it also improve survival?
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1.1 Motivating Longitudinal Studies (cont’d)

� PBC: Primary Biliary Cirrhosis:

◃ a chronic, fatal but rare liver disease

◃ characterized by inflammatory destruction of the small bile ducts within the liver

� Outcomes of interest:

◃ time to death or liver transplantation

◃ randomized treatment: 158 patients received D-penicillamine and 154 placebo

◃ longitudinal bilirubin levels, cholesterol, prothrombin time (continuous)

◃ longitudinal ascites, hepatomegaly, edema (categorical)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

� Research Questions:

◃ How strong is the association between bilirubin and the risk of death?

◃ How the observed serum bilirubin levels could be utilized to provide predictions of
survival probabilities?

◃ Can bilirubin discriminate between patients of low and high risk?
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1.2 Research Questions

� Depending on the questions of interest, different types of statistical analysis are
required

� We will distinguish between two general types of analysis

◃ separate analysis per outcome

◃ joint analysis of outcomes

� Focus on each outcome separately

◃ does treatment affect survival?

◃ are the average longitudinal evolutions different between males and females?

◃ . . .
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1.2 Research Questions (cont’d)

� Focus on multiple outcomes

◃ Complex effect estimation: how strong is the association between the
longitudinal evolution of CD4 cell counts and the hazard of death?

◃ Handling implicit outcomes: focus on longitudinal outcomes but with dropout
or random visit times
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Part II

Linear Mixed-Effects Models
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2.1 Linear Mixed Models

� Repeated evaluations of the same outcome in each subject over time

◃ CD4 cell count in HIV-infected patients

◃ serum bilirubin in PBC patients

Measurements on the same subject are expected to
be (positively) correlated

� This implies that standard statistical tools, such as the t-test and simple linear
regression that assume independent observations, are not optimal for longitudinal
data analysis.
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2.1 Linear Mixed Models (cont’d)

� The direct approach to model correlated data ⇒ multivariate regression

yi = Xiβ + εi, εi ∼ N (0, Vi),

where

◃ yi the vector of responses for the ith subject

◃ Xi design matrix describing structural component

◃ Vi covariance matrix describing the correlation structure

� There are several options for modeling Vi, e.g., compound symmetry, autoregressive
process, exponential spatial correlation, Gaussian spatial correlation, . . .
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2.1 Linear Mixed Models (cont’d)

� Alternative intuitive approach: Each subject in the population has her own
subject-specific mean response profile over time
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2.1 Linear Mixed Models (cont’d)
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2.1 Linear Mixed Models (cont’d)

� The profile of each subject over time can be described by a linear model

yij = β̃i0 + β̃i1tij + εij, εij ∼ N (0, σ2),

where

◃ yij the jth response of the ith subject

◃ β̃i0 is the intercept and β̃i1 the slope for subject i

� Assumption: Subjects are randomly sampled from a population ⇒ subject-specific
regression coefficients are also sampled from a population of regression coefficients

β̃i ∼ N (β,D)
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2.1 Linear Mixed Models (cont’d)

� We can reformulate the model as

yij = (β0 + bi0) + (β1 + bi1)tij + εij,

where

◃ βs are known as the fixed effects

◃ bis are known as the random effects

� In accordance for the random effects we assume

bi =

bi0
bi1

 ∼ N (0, D)
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2.1 Linear Mixed Models (cont’d)

� Put in a general form
yi = Xiβ + Zibi + εi,

bi ∼ N (0, D), εi ∼ N (0, σ2Ini),

with

◃ X design matrix for the fixed effects β

◃ Z design matrix for the random effects bi

◃ bi ⊥⊥ εi
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2.1 Linear Mixed Models (cont’d)

� Interpretation:

◃ βj denotes the change in the average yi when xj is increased by one unit

◃ bi are interpreted in terms of how a subset of the regression parameters for the ith
subject deviates from those in the population

� Advantageous feature: population + subject-specific predictions

◃ β describes mean response changes in the population

◃ β + bi describes individual response trajectories
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2.1 Linear Mixed Models (cont’d)

� Example: We fit a linear mixed model for the AIDS dataset assuming

◃ different average longitudinal evolutions per treatment group (fixed part)

◃ random intercepts & random slopes (random part)


yij = β0 + β1tij + β2{ddIi × tij} + bi0 + bi1tij + εij,

bi ∼ N (0, D), εij ∼ N (0, σ2)

� Note: We did not include a main effect for treatment due to randomization
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2.1 Linear Mixed Models (cont’d)

Value Std.Err. t-value p-value

β0 7.189 0.222 32.359 < 0.001

β1 −0.163 0.021 −7.855 < 0.001

β2 0.028 0.030 0.952 0.342

� No evidence of differences in the average longitudinal evolutions between the two
treatments
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2.2 Linear Mixed Models in R

R> There are two primary packages in R for mixed models analysis:

◃ Package nlme

* fits linear & nonlinear mixed effects models, and marginal models for normal
data

* allows for both random effects & correlated error terms

* several options for covariances matrices and variance functions

◃ Package lme4

* fits linear, nonlinear & generalized mixed effects models

* uses only random effects

* allows for nested and crossed random-effects designs
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2.2 Linear Mixed Models in R (cont’d)

R> We will only use package nlme because package JMbayes2 accepts as an
argument a linear mixed model fitted by nlme

R> The basic function to fit linear mixed models is lme() and has three basic arguments

◃ fixed: a formula specifying the response vector and the fixed-effects structure

◃ random: a formula specifying the random-effects structure

◃ data: a data frame containing all the variables
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2.2 Linear Mixed Models in R (cont’d)

R> The data frame that contains all variables should be in the long format

Subject y time gender age

1 5.1 0.0 male 45

1 6.3 1.1 male 45

2 5.9 0.1 female 38

2 6.9 0.9 female 38

2 7.1 1.2 female 38

2 7.3 1.5 female 38
... ... ... ... ...
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2.2 Linear Mixed Models in R (cont’d)

R> Using formulas in R

◃ CD4 = Time + Gender
⇒ cd4 ∼ time + gender

◃ CD4 = Time + Gender + Time*Gender
⇒ cd4 ∼ time + gender + time:gender

⇒ cd4 ∼ time * gender (the same)

◃ CD4 = Time + Time2

⇒ cd4 ∼ time + I(time^2)

⇒ cd4 ∼ poly(time, 2)

R> Note: the intercept term is included by default
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2.2 Linear Mixed Models in R (cont’d)

R> The code used to fit the linear mixed model for the AIDS dataset (p. 21) is as
follows

lmeFit <- lme(CD4 ~ obstime + obstime:drug, data = aids,

random = ~ obstime | patient)

summary(lmeFit)
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2.3 Missing Data Mechanisms

� A major challenge for the analysis of longitudinal data is the problem of missing
data

◃ studies are designed to collect data on every subject at a set of prespecified
follow-up times

◃ often subjects miss some of their planned measurements for a variety of reasons

� We can have different patterns of missing data
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2.3 Missing Data Mechanisms (cont’d)

Subject Visits

1 2 3 4 5

1 x x x x x

2 x x x ? ?

3 ? x x x x

4 ? x ? x ?

◃ Subject 1: Completer

◃ Subject 2: dropout

◃ Subject 3: late entry

◃ Subject 4: intermittent
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2.3 Missing Data Mechanisms (cont’d)

� Implications of missingness:

◃ we collect less data than originally planned ⇒ loss of efficiency

◃ not all subjects have the same number of measurements ⇒ unbalanced datasets

◃ missingness may depend on outcome ⇒ potential bias

� For the handling of missing data, we introduce the missing data indicator

rij =

 1 if yij is observed

0 otherwise
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2.3 Missing Data Mechanisms (cont’d)

� We obtain a partition of the complete response vector yi

◃ observed data yoij, containing those yij for which rij = 1

◃ missing data ymij , containing those yij for which rij = 0

To describe the probabilistic relation between the
measurement and dropout processes, Rubin (1976,

Biometrika) has introduced three mechanisms
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2.3 Missing Data Mechanisms (cont’d)

� Missing Completely At Random (MCAR): The probability that responses are missing
is unrelated to both yoi and y

m
i

p(ri | yoi , ymi ) = p(ri)

� Examples

◃ subjects go out of the study after providing a pre-determined number of
measurements

◃ laboratory measurements are lost due to equipment malfunction
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2.3 Missing Data Mechanisms (cont’d)

� Features of MCAR:

◃ The observed data yoi can be considered a random sample of the complete data yi

◃ We can use any statistical procedure that is valid for complete data

* sample averages per time point

* linear regression, ignoring the correlation (consistent, but not efficient)

* t-test at the last time point

* . . .
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2.3 Missing Data Mechanisms (cont’d)

� Missing At Random (MAR): The probability that responses are missing is related to
yoi , but is unrelated to ymi

p(ri | yoi , ymi ) = p(ri | yoi )

� Examples

◃ study protocol requires patients whose response value exceeds a threshold to be
removed from the study

◃ physicians give rescue medication to patients who do not respond to treatment
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2.3 Missing Data Mechanisms (cont’d)

� Features of MAR:

◃ The observed data cannot be considered a random sample from the target
population

