Joint Modeling of Longitudinal and Time-to-Event Data with Applications in R

Dimitris Rizopoulos

Department of Biostatistics, Erasmus University Medical Center

d.rizopoulos@erasmusmc.nl

Czech National Group of the International Society for Clinical Biostatistics November 12, 2021

Contents

Introduction	1
1.1 Motivating Longitudinal Studies	2
1.2 Research Questions	10

Linear Mixed-Effects Models	12
2.1 Linear Mixed Models	13
2.2 Linear Mixed Models in R	23
2.3 Missing Data Mechanisms	28

Relative Risk Models 41 3.1 Relative Risk Models 42 -48 3.3 Time-Varying Covariates -50 IV The Basic Joint Model **61** 4.1 Joint Modeling Framework 62 4.3 A Comparison with the TD Cox -76 4.4 Joint Models in R \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ...

V	Extensions of Joint Models	95
	5.1 Functional Forms	96
	5.2 Multiple Longitudinal Markers	119
	5.3 Multiple Failure Times	133
VI	Dynamic Predictions	151
	6.1 Survival Probabilities	152
	6.2 Longitudinal Outcomes Prediction	164
	6.3 Functional Forms	171
	6.4 Discrimination	179
	6.5 Calibration	192

6.6	Prediction Error	•	•	•	•	•	•	•	•	•	•	-	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	199
6.7	Validation		-						-							-							•		•	-	-		-	-	•	-			206

VII	Closing	210
7.	1 Concluding Remarks	. 211
7.2	2 Additional References	. 215
7.3	3 Medical Papers with Joint Modeling	. 223

VIII	Practicals													22	25
8.1	Practical 1: A Simple Joint Model	 	 •			• •	-	-	•	•	•	Ð	. .	22	26
8.2	Practical 2: Functional Forms	 	 -	 •					-		-			. 23	33

8.3	Practical 3: D	ynamic Predictions		-	-	-	-		-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	. 2	40
		J	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		

- Often in follow-up studies different types of outcomes are collected
- Explicit outcomes
 - ▷ multiple longitudinal responses (e.g., markers, blood values)
 - ▷ time-to-event(s) of particular interest (e.g., death, relapse)
- Implicit outcomes
 - \triangleright missing data
 - \triangleright random visit times

- Methods for the separate analysis of such outcomes are well established in the literature
- Survival data:
 - ▷ Cox model, accelerated failure time models, ...
- Longitudinal data
 - ▷ mixed effects models, GEE, marginal models, ...

Purpose of this course is to present the state of the art in

Joint Modeling Techniques for Longitudinal and Time-to-Event Data

- Goals: After this course participants will be able to
 - ▷ identify settings in which a joint modeling approach is required,
 - ▷ construct and fit an appropriate joint model, and
 - > correctly interpret the obtained results
- The course will be explanatory rather than mathematically rigorous
 - emphasis is given on sufficient detail in order for participants to obtain a clear view on the different joint modeling approaches, and how they should be used in practice

- Part I: Introduction
 - \triangleright Data sets that we will use throughout the course
 - ▷ Research questions
- Part II: (brief) Review of Linear Mixed Models
 - \triangleright Features of repeated measurements data
 - ▷ Linear mixed models
 - \triangleright Missing data in longitudinal studies

- Part III: (brief) Review of Relative Risk Models
 - ▷ Features of survival data
 - \triangleright Relative risk models
 - ▷ Time-varying covariates
- Part IV: The Basic Joint Model
 - \triangleright Definition
 - \triangleright Estimation
 - \triangleright Connection with the missing data framework

- Part V: Extensions of the Basic Joint Model
 - \triangleright Functional forms
 - ▷ Multivariate joint models
- Part VI: Dynamic Predictions
 - \triangleright Individualized predictions
 - Effect of the functional forms
 - ▷ Accuracy measures

- Lectures & short software practicals using the R package **JMbayes2**
- Material (also available in http://www.drizopoulos.com/):
 - \triangleright Course Notes
 - \triangleright R code in soft format
- Within the course notes there are several examples of R code which are denoted by the symbol 'R> '

- Joint modeling sources*
 - ▷ Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data, with Applications in R. Boca Raton: Chapman & Hall/CRC.
 - Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G. (2009).
 Longitudinal Data Analysis. Handbooks of Modern Statistical Methods. Boca Raton: Chapman & Hall/CRC, Chapter 15.
 - ▷ Wu, L. (2009). Mixed Effects Models for Complex Data. Boca Raton: Chapman & Hall/CRC, Chapter 8.
 - ▷ Ibrahim, J., Chen, M.-H. and Sinha, D. (2001). Bayesian Survival Analysis. New York: Springer-Verlag, Chapter 7.

* extra references of papers using joint modeling available at pp. 215-222.

- Useful material for package JMbayes2
 - > a website with several examples: https://drizopoulos.github.io/JMbayes2/
- Useful material for package JM can be found in the web sites:

 http://jmr.r-forge.r-project.org [R code used in the book]

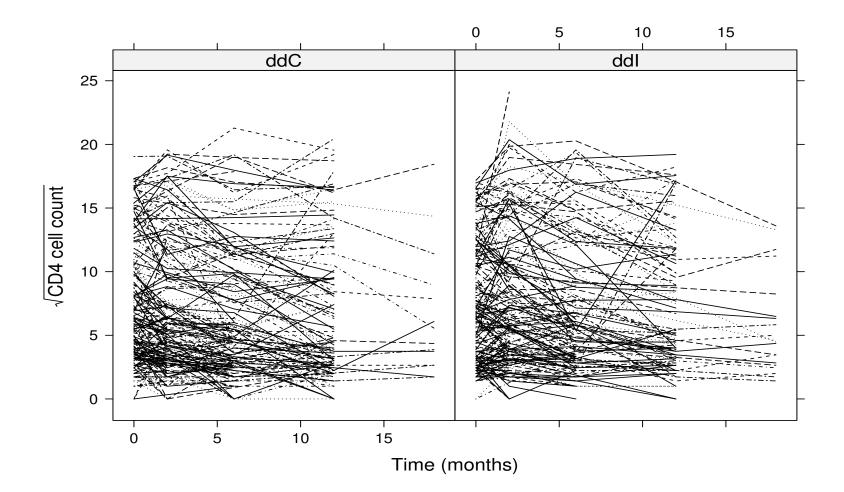
 http://www.drizopoulos.com/ → Software [additional R script files]

- Other software packages capable of fitting joint models
 - in R: JMbayes (by Rizopoulos), joineR (by Philipson et al.), joineRML (by Hickey et al.), function stan_jm() in rstanarm (by Brilleman), jm_bamlss() in bamlss (Koehler et al.), lcmm (by Proust-Lima et al.)
 - b in SAS: %JM macro (by Garcia-Hernandez and Rizopoulos http://www.jm-macro.com/), %JMFit macro (by Zhang et al.)
 - ▷ in **STATA**: **stjm** and **merlin** (by Crowther)

Part I Introduction