◃ Not all statistical procedures provide valid results

Not valid under MAR Valid under MAR
sample marginal evolutions sample subject-specific evolutions

methods based on moments, likelihood based inference
such as GEE

mixed models with misspecified mixed models with correctly specified
correlation structure correlation structure

marginal residuals subject-specific residuals

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 35



2.3 Missing Data Mechanisms (cont’d)

0 1 2 3 4 5

0
20

40
60

80

MAR Missingness

Time

Lo
ng

itu
di

na
l O

ut
co

m
e

loess based on all data

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 36



2.3 Missing Data Mechanisms (cont’d)
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2.3 Missing Data Mechanisms (cont’d)

� Missing Not At Random (MNAR): The probability that responses are missing is
related to ymi , and possibly also to yoi

p(ri | ymi ) or p(ri | yoi , ymi )

� Examples

◃ in studies on drug addicts, people who return to drugs are less likely than others
to report their status

◃ in longitudinal studies for quality-of-life, patients may fail to complete the
questionnaire at occasions when their quality-of-life is compromised
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2.3 Missing Data Mechanisms (cont’d)

� Features of MNAR

◃ The observed data cannot be considered a random sample from the target
population

◃ Only procedures that explicitly model the joint distribution {yoi , ymi , ri} provide
valid inferences

Analysis that are valid under MAR will not be valid
under MNAR
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2.3 Missing Data Mechanisms (cont’d)

We cannot tell from the data at hand whether the
missing data mechanism is MAR or MNAR

Note: We can distinguish between MCAR and MAR
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Part III

Relative Risk Models
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3.1 Relative Risk Models

� The characteristic that distinguishes the analysis of time-to-event outcomes from
other areas in statistics is Censoring

◃ the event time of interest is not fully observed for all subjects under study

� Implications of censoring:

◃ standard tools, such as the sample average, the t-test, and linear regression
cannot be used

◃ inferences may be sensitive to misspecification of the distribution of the event
times
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3.1 Relative Risk Models (cont’d)

� Several types of censoring:

◃ Location of the true event time wrt the censoring time: right, left & interval

◃ Probabilistic relation between the true event time & the censoring time:
informative & non-informative (similar to MNAR and MAR)

Here we focus on non-informative right censoring
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3.1 Relative Risk Models (cont’d)

� Notation (i denotes the subject)

◃ T ∗
i ‘true’ time-to-event

◃ Ci the censoring time (e.g., the end of the study or a random censoring time)

� Available data for each subject

◃ observed event time: Ti = min(T ∗
i , Ci)

◃ event indicator: δi = 1 if event; δi = 0 if censored

Our aim is to make valid inferences for T ∗
i but using

only {Ti, δi}
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3.1 Relative Risk Models (cont’d)

� Relative Risk Models assume a multiplicative effect of covariates on the hazard
scale, i.e.,

hi(t) = h0(t) exp(γ1wi1 + γ2wi2 + . . . + γpwip) ⇒

log hi(t) = log h0(t) + γ1wi1 + γ2wi2 + . . . + γpwip,

where

◃ hi(t) denotes the hazard of an event for patient i at time t

◃ h0(t) denotes the baseline hazard

◃ wi1, . . . , wip a set of covariates
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3.1 Relative Risk Models (cont’d)

� Cox Model: We make no assumptions for the baseline hazard function

� Parameter estimates and standard errors are based on the log partial likelihood
function

pℓ(γ) =

n∑
i=1

δi

[
γ⊤wi − log

{ ∑
j:Tj≥Ti

exp(γ⊤wj)
}]
,

where only patients who had an event contribute
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3.1 Relative Risk Models (cont’d)

� Example: For the PBC dataset were interested in the treatment effect while
correcting for sex and age effects

hi(t) = h0(t) exp(γ1D-penici + γ2Femalei + γ3Agei)

Value HR Std.Err. z-value p-value

γ1 −0.138 0.871 0.156 −0.882 0.378

γ2 −0.493 0.611 0.207 −2.379 0.017

γ3 0.021 1.022 0.008 2.784 0.005
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3.2 Relative Risk Models in R

R> The primary package in R for the analysis of survival data is the survival package

R> A key function in this package that is used to specify the available event time
information in a sample at hand is Surv()

R> For right censored failure times (i.e., what we will see in this course) we need to
provide the observed event times time, and the event indicator status, which
equals 1 for true failure times and 0 for right censored times

Surv(time, status)
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3.2 Relative Risk Models in R (cont’d)

R> Cox models are fitted using function coxph(). For instance, for the PBC data the
following code fits the Cox model that contains the main effects of ‘drug’, ‘sex’ and
‘age’:

CoxFit <- coxph(Surv(years, status2) ~ drug + sex + age,

data = pbc2.id)

summary(CoxFit)

R> The two main arguments are a formula specifying the design matrix of the model
and a data frame containing all the variables
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3.3 Time-Varying Covariates

� Often interest in the association between a time-varying covariate and the risk of an
event

◃ treatment changes with time (e.g., dose)

◃ time-dependent exposure (e.g., smoking, diet)

◃ markers of disease or patient condition (e.g., blood pressure, PSA levels)

◃ . . .

� Example: In the PBC study, are the longitudinal bilirubin measurements associated
with the hazard of death?
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3.3 Time-Varying Covariates (cont’d)

� To answer our questions of interest we need to postulate a model that relates

◃ the serum bilirubin with

◃ the time-to-death

� The association between baseline marker levels and the risk of death can be
estimated with standard statistical tools (e.g., Cox regression)

� When we want to study time-varying covariates, a more careful consideration is
required
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3.3 Time-Varying Covariates (cont’d)

� There are two types of time-varying covariates
(Kalbfleisch & Prentice, The Stat. Anal. of Failure Time Data, 2002)

◃ External (aka exogenous): the value of the covariate at time point t is not
affected by the occurrence of an event at time point u, with t > u

◃ Internal (aka endogenous): not External

� This is a difficult concept and we will try to explain it with an example. . .
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3.3 Time-Varying Covariates (cont’d)

� Example: Consider a study on asthma, in particular on the time until an asthma
attack for a group of patients

� We have two time-varying covariates: Pollution levels & a biomarker for asthma

� Say a patient had an asthma attack at a particular time point u

◃ Pollution levels

* will the pollution levels at time t > u be affected by the fact that the patient
had an attack at u? ⇒ No

◃ Biomarker

* will the biomarker level at time t > u be affected by the fact that the patient
had an attack at u? ⇒ Yes
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3.3 Time-Varying Covariates (cont’d)

� It is important to distinguish between these two types of time-varying covariates,
because the type of covariate dictates the appropriate type of analysis

� In our motivating examples all time-varying covariates are Biomarkers ⇒ These are
always endogenous covariates

◃ measured with error (i.e., biological variation)

◃ the complete history is not available

◃ existence directly related to failure status
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3.3 Time-Varying Covariates (cont’d)
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3.3 Time-Varying Covariates (cont’d)

� The Cox model presented earlier can be extended to handle time-varying covariates
using the counting process formulation

hi(t | Yi(t), wi) = h0(t)Ri(t) exp{γ⊤wi + αyi(t)},

where

◃ Ni(t) is a counting process which counts the number of events for subject i by
time t,

◃ hi(t) denotes the intensity process for Ni(t),

◃ Ri(t) denotes the at risk process (‘1’ if subject i still at risk at t), and

◃ yi(t) denotes the value of the time-varying covariate at t
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3.3 Time-Varying Covariates (cont’d)

� Interpretation:

hi(t | Yi(t), wi) = h0(t)Ri(t) exp{γ⊤wi + αyi(t)}

exp(α) denotes the relative increase in the risk of an event at time t that results from
one unit increase in yi(t) at the same time point

� Parameters are estimated based on the log-partial likelihood function

pℓ(γ, α) =

n∑
i=1

∫ ∞

0

{
Ri(t) exp{γ⊤wi + αyi(t)}

− log
[∑

j

Rj(t) exp{γ⊤wj + αyj(t)}
]}

dNi(t)
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3.3 Time-Varying Covariates (cont’d)

� How does the extended Cox model handle time-varying covariates?

◃ assumes no measurement error

◃ step-function path

◃ existence of the covariate is not related to failure status
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3.3 Time-Varying Covariates (cont’d)
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3.3 Time-Varying Covariates (cont’d)

� Therefore, the extended Cox model is only valid for exogenous time-varying covariates

Treating endogenous covariates as exogenous may
produce spurious results!
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Part IV

The Basic Joint Model

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 61



4.1 Joint Modeling Framework

� To account for the special features of endogenous covariates a new class of models
has been developed

Joint Models for Longitudinal and Time-to-Event Data

� Intuitive idea behind these models

1. use an appropriate model to describe the evolution of the covariate/marker over
time for each patient

2. the estimated evolutions are then used in a Cox model

� Feature: covariate level’s are not assumed constant between visits
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4.1 Joint Modeling Framework (cont’d)
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4.1 Joint Modeling Framework (cont’d)

� Some notation

◃ T ∗
i : True event time for patient i

◃ Ti: Observed event time for patient i

◃ δi: Event indicator, i.e., equals 1 for true events

◃ yi: Longitudinal covariate

� We will formulate the joint model in 3 steps – in particular, . . .
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4.1 Joint Modeling Framework (cont’d)

� Step 1: Let’s assume that we know mi(t), i.e., the true & unobserved value of the
covariate at time t

� Then, we can define a standard relative risk model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

where

◃Mi(t) = {mi(s), 0 ≤ s < t} longitudinal history

◃ α quantifies the association between the time-varying covariate and the risk of an
event

◃ wi baseline covariates
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4.1 Joint Modeling Framework (cont’d)

� Step 2: From the observed longitudinal data yi(t) reconstruct the covariate history
for each subject

� Mixed effects model (we focus, for now, on continuous covariates)

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t), εi(t) ∼ N (0, σ2),

where

◃ xi(t) and β: Fixed-effects part

◃ zi(t) and bi: Random-effects part, bi ∼ N (0, D)
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4.1 Joint Modeling Framework (cont’d)

� Step 3: The two processes are associated ⇒ define a model for their joint
distribution

� Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

p(yi, Ti, δi) =

∫
p(yi | bi)

{
h(Ti | bi)δi S(Ti | bi)

}
p(bi) dbi,

where

◃ bi a vector of random effects that explains the interdependencies

◃ p(·) density function; S(·) survival function
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4.1 Joint Modeling Framework (cont’d)

� Key assumption: Full Conditional Independence ⇒ random effects explain all
interdependencies

◃ the longitudinal outcome is independent of the time-to-event outcome

◃ the repeated measurements in the longitudinal outcome are independent of each
other

p(yi, Ti, δi | bi) = p(yi | bi) p(Ti, δi | bi)

p(yi | bi) =
∏
j

p(yij | bi)

Caveat: CI is difficult to test
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4.1 Joint Modeling Framework (cont’d)

� The censoring and visiting∗ processes are assumed non-informative:

� Decision to withdraw from the study or appear for the next visit

◃ may depend on observed past history (baseline covariates + observed
longitudinal responses)

◃ no additional dependence on underlying, latent subject characteristics
associated with prognosis

∗The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which

longitudinal measurements are collected.
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4.1 Joint Modeling Framework (cont’d)

� Joint models require a full specification of the joint distribution

◃ we need an assumption for the baseline hazard

� General Advice: Use a parametric but flexible model for h0(t):

log h0(t) = γh0,0 +

Q∑
q=1

γh0,qBq(t, v),

where

◃ Bq(t, v) denotes the q-th basis function of a B-spline with knots v1, . . . , vQ

◃ γh0 a vector of spline coefficients
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4.1 Joint Modeling Framework (cont’d)

� Penalize spline coefficients for smoothness

p(γh0 | τh) ∝ τ
ρ/2
h exp

(
−τh

2
γ⊤h0∆

⊤
r ∆rγh0

)
,

where

◃ τh smoothing parameter

◃ ∆r denotes r-th differences penalty matrix

◃ ρ rank of ∆⊤
r ∆r
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4.2 Bayesian Estimation

� Under the Bayesian paradigm both θ and {bi, i = 1, . . . , n} are regarded as
parameters

� Inference is based on the full posterior distribution

p(θ, b | T, δ, y) =

∏
i p(Ti, δi | bi; θ) p(yi | bi; θ) p(bi; θ) p(θ)∏

i p(Ti, δi, yi)

∝
n∏
i=1

{
p(Ti, δi | bi; θ) p(yi | bi; θ) p(bi; θ)

}
p(θ)
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4.2 Bayesian Estimation (cont’d)

� No closed-form solutions for the integrals in the normalizing constant
⇒ MCMC or Hamiltonian Monte Carlo

� For MCMC estimation, combination of Gibbs and Metropolis-Hastings algorithm

◃ Robbins-Monro adaptive optimal scaling

� To gain in efficiency, we can do block-updating for many of the parameters, i.e.,

◃ fixed effects β

◃ random effects bi

◃ baseline covariates in the survival submodel γ
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4.2 Bayesian Estimation (cont’d)

� Inference then proceeds in the usual manner from the MCMC output, e.g.,

◃ posterior means, variances, and standard errors

◃ credible intervals

◃ . . .
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4.2 Bayesian Estimation (cont’d)

� Model comparison: Information Criteria for Predictive Accuracy

◃ Deviance information criterion (DIC)

◃ Watanabe-Akaike information criterion (WAIC)

◃ log pseudo-marginal likelihood (LPML)

� Two versions available

◃ conditional on the random effects

◃ marginalized over the random effects

Preferable is to work with the marginalized versions
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4.3 A Comparison with the TD Cox

� Example: To illustrate the virtues of joint modeling, we compare it with the standard
time-dependent Cox model for the AIDS data

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp{γddIi + αmi(t)},
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4.3 A Comparison with the TD Cox (cont’d)

JM Cox

log HR (std.err) log HR (std.err)

Treat 0.35 (0.21) 0.31 (0.15)

CD41/2 −0.28 (0.04) −0.19 (0.02)

� Clearly, there is a considerable effect of ignoring the measurement error, especially for
the CD4 cell counts
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4.3 A Comparison with the TD Cox (cont’d)

� A unit decrease in CD41/2, results in a

◃ Joint Model: 1.32-fold increase in risk (95% CI: 1.23; 1.43)

◃ Time-Dependent Cox: 1.21-fold increase in risk (95% CI: 1.16; 1.27)

� Which one to believe?

◃ a lot of theoretical and simulation work has shown that the Cox model
underestimates the true association size of endogenous time-varying covariates
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4.4 Joint Models in R

R> Joint models are fitted using function jm() from package JMbayes2, e.g.,

lmeFit <- lme(CD4 ~ obstime + obstime:drug, data = aids,

random = ~ obstime | patient)

CoxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id)

jointFit <- jm(CoxFit, lmeFit, time_var = "obstime")

summary(jointFit)
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4.4 Joint Models in R (cont’d)

R> The data frame given in lme() should be in the long format, while the data frame
given to coxph() should have one line per subject∗

◃ the ordering of the subjects needs to be the same

R> The scale of the time variables in the mixed and Cox models need to be the same

◃ i.e., both in months, or both in years, etc.

R> Argument time var specifies the time variable in the linear mixed model

∗ Unless you want to include exogenous time-varying covariates or handle competing risks
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4.4 Joint Models in R (cont’d)

R> Useful functions

◃ summary(): summarizes the fitted model

◃ compare jm(): compares fitted models using DIC and WAIC

◃ coef(), fixef(), ranef(): extract estimated coefficients and random effects

◃ traceplot() & ggtraceplot: produces traceplots

◃ densplot() & ggdensityplot(): produces density plots

◃ predict(): calculates predictions
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4.5 Connection with Missing Data

� So far we have focused on handling endogenous covariates for time-to-event outcomes

However, joint models are also used to account for
missing data in longitudinal outcomes
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4.5 Connection with Missing Data (cont’d)

� To show this connection more clearly

◃ Ti = min (T ∗
i , Ci)

◃ T ∗
i : time to dropout due to an “event”

◃ Ci: time to dropout due to “censoring”

◃ yoi : longitudinal measurements before T
∗
i or Ci

◃ ymi : longitudinal measurements after T
∗
i or Ci
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4.5 Connection with Missing Data (cont’d)

� Missing data mechanism:

p(T ∗
i | yoi , ymi ) =

∫
p(T ∗

i | bi) p(bi | yoi , ymi ) dbi

still depends on ymi , which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show
different longitudinal evolutions than patients who do not
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4.5 Connection with Missing Data (cont’d)

� What about censoring?

◃ censoring also corresponds to dropout for the longitudinal outcome

� Likelihood-based inferences for joint models provide valid inferences when censoring is
MCAR or MAR

◃ a patient relocates to another country (MCAR)

◃ a patient is excluded from the study when her longitudinal response exceeds a
pre-specified threshold (MAR)
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4.5 Connection with Missing Data (cont’d)

Joint models allow to distinguish between two types
of dropout

� Subject drops out at time Ti and δi = 0 ⇒ MCAR/MAR dropout

� Subjects drops out at time Ti and δi = 1 ⇒ MNAR dropout
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4.5 Connection with Missing Data (cont’d)

� Joint models belong to the class of Shared Parameter Models

p (yoi , y
m
i , T

∗
i , Ci; θ, ψ) =

∫
p (yoi , y

m
i , T

∗
i , Ci, bi; θ, ψ,D) dbi
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4.5 Connection with Missing Data (cont’d)

� Key assumptions:

◃ Conditional Independence

◃ Non Informative Censoring

∫
p
(
T ∗
i | bi;ψT

∗
)
p
(
Ci | yoi ;ψC

)
p (yoi , y

m
i | bi; θ) p (bi;D) dbi
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4.5 Connection with Missing Data (cont’d)

� On the subject specific level:


∫
p
(
Ti | bi;ψT

∗)
p (yoi , y

m
i | bi; θ) p (bi;D) dbi, i : dropout → MNAR

∫
p
(
Ci | yoi ;ψC

)
p (yoi , y

m
i | bi; θ) p (bi;D) dbi, i : censored → MAR
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4.5 Connection with Missing Data (cont’d)

� The other two well-known frameworks for MNAR data are

◃ Selection models

p(yoi , y
m
i , T

∗
i ) = p(yoi , y

m
i ) p(T

∗
i | yoi , ymi )

◃ Pattern mixture models:

p(yoi , y
m
i , T

∗
i ) = p(yoi , y

m
i | T ∗

i ) p(T
∗
i )

� These two model families are primarily applied with discrete dropout times and
cannot be easily extended to continuous time
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4.5 Connection with Missing Data (cont’d)

� Example: In the AIDS data set we have a considerable amount of missing data

ddC ddI

Dropout Pattern N % N %

OXXXX 29 14.4% 32 15.6%

OOXXX 35 17.4% 37 18.0%

OOOXX 41 20.4% 47 22.9%

OOOOX 85 42.3% 76 37.1%

OOOOO 11 5.5% 13 6.3%

Total 201 100% 205 100%

� The sample evolutions of the
√
CD4 cell counts per dropout pattern have the form
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4.5 Connection with Missing Data (cont’d)
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4.5 Connection with Missing Data (cont’d)

� Example: In the AIDS data we want to investigate how dropout affects inferences

� A comparison between

◃ linear mixed-effects model ⇒ MAR

◃ joint model dropout due to death ⇒ MNAR

◃ joint model dropout due to death or other causes ⇒ MNAR

� MAR assumes that dropout depends only on the observed data

p(T ∗
i | yoi , ymi ) = p(T ∗

i | yoi )
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4.5 Connection with Missing Data (cont’d)

LMM (MAR) JM (MNAR) JM (MNAR)

dropout-death dropout-all

value (s.e.) value (s.e) value (s.e)

Inter 7.19 (0.22) 7.19 (0.3) 7.19 (0.3)

Time −0.16 (0.02) −0.19 (0.04) −0.17 (0.04)

Treat:Time 0.03 (0.03) 0.01 (0.05) 0.02 (0.05)

� Minimal sensitivity in parameter estimates & standard deviations

⇒ Warning: This does not mean that this is always the case!
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Part V

Extensions of Joint Models

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 95



5.1 Functional Forms

� The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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5.1 Functional Forms (cont’d)
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5.1 Functional Forms (cont’d)

� The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}

Is this the only option? Is this the most
optimal choice?
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5.1 Functional Forms (cont’d)

� Note: Inappropriate modeling of time-varying covariates may result in surprising
results

� Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to
test the effect of cigarette smoking on survival of patients who underwent coronary
artery surgery

◃ the estimated effect of current cigarette smoking was positive on survival although
not significant (i.e., patient who smoked had higher probability of survival)

◃ most of those who had died were smokers but many stopped smoking at the last
follow-up before their death
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5.1 Functional Forms (cont’d)

We need to carefully consider the functional form of
time-varying covariates

� Let’s see some possibilities. . .
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5.1 Functional Forms (cont’d)

� Lagged Effects: The hazard of an event at t is associated with the level of the marker
at a previous time point:

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t
c
+)},

where

tc+ = max(t− c, 0)
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5.1 Functional Forms (cont’d)
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5.1 Functional Forms (cont’d)

� Time-dependent Slopes: The hazard of an event at t is associated with both the
current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α1mi(t) + α2m
′
i(t)},

where

m′
i(t) =

d

dt
{x⊤i (t)β + z⊤i (t)bi}
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5.1 Functional Forms (cont’d)
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5.1 Functional Forms (cont’d)

� The definition of the slope is

m′
i(t) = lim

ϵ→0

mi(t + ϵ)−mi(t)

ϵ

the change in the longitudinal profile as ϵ approaches zero

� It can be challenging to interpret

◃ it is the ‘current’ slope
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5.1 Functional Forms (cont’d)

� Time-dependent Slopes 2: The hazard of an event at t is associated with the change
of the trajectory the last year:

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α∆mi(t)},

where

∆mi(t) = mi(t)−mi(t− 1)
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5.1 Functional Forms (cont’d)

� Cumulative Effects: The hazard of an event at t is associated with the whole area
under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

mi(s) ds
}

� Area under the longitudinal trajectory taken as a summary of Mi(t)
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5.1 Functional Forms (cont’d)

Time

0
.1

0
.2

0
.3

0
.4

hazard function

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

0 2 4 6 8 10

longitudinal outcome

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 108



5.1 Functional Forms (cont’d)

� Cumulative Effects 2: The hazard of an event at t is associated with the whole area
under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp

{
γ⊤wi + α

∫ t
0 mi(s) ds

t

}

� We account for the observation period
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5.1 Functional Forms (cont’d)

� Weighted Cumulative Effects (convolution): The hazard of an event at t is associated
with the area under the weighted trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

ϖ(t− s)mi(s) ds
}
,

where ϖ(·) an appropriately chosen weight function, e.g.,

◃ Gaussian density

◃ Student’s-t density

◃ . . .
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5.1 Functional Forms (cont’d)

� Random Effects: The hazard of an event at t is associated only with the random
effects of the longitudinal model:

hi(t | Mi(t)) = h0(t) exp(γ
⊤wi + α⊤bi)

� Features:

◃ avoids numerical integration for the survival function

◃ interpretation of α more difficult, especially in high-dimensional random-effects
settings
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5.1 Functional Forms (cont’d)

� Example: Sensitivity of inferences for the longitudinal process to the choice of the
functional forms for the AIDS data

� We use the same mixed model as before, i.e.,

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t)

and the following four survival submodels
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5.1 Functional Forms (cont’d)

� Model I (current value)

hi(t) = h0(t) exp{γddIi + α1mi(t)}

� Model II (current slope)

hi(t) = h0(t) exp{γddIi + α2m
′
i(t)},

where

◃ m′
i(t) = β1 + β2ddIi + bi1
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5.1 Functional Forms (cont’d)

� Model II (current value + current slope)

hi(t) = h0(t) exp{γddIi + α1mi(t) + α2m
′
i(t)}

� Model IV (area)

hi(t) = h0(t) exp

{
γddIi + α3

∫ t
0 mi(s) ds

t

}
,

where

◃
∫ t
0 mi(s) ds = β0t +

β1
2 t

2 + β2
2 {t

2 × ddIi} + bi0t +
bi1
2 t

2
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5.1 Functional Forms (cont’d)
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5.1 Functional Forms (cont’d)

� There are some differences between the functional forms

◃ especially in the slope parameters

� Therefore, a sensitivity analysis should not stop at the standard joint model
functional forms but also consider alternative association structures
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5.1 Functional Forms (cont’d)

R> In JMbayes2 the specification of functional forms is done via the
functional forms argument

◃ e.g., the following code includes the area and slope in the linear predictor, and the
interaction of the former with sex

jm(CoxFit, lmeFit, time_var = "time",

functional_forms = ~ area(y) + value(y) + area(y):sex)
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5.1 Functional Forms (cont’d)

R> The area() function calculates the Cumulative Effects 2 functional form, where
the integral is divide by the length of the period

R> The slope() function can be used for the Time-dependent Slopes 2 functional
form via

slope(..., eps = 1, direction = "back")
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5.2 Multiple Longitudinal Markers

� So far we have concentrated on a single continuous longitudinal outcome

� But very often we may have several outcomes we wish to study, some of which could
be categorical

� Example: In the PBC dataset we have used serum bilirubin as the most important
marker, but during follow-up several other markers have been recorded

◃ serum cholesterol (continuous)

◃ edema (3 categories)

◃ ascites (2 categories)

◃ . . .
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5.2 Multiple Longitudinal Markers (cont’d)

We need to extend the basic joint model!

� To handle multiple longitudinal outcomes of different types we use Generalized Linear
Mixed Models

◃ We assume Yi1, . . . , YiJ for each subject, each one having a distribution in the
exponential family, with expected value

mij(t) = E(yij(t) | bij) = g−1
j {x⊤ij(t)βj + z⊤ij(t)bij},

with g(·) denoting a link function
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5.2 Multiple Longitudinal Markers (cont’d)

� Correlation between the longitudinal outcomes is captured by assuming a multivariate
normal distribution for the random effects

bi =


bi1

...

biJ

 ∼ N (0, D)
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5.2 Multiple Longitudinal Markers (cont’d)

� Two ways to include the longitudinal markers in the survival submodel

◃ conditional expected value

hi(t) = h0(t) exp
{
γ⊤wi +

J∑
j=1

αjmij(t)
}

◃ or conditional linear predictor
hi(t) = h0(t) exp

{
γ⊤wi +

J∑
j=1

αjηij(t)
}

ηij = x⊤ij(t)βj + z⊤ij(t)bij
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5.2 Multiple Longitudinal Markers (cont’d)

� Full Conditional Independence: Given the random effects

◃ the repeated measurements in each outcome are independent,

◃ the longitudinal outcomes are independent of each other, and

◃ longitudinal outcomes are independent of the time-to-event outcome

p(yij | bij) =

nij∏
k=1

p(yij,k | bij)

p(yi | bi) =
∏
j

p(yij | bij)

p(yi, Ti, δi | bi) =
∏
j

p(yij | bij) p(Ti, δi | bi)
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5.2 Multiple Longitudinal Markers (cont’d)

� Features of multivariate joint models

◃ using CI is straightforward to extend joint models to multiple longitudinal
outcomes of different types

◃ computationally much more intensive due to the high dimensional random effects
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5.2 Multiple Longitudinal Markers (cont’d)

� Example: Multivariate joint model for the PBC dataset

◃ log(ser Bilir): linear mixed-effects model

* fixed effects: intercept and linear time effect

* random effects: intercept and linear time effect

◃ spiders: mixed-effects logistic regression model

* fixed effects: intercept and linear time effect

* random effects: intercept
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5.2 Multiple Longitudinal Markers (cont’d)

◃ time-to-death: relative risk model

* baseline covariates: drug and age

* Analysis I: conditional linear predictor

* Analysis II: conditional expected value
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5.2 Multiple Longitudinal Markers (cont’d)

� Analysis I: conditional linear predictor

Value Std.Dev. 2.5% 97.5%

D-penicil −0.080 0.250 −0.566 0.408

Age 0.064 0.010 0.045 0.083

value(logSB) 1.306 0.136 1.055 1.583

value(spiders) 0.077 0.056 −0.032 0.188
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5.2 Multiple Longitudinal Markers (cont’d)

� Analysis II: conditional expected value

Value Std.Dev. 2.5% 97.5%

D-penicil −0.091 0.250 −0.577 0.399

Age 0.064 0.010 0.044 0.084

value(logSB) 1.309 0.146 1.042 1.617

expit(value(spiders)) 0.572 0.387 −0.262 1.314
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5.2 Multiple Longitudinal Markers (cont’d)

R> To fit a multivariate joint model in JMbayes2 we need first to fit a series of
univariate mixed models.

◃ for non-Gaussian longitudinal data we use GLMMadaptive

mixed_model(spiders ~ year, data = pbc2,

family = binomial(), random = ~ year | id)

� Arguments of mixed model()

◃ fixed: formula for the response outcome and fixed effects

◃ random: formula for random effects

◃ family: distribution of longitudinal outcome

◃ data: dataset
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5.2 Multiple Longitudinal Markers (cont’d)

R> To fit a multivariate joint model, we use jm() as before but we now provide a
list() of mixed models

◃ an example for the PBC dataset using serum bilirubin (continuous) and spiders
(binary)

lmmFit <- lme(log(serBilir) ~ year, data = pbc2, random = ~ year | id)

melrFit <- mixed_model(spiders ~ year, data = pbc2, family = binomial(),

random = ~ 1 | id)

CoxFit <- coxph(Surv(years, status2) ~ drug + age, data = pbc2.id)

jm(CoxFit, list(lmmFit, melrFit), time_var = "year")
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5.2 Multiple Longitudinal Markers (cont’d)

R> The default in jm() is to include the conditional linear predictor ηij(t) in the
survival submodel

◃ to include the conditional expected value, we can use the functional forms

argument, e.g.,

jm(CoxFit, list(lmmFit, melrFit), time_var = "year",

functional_forms = ~ value(log(serBilir)) +

vexpit(value(spiders)),

n_iter = 20000L, n_burnin = 10000L)
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5.2 Multiple Longitudinal Markers (cont’d)

R> Function jm() allows for various types of mixed models

◃ continuous: Student’s t, Beta, Gamma, censored normal

◃ categorical: Binomial, Poisson, Negative Binomial, Beta Binomial

For more info see
https://drizopoulos.github.io/JMbayes2/

→ Articles → Non-Gaussian Mixed Models
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5.3 Multiple Failure Times

� Often multiple failure times are recorded

◃ competing risks

◃ transitions to multiple states

◃ recurrent events

� Example: In the PBC dataset ⇒ competing risks

◃ Some patients received a liver transplantation

◃ So far we have used the composite event, i.e. death or transplantation whatever
comes first

◃ When interest only is on one type of event, the other should be considered as a
competing risk

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 133



5.3 Multiple Failure Times (cont’d)

� Competing risks:

◃ Death precludes the occurrence of transplantation

◃ Transplantation modifies the risk of death

Disease Transplantation

Death

h
t (t)

h
d (t)
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5.3 Multiple Failure Times (cont’d)

� Joint models with competing risks:

yi(t) = mi(t) + εi(t) = x⊤i (t)β + z⊤i (t)bi + εi(t),

hdi (t) = hd0(t) exp{γ⊤d wi + αdmi(t)},

htri (t) = htr0 (t) exp{γ⊤trwi + αtrmi(t)},

where

◃ hdi (t) hazard function for death

◃ htri (t) hazard function for transplantation
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5.3 Multiple Failure Times (cont’d)

� In the estimation, the only difference is in the construction of the likelihood part for
the event process

p(Ti, δi | bi; θ) =

K∏
k=1

[
h0k(Ti) exp{γ⊤k wi + αkmi(Ti)}

]I(δi=k)
× exp

(
−

K∑
k=1

∫ Ti

0

h0k(s) exp
{
γ⊤k wi + αkmi(s)

}
ds

)
,

with

◃ Ti = min(T ∗
i1, . . . , T

∗
iK, Ci), with Ci denoting the censoring time

◃ δi ∈ {0, 1, . . . , K}, with 0 corresponding to censoring
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5.3 Multiple Failure Times (cont’d)

� This is different than in standard Cox models

◃ i.e., we cannot fit a cause-specific hazard joint model by treating events from
other causes as censored
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5.3 Multiple Failure Times (cont’d)

� Example: Competing risks analysis for the PBC dataset

◃ log(ser Bilir): linear mixed-effects model

* fixed effects: intercept, drug, linear time, interaction drug with time

* random effects: intercept and linear time

◃ time to death or transplantation: relative risk model

* competing risks: transplantation and death

* baseline covariates: drug different per competing risk

* time-varying: current value log ser Bilir different per competing risk
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5.3 Multiple Failure Times (cont’d)

Value Std.Dev. 2.5% 97.5%

D-penicil −0.396 0.565 −1.562 0.709

D-penicil:dead 0.478 0.563 −0.552 1.668

value(logSB) 1.135 0.212 0.744 1.561

value(logSB):dead 0.101 0.217 −0.331 0.543
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5.3 Multiple Failure Times (cont’d)

R> Function jm() can fit joint models with competing risks and multi-state processes;
an example with competing risks

◃ first, the survival data have to be prepared in the competing risks long format
using function crLong(), e.g.,

pbc2.id[pbc2.id$id %in% c(1,2,5), c("id", "years", "status")]

id years status

1 1 1.095170 dead

2 2 14.152338 alive

5 5 4.120578 transplanted
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5.3 Multiple Failure Times (cont’d)

pbc2.idCR <- crLong(pbc2.id, statusVar = "status",

censLevel = "alive", nameStrata = "CR")

pbc2.idCR[pbc2.idCR$id %in% c(1,2,5),

c("id", "years", "status", "CR", "status2")]

id years status CR status2

1 1 1.095170 dead dead 1

1.1 1 1.095170 dead transplanted 0

2 2 14.152338 alive dead 0

2.1 2 14.152338 alive transplanted 0

5 5 4.120578 transplanted dead 0

5.1 5 4.120578 transplanted transplanted 1
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5.3 Multiple Failure Times (cont’d)

R> To fit the joint model, we first fit the linear mixed and relative risk models as before

◃ for the latter we use the data in the competing risks long and put the event-type
variable as strata

lmeFit_CR <- lme(log(serBilir) ~ drug * year, data = pbc2,

random = ~ year | id)

CoxFit_CR <- coxph(Surv(years, status2) ~ drug * strata(CR),

data = pbc2.idCR)
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5.3 Multiple Failure Times (cont’d)

R> Then the joint model is fitted with the code

jm(CoxFit_CR, lmeFit_CR, time_var = "year",

functional_forms = ~ value(log(serBilir)) * CR)

For more info see
https://drizopoulos.github.io/JMbayes2/

→ Articles → Competing Risks
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5.3 Multiple Failure Times (cont’d)

� Multi-state models:

◃ Transition between transplantation and death is of interest

◃ Effect of covariates and/or biomarkers can be different for each transition

Disease Transplantation

Death

h
t (t)

h
d (t) h

td (t)
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5.3 Multiple Failure Times (cont’d)

� Joint models with multi-state processes:

yi(t) = mi(t) + εi(t) = x⊤i (t)β + z⊤i (t)bi + εi(t),

hdi (t) = hd0 (t) exp
[
wd
i
⊤
γd + αdmi (t)

]
,

hti (t) = ht0 (t) exp
[
wt
i
⊤
γt + αtmi (t)

]
,

htdi (t) = htd0 (t) exp
[
wtd
i
⊤
γtd + αtdmi (t)

]
,

where

◃ hdi (t) transition intensity from disease to death

◃ hti (t) transition intensity from disease to transplantation

◃ htdi (t) transition intensity from transplantation to death
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5.3 Multiple Failure Times (cont’d)

Multi-state long-format different than the long format in
Competing Risks

� General rule: 1 row per possible transition.

◃ competing risks: always 2 rows per subject because both transitions always
possible from starting state.

◃ multi-state: unequal number of rows per subject because not all transitions
possible from starting state)
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5.3 Multiple Failure Times (cont’d)

For more info see
https://drizopoulos.github.io/JMbayes2/

→ Articles → Multi-State Processes
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5.3 Multiple Failure Times (cont’d)

� Multiple Failure Times: recurrent events

� Example: In the PBC dataset ⇒ recurrent events

◃ Patients showed irregular visiting patterns

◃ So far, when we fitted the joint model we assumed that the visiting process is
non-informative

◃ If this assumption is violated, we should also model this process in order to obtain
valid inferences
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5.3 Multiple Failure Times (cont’d)

� Joint model with recurrent (visiting process) & terminal events

yi(t) = mi(t) + εi(t) = x⊤i (t)β + z⊤i (t)bi + εi(t),

ri(t) = r0(t) exp
{
γ⊤r wri + αrmi(t) + vi

}
,

hi(t) = h0(t) exp
{
γ⊤h whi + αhmi(t) + ζvi

}
,

with

◃ ri(t) hazard function for the recurrent events

◃ hi(t) hazard function for the terminal event

◃ vi frailty term accounting for the correlation in the recurrent events
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5.3 Multiple Failure Times (cont’d)

� Conditional independence assumptions augmented

◃ recurrent events are independent given vi

◃ longitudinal measurements are independent giver bi

◃ all three processes, namely

* longitudinal process,

* recurrent events process, and

* terminating event process

are independent given {bi, vi}

� We need to postulate a distribution for the frailty terms

◃ typical choice is the Gamma because it’s conjugate
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Part VI

Dynamic Predictions
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6.1 Survival Probabilities

� Nowadays there is great interest for prognostic models and their application to
personalized medicine

� Examples are numerous

◃ cancer research, cardiovascular diseases, HIV research, . . .

Physicians are interested in accurate prognostic tools that will
inform them about the future prospect of a patient in order to

adjust medical care
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6.1 Survival Probabilities (cont’d)

� We are interested in predicting survival probabilities for a new patient j with serum
bilirubin measurements up to time t

� Example: Patients 2 and 25 from the PBC dataset have 9 and 12 serum bilirubin
measurements, respectively

◃ Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded

� We need to account for the endogenous nature of the covariate

◃ providing measurements up to time point t ⇒ the patient was still alive at time t
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6.1 Survival Probabilities (cont’d)

Time
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6.1 Survival Probabilities (cont’d)

� More formally, for a new subject j we have available measurements up to time point t

Yj(t) = {yj(s), 0 ≤ s ≤ t}

and we are interested in

πj(u | t) = Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
,

where

◃ where u > t, and

◃ Dn denotes the sample on which the joint model was fitted
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6.1 Survival Probabilities (cont’d)

� We assume that the joint model has been fitted to the data at hand

� Based on the fitted model, we can estimate the conditional survival probabilities
(Rizopoulos, 2011, Biometrics)
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6.1 Survival Probabilities (cont’d)

� It is convenient to proceed using a Bayesian formulation of the problem ⇒
πj(u | t) can be written as

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
=

∫
Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
p(θ | Dn) dθ

� The first part of the integrand takes the form

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
=

=

∫
Sj
{
u | Mj(u, bj, θ); θ

}
Sj
{
t | Mj(t, bj, θ); θ

} p(bj | T ∗
j > t,Yj(t);θ) dbj
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6.1 Survival Probabilities (cont’d)

� A Monte Carlo estimate of πj(u | t) can be obtained using the following simulation
scheme:

Step 1. draw θ(ℓ) ∼ [θ | Dn]

Step 2. draw b
(ℓ)
j ∼ [bj | T ∗

j > t,Yj(t), θ(ℓ)]

Step 3. compute π
(ℓ)
j (u | t) = Sj

{
u | Mj(u, b

(ℓ)
j , θ

(ℓ)); θ(ℓ)
}/

Sj
{
t | Mj(t, b

(ℓ)
j , θ

(ℓ)); θ(ℓ)
}

� Repeat Steps 1–3, ℓ = 1, . . . , L times, where L denotes the number of Monte Carlo
samples
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6.1 Survival Probabilities (cont’d)

� Example: Dynamic predictions of survival probabilities for Patients 2 & 25 from the
PBC dataset: We fit the joint model

� Longitudinal submodel

◃ fixed effects: intercept & natural cubic splines of time with 3 d.f., sex, and
interaction of the time effect with sex

◃ random effects: intercept, natural cubic splines of time with 3 d.f.

� Survival submodel

◃ sex effect + underlying serum bilirubin level
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6.1 Survival Probabilities (cont’d)

� Based on the fitted joint model we estimate πj(u | t) for Patients 2 and 25

� We use 500 Monte Carlo samples, and we took as estimate

π̂j(u | t) = mean{π(ℓ)j (u | t), ℓ = 1, . . . , L}

and calculated a corresponding 95% pointwise CIs
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6.1 Survival Probabilities (cont’d)
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6.1 Survival Probabilities (cont’d)
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6.1 Survival Probabilities (cont’d)
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6.1 Survival Probabilities (cont’d)
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6.1 Survival Probabilities (cont’d)
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6.1 Survival Probabilities (cont’d)

−
2

−
1

0
1

2
3

lo
g
(s

e
rB

ili
r)

0 2 4 6 8

Follow−up Time

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Patient 2

−
2

−
1

0
1

2
3

0 2 4 6 8

Follow−up Time

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
u
rv

iv
a
l P

ro
b
a
b
ili

ty

Patient 25

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 162



6.1 Survival Probabilities (cont’d)
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6.1 Survival Probabilities (cont’d)

R> Individualized predictions of survival probabilities are computed by function
predict() – for example, for Patient 2 from the PBC dataset we have

sfit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],

process = "event", return_newdata = TRUE)

sfit

plot(sfit)
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6.2 Longitudinal Outcomes Prediction

� In some occasions it may be also of interest to predict the longitudinal outcome

� We can proceed in the same manner as for the survival probabilities: We have
available measurements up to time point t

Yj(t) = {yj(s), 0 ≤ s ≤ t}

and we are interested in

ωj(u | t) = E
{
yj(u) | T ∗

j > t,Yj(t),Dn

}
, u > t
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6.2 Longitudinal Outcomes Prediction (cont’d)

� To estimate ωj(u | t) we can follow a similar approach as for πj(u | t) – Namely,
ωj(u | t) is written as:

E
{
yj(u) | T ∗

j > t,Yj(t),Dn

}
=

∫
E
{
yj(u) | T ∗

j > t,Yj(t),Dn; θ
}
p(θ | Dn) dθ

� With the first part of the integrand given by:

E
{
yj(u) | T ∗

j > t,Yj(t),Dn; θ
}
=

=

∫
{x⊤j (u)β + z⊤j (u)bj} p(bj | T ∗

j > t,Yj(t);θ) dbj
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6.2 Longitudinal Outcomes Prediction (cont’d)

� A similar Monte Carlo simulation scheme:

Step 1. draw θ(ℓ) ∼ [θ | Dn]

Step 2. draw b
(ℓ)
j ∼ [bj | T ∗

j > t,Yj(t), θ(ℓ)]

Step 3. compute ω
(ℓ)
j (u | t) = x⊤j (u)β

(ℓ) + z⊤j (u)b
(ℓ)
j

� Note: Prediction intervals can be easily computed by replacing Step 3 with a draw
from:

ω
(ℓ)
j (u | t) ∼ N

{
x⊤j (u)β

(ℓ) + z⊤j (u)b
(ℓ)
j , [σ2](ℓ)

}
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6.2 Longitudinal Outcomes Prediction (cont’d)

� Example: Dynamic predictions of survival probabilities for Patients 2 & 25 from the
PBC dataset: We fit the joint model

� Longitudinal submodel

◃ fixed effects: intercept & natural cubic splines of time with 3 d.f., sex, and
interaction of the time effect with sex

◃ random effects: intercept, natural cubic splines of time with 3 d.f.

� Survival submodel

◃ sex effect + underlying serum bilirubin level
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6.2 Longitudinal Outcomes Prediction (cont’d)

� Based on the fitted joint model we estimate ωj(u | t) for Patient 2
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6.2 Longitudinal Outcomes Prediction (cont’d)
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6.2 Longitudinal Outcomes Prediction (cont’d)
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6.2 Longitudinal Outcomes Prediction (cont’d)
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6.2 Longitudinal Outcomes Prediction (cont’d)
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6.2 Longitudinal Outcomes Prediction (cont’d)
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6.2 Longitudinal Outcomes Prediction (cont’d)
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6.2 Longitudinal Outcomes Prediction (cont’d)

R> Individualized predictions for the longitudinal outcome are computed by function
predict() – for example, for Patient 2 from the PBC dataset we have function

gfit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],

times = seq(7, 12, length.out = 51),

return_newdata = TRUE)

gfit

plot(gfit)
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6.3 Functional Forms

� All previous predictions were based on the standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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6.3 Functional Forms (cont’d)

� We have seen earlier that there are several alternative functional forms (see Section 5.1)

� Relevant questions:

◃ Does the assumed functional form affect predictions?

◃ Which functional form is the most optimal?

� Example: We compare predictions for the longitudinal and survival outcomes under
different parameterizations for Patient 51 from the PBC study
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6.3 Functional Forms (cont’d)
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6.3 Functional Forms (cont’d)

� Predictions based on five joint models for the PBC dataset

◃ the same longitudinal submodel as before, and

◃ relative risk submodels:

hi(t) = h0(t) exp{γD-pnci + α1mi(t)},

hi(t) = h0(t) exp{γD-pnci + α2m
′
i(t)},

hi(t) = h0(t) exp{γD-pnci + α1mi(t) + α2m
′
i(t)}
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6.3 Functional Forms (cont’d)

hi(t) = h0(t) exp

{
γD-pnci + α3

∫ t
0 mi(s)ds

t

}
,

hi(t) = h0(t) exp

{
γD-pnci + α1mi(t) + α3

∫ t
0 mi(s)ds

t

}
,
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6.3 Functional Forms (cont’d)

1yr−window Predictions
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6.3 Functional Forms (cont’d)

The chosen functional form can influence the derived
predictions
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6.3 Functional Forms (cont’d)

� We compare the models using the information criteria

DIC WAIC LPML

value + slope 5322.683 22104.998 −5535.420

area 5346.029 23268.436 −5560.009

slope 5645.578 29600.396 −7353.621

value + area 5388.139 29840.361 −9110.958

value 5439.294 30513.206 −7230.238

� The value + slope model seems to be the ‘best’ – we will continue with this model
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6.4 Discrimination

� We have seen how to calculate predictions of conditional survival probabilities

◃ however, to use these predictions in practice we need to evaluate their accuracy

� Predictive accuracy measures

◃ Discrimination: sensitivity, specificity, ROC and AUC

◃ Calibration: comparison between predicted and observed probabilities

◃ Overall: combination of discrimination and calibration
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6.4 Discrimination (cont’d)

� To assess the discriminative power of the model, we assume the following setting

◃ using the available longitudinal data up to time t,

◃ we are interested in events occurring in a medically-relevant interval (t, t +∆t]

� Based on the fitted joint model and for a particular threshold value c ∈ [0, 1], we can
term subject j a case if

πj(t +∆t | t) ≤ c
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6.4 Discrimination (cont’d)

� Following, we can define sensitivity

SN∆t
t (c) = Pr

{
πj(t +∆t | t) ≤ c | T ∗

j ∈ (t, t +∆t]
}
,

specificity

SP∆t
t (c) = Pr

{
πj(t +∆t | t) > c | T ∗

j > t +∆t
}
,

and the corresponding AUC

AUC∆t
t

= Pr
[
πi(t +∆t | t) < πj(t +∆t | t) | {T ∗

i ∈ (t, t +∆t]} ∩ {T ∗
j > t +∆t}

]
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6.4 Discrimination (cont’d)

� To estimate the sensitivity, specificity and the AUC, we need to account for censoring

� Two main approaches

◃ model-based weights

◃ inverse probability of censoring weighting (IPCW)
(using Kaplan-Meier or other non-parametric estimators)
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6.4 Discrimination (cont’d)

� IPCW

◃ Advantage: it provides unbiased estimates even when the model is misspecified

◃ Disadvantage: it requires that the model for the weights is correct

* in settings where joint models are used, challenging because censoring may
depend on the longitudinal outcomes in a complex manner
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6.4 Discrimination (cont’d)

� Model-based Weights

◃ Advantage: it allows censoring to depend on the longitudinal history (in any
possible manner)

◃ Disadvantage: it requires that the model is well calibrated
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6.4 Discrimination (cont’d)

Because censoring often depends on the longitudinal history,
we opt for model-based weights
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6.4 Discrimination (cont’d)

� For the R(t) subjects at risk at time t (i.e., Ti > t), sensitivity is estimated as

ŜN
∆t

t (c) =

∑
i:Ti≥t

I{π̂i(t +∆t | t) ≤ c} × Ωi∑
i:Ti≥t

Ωi
,

where

Ωi =

 1, if Ti ≤ t +∆t and δi = 1

1− π̂i(t +∆t | Ti), if Ti ≤ t +∆t and δi = 0
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6.4 Discrimination (cont’d)

� And specificity as

ŜP
∆t

t (c) =

∑
i:Ti≥t

I{π̂i(t +∆t | t) > c} × Φi∑
i:Ti≥t

Φi
,

where

Φi =

 1, if Ti > t +∆t

π̂i(t +∆t | Ti), if Ti ≤ t +∆t and δi = 0
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6.4 Discrimination (cont’d)

� Example: For the joint model fitted to the PBC dataset we have seen earlier

◃ we estimate dynamic sensitivity, specificity and the ROC curve

◃ at follow-up times t = 3, 5, and 7

◃ for ∆t = 2
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6.4 Discrimination (cont’d)
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6.4 Discrimination (cont’d)
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6.4 Discrimination (cont’d)
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6.4 Discrimination (cont’d)

� The corresponding AUCs are

Time AUC

t = 3 0.86

t = 5 0.81

t = 7 0.75
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6.4 Discrimination (cont’d)

R> For a fitted joint model, we calculate the ROC curve and the corresponding AUC
with the syntax

roc <- tvROC(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)

roc

plot(roc)

tvAUC(roc)
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6.5 Calibration

� Another relevant measure for quantifying predictive ability is calibration, i.e.,

◃ how well can the joint model accurately predict future events

� Typically, calibration is assessed via graphical calibration curves

◃ a plot of observed vs predicted cumulative risk probabilities

◃ we have good calibration when the points are distributed along the main diagonal
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6.5 Calibration (cont’d)

� In the context of survival analysis, the construction of these curves is complicated by
censoring

� To account for censoring, we follow the recent approach of Austin et al. (SiM, 2020)

1. we select a follow-up time t and a medically relevant interval ∆t
we only consider the subjects at risk at time t

2. we calculate risk probabilities {1− π̂i(t +∆t | t)} from the joint model

3. we transform these probabilities using the cloglog link, i.e.,
log[− log{π̂i(t +∆t | t)}]
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6.5 Calibration (cont’d)

4. we fit a Cox model with predictor a natural cubic spline with 3 d.f. for the
transformed probabilities

5. we set as the predicted probabilities a regular sequence between
min{1− π̂i(t +∆t | t)} and max{1− π̂i(t +∆t | t)}

6. we calculate the observed probabilities : cumulative risk probabilities from the Cox
model for getting the event before t +∆t with input variable the predicted
probabilities regular sequence

7. we create the curve of the observed vs predicted probabilities
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6.5 Calibration (cont’d)

� Note: we account for censoring via the Cox model

◃ censoring is not allowed to depend on the longitudinal history
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6.5 Calibration (cont’d)

� Example: For the joint model fitted to the PBC dataset we have seen earlier

◃ we estimate dynamic calibration curves

◃ at follow-up times t = 3, 5, and 7

◃ for ∆t = 2
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6.5 Calibration (cont’d)
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6.5 Calibration (cont’d)
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6.5 Calibration (cont’d)
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6.5 Calibration (cont’d)

R> For a fitted joint model, we calculate the calibration plot with the syntax

calibration_plot(jointFit, newdata = pbc2, Tstart = 3, Dt = 2)
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6.6 Prediction Error

� We have covered discrimination and calibration separately

� In standard survival analysis there are measures that combine the two concepts into
one metric

◃ the most-well know measure that achieves that is the Brier score
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6.6 Prediction Error (cont’d)

� In the joint modeling framework, we need to take into account the dynamic nature of
the longitudinal marker

� The expected quadratic error of prediction (Brier score) has the form

PE(t +∆t | t) = E
[
{Ni(t +∆t)− πi(t +∆t | t)}2

]
where

◃ Ni(t) = I(T ∗
i > t) is the “true” event status at time t

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 200



6.6 Prediction Error (cont’d)

� An estimator for PE(t +∆t | t) that accounts for censoring

P̂E(t +∆t | t) = {R(t)}−1
∑
i:Ti≥t

I(Ti > u){1− π̂i(t +∆t | t)}2

+ δiI(Ti < t +∆t){0− π̂i(t +∆t | t)}2

+ (1− δi)I(Ti < t +∆t)
[
π̂i(t +∆t | Ti){1− π̂i(t +∆t | t)}2

+{1− π̂i(t +∆t | Ti)}{0− π̂i(t +∆t | t)}2
]
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6.6 Prediction Error (cont’d)

where

◃ R(t) denotes the number of subjects at risk at t

◃ red part: subjects still event-free at t +∆t

◃ blue part: subjects who had the event before t +∆t

◃ green part: subject censored before t +∆t

� The weights used to account for censoring are model-based

◃ censoring is allowed to depend on the longitudinal history in any possible manner

◃ the model needs to be well specified
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6.6 Prediction Error (cont’d)

� Example: For the joint model fitted to the PBC dataset we have seen earlier

◃ we estimate the dynamic Brier score

◃ at follow-up times t = 3, 5, and 7

◃ for ∆t = 2

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 203



6.6 Prediction Error (cont’d)

� The estimated Brier scores are

Time Brier Score

t = 3 0.10

t = 5 0.11

t = 7 0.12
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6.6 Prediction Error (cont’d)

R> For a fitted joint model, we calculate the time-varying Brier score with the syntax

predErr <- tvBrier(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)

predErr
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6.7 Validation

To obtain an objective assessment of the model’s predictive capability,
we need to validate the predictive accuracy measures
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6.7 Validation (cont’d)

� Internal validation of the predictive accuracy measures can be achieved with standard
re-sampling techniques

◃ cross-validation (leave-one-out or better 10-fold)

◃ Bootstrap

� In general time consuming because it requires fitting the joint model many times

◃ take advantage of parallel computing (e.g., using package parallel)
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6.7 Validation (cont’d)

� For external validation we calculate the predictive accuracy measures in a dataset
from another cohort

◃ perhaps after re-calibration
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6.7 Validation (cont’d)

R> Functions tvROC(), tvAUC(), calibration plot() and tvBrier() facilitate
this via their newdata argument

◃ in newdata you can provide a dataset other than the one used to fit the model
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Part VII

Closing
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7.1 Concluding Remarks

� When we need joint models for longitudinal and survival outcomes?

◃ to handle endogenous time-varying covariates in a survival analysis context

◃ to account for nonrandom dropout in a longitudinal data analysis context

� How joint models work?

◃ a mixed model for the longitudinal outcome

◃ a relative risk model for the event process

◃ explain interrelationships with shared random effects

Joint Models for Longitudinal and Time-to-Event Data: November 12, 2021, Prague (online) 211



7.1 Concluding Remarks (cont’d)

� Where to pay attention when defining joint models?

◃ model flexibly the subject-specific evolutions for the longitudinal outcome

◃ consider how to model the association structure between the two processes
⇒ Functional Forms

� Extensions

◃ under the full conditional independence assumption we can easily extend the basic
joint model

◃ multiple longitudinal outcomes and/or multiple failure times

◃ though more computationally intensive
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7.1 Concluding Remarks (cont’d)

� Individualized predictions

◃ joint models can provide subject-specific predictions for the longitudinal and
survival outcomes

◃ these are dynamically updated as extra information is recorded for the subjects

◃ joint models constitute an excellent tool for personalized medicine
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The End!
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Part VIII

Practicals
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8.1 Practical 1: A Simple Joint Model

� We will fit a simple joint model to the PBC dataset

� Start R and load package JMbayes2, using library("JMbayes2")

� The longitudinal (long format) and survival information for the PBC patients can be
found in data frames pbc2 and pbc2.id

◃ the variables that we will need are:
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8.1 Practical 1: A Simple Joint Model (cont’d)

◃ pbc2

* id: patient id number

* serBilir: serum bilirubin

* year: follow-up times in years

* drug: treatment indicator

◃ pbc2.id

* years: observed event times in years

* status: ‘alive’, ‘transplanted’, ‘dead’

* drug: treatment indicator
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8.1 Practical 1: A Simple Joint Model (cont’d)

� T1: Fit the linear mixed effects model for log serum bilirubin using function lme(),
assuming simple linear evolutions over time for each subject, i.e., a simple
random-intercepts and random-slopes structure and different average evolutions per
treatment group (see pp. 24–??)

yi(t) = β0 + β1t + β2{D-penici × t} + bi0 + bi1t + εi(t)

� T2: Create the indicator for the composite event (i.e., ‘alive’ = 0, ‘transplanted’ or
‘dead’ = 1) using the code

pbc2.id$status2 <- as.numeric(pbc2.id$status != "alive")
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8.1 Practical 1: A Simple Joint Model (cont’d)

� T3: Fit the Cox PH model using coxph() that includes only treatment as baseline
covariate (see pp. 48–49)

� We want to fit the joint model

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{D-penici × t} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp{γD-penici + αmi(t)},
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8.1 Practical 1: A Simple Joint Model (cont’d)

� T4: Fit this joint model based on the fitted linear mixed and Cox models using
function jm() (see pp. 79–81)

� T5: Use the summary() method to obtain a detailed output of the fitted joint
model – interpret the results

◃ extract the Survival component from the result of summary() to calculate
hazard ratios, i.e.,

◃ exp(summary(fitted model)$Survival[c(1,3,4)])
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8.1 Practical 1: A Simple Joint Model (cont’d)

� This model assumes that the strength of the association between the level of serum
bilirubin and the risk for the composite event is the same in the the two treatment
groups

� To relax this additivity assumption we will add the interaction effect between serum
bilirubin and treatment

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{D-penici × t} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp
[
γD-penici + α1mi(t) + α2{D-penici ×mi(t)}

]
,
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8.1 Practical 1: A Simple Joint Model (cont’d)

� To fit this model we need to define the functional forms argument of jm().

◃ this argument accepts a formula with the functional form of the longitudinal
outcomes, e.g.,

◃ functional forms = ∼ value(log(serBilir)) * drug

� T6: Define this argument and fit the corresponding joint model. Use the summary()
method to obtained a detailed output and interpret the results

� T7: Use compare jm() to compare the fitted models
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8.2 Practical 2: Functional Forms

� Start R and load package JMbayes2, using library("JMbayes2")

� The longitudinal (long format) and survival information for the PBC patients can be
found in data frames pbc2 and pbc2.id. The variables that we will need are:

◃ pbc2

* id: patient id number

* serBilir: serum bilirubin

* year: follow-up times in years

◃ pbc2.id

* years: observed event times in years

* status: ‘alive’, ‘transplanted’, ‘dead’
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8.2 Practical 2: Functional Forms (cont’d)

� We will fit a joint model for the PBC dataset

◃ longitudinal submodel: nonlinear subject-specific random slopes for log serum
bilirubin

yi(t) = mi(t) + εi(t)

mi(t) = (β0 + bi0) + (β1 + bi1)N(t)1 + (β2 + bi2)N(t)2 + (β3 + bi3)N(t)3

where N(t)k denote the basis for a natural spline with three degrees of freedom

◃ survival submodel: true effect of log serum bilirubin

hi(t) = h0(t) exp{αmi(t)}
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8.2 Practical 2: Functional Forms (cont’d)

� T1: Fit the linear mixed effects model for log serum bilirubin using function lme()

(see pp. 24–??)

◃ to define the natural cubic splines use function ns()

◃ set d.f. to 3 and the boundary knots to the range of event times, i.e.,
ns(year, 3, B = c(0, 14.4))

◃ use the splines in both the fixed- and random-effects parts

◃ use optim() for the optimization, i.e.,
lme(..., control = lmeControl(opt = "optim"))
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8.2 Practical 2: Functional Forms (cont’d)

� T2: Create the indicator for the composite event (i.e., ‘alive’ = 0, ‘transplanted’ or
‘dead’ = 1) using the code

pbc2.id$status2 <- as.numeric(pbc2.id$status != "alive")

� T3: Fit the null Cox PH model using coxph() that does not include any covariates
(see pp. 48–49)

� T4: Fit the corresponding joint model based on the fitted linear mixed and Cox
models using function jm() (see pp. 79–81)
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8.2 Practical 2: Functional Forms (cont’d)

� We want to extend the previous joint model and include the current value and the
time-dependent slope term, i.e.,

hi(t) = h0(t) exp{α1mi(t) + α2m
′
i(t)}

� Because mi(t) contains splines, the calculation of m′
i(t) is done using numerical

derivatives
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8.2 Practical 2: Functional Forms (cont’d)

� T5: Fit the corresponding joint model using the functional forms argument

◃ the term value(log(serBilir)) includes the current value

◃ the term slope(log(serBilir)) includes the current slope

◃ increase the number of MCMC iterations to 8500 and the burn-in to 3500

◃ use summary() and interpret the results

jm(..., n_iter = 8500L, n_burnin = 3500L,

functional_forms = ~ value(log(serBilir)) + slope(log(serBilir))
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8.2 Practical 2: Functional Forms (cont’d)

� T6: Instead of the current slope, include how much log serum bilirubin changed the
last year of follow-up

◃ use slope(log(serBilir), direction = "back", eps = 1) in the
functional forms argument

◃ use summary() to interpret the results

� T7: Fit the joint model with the Cumulative Effects 2 functional form

◃ use the area() function in the functional forms argument

◃ use summary() to interpret the results
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8.3 Practical 3: Dynamic Predictions

� We will work with the Liver Cirrhosis dataset

◃ a placebo-controlled randomized trial on 488 liver cirrhosis patients

� Start R and load package JMbayes2, using library("JMbayes2")

� The longitudinal (long format) and survival information for the liver cirrhosis patients
can be found in data frames prothro and prothros, respectively

◃ the variables that we will need are:
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8.3 Practical 3: Dynamic Predictions (cont’d)

◃ prothro

* id: patient id number

* pro: prothrombin measurements

* time: follow-up times in years

* treat: randomized treatment

◃ prothros

* Time: observed event times in years

* death: event indicator with 0 = ‘alive’, and 1 = ‘dead’

* treat: randomized treatment
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8.3 Practical 3: Dynamic Predictions (cont’d)

� We will fit the following joint model to the Liver Cirrhosis dataset

◃ longitudinal submodel: linear subject-specific random slopes for prothrombin levels
allowing for different average evolutions in the two treatment groups

yi(t) = mi(t) + εi(t)

mi(t) = β0 + β1t + β2{Trti × t} + bi0 + bi1t

◃ survival submodel: treatment effect & true effect of prothrobin

hi(t) = h0(t) exp{γTrti + αmi(t)}
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8.3 Practical 3: Dynamic Predictions (cont’d)

� T1: Fit the linear mixed model using lme(), the Cox model using coxph(), and the
corresponding joint model using jm()

� We are interested in producing predictions of survival probabilities for Patient 155

� T2: Extract the data of Patient 155 using the code and drop the survival information

dataP155 <- prothro[prothro$id == 155, ]

dataP155$Time <- dataP155$death <- NULL
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8.3 Practical 3: Dynamic Predictions (cont’d)

� T3: Using the first measurement of Patient 155, and the fitted joint model calculate
his conditional survival probabilities using function predict() and plot it using the
plot method (see p. 163)

� T4: Similarly, produce predictions for future longitudinal responses of Patient 155
using the predict() (see p. 170)

� T5: Combine the predictions in one plot

◃ say Spred are the survival predictions, and Lpred the longitudinal ones

◃ use plot(Lpred, Spred)
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8.3 Practical 3: Dynamic Predictions (cont’d)

� T6: Repeat the same procedure by including each time the next measurement of
Patient 155 and see how his survival probabilities evolve dynamically over time as
extra prothrombin measurements are recorded

◃ first using only the first measurement,

◃ and following update the predictions after each new longitudinal measurement has
been recorded

◃ use a for loop to achieve this
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8.3 Practical 3: Dynamic Predictions (cont’d)

� T7: Calculate the ROC and the corresponding AUC under the postulated model at
year 3 and with a 1-year window (see p. 191)

� T8: Do the calibration plot for the same period (see p. 198)

� T9: Calculate the prediction error for the same period (see p. 205)
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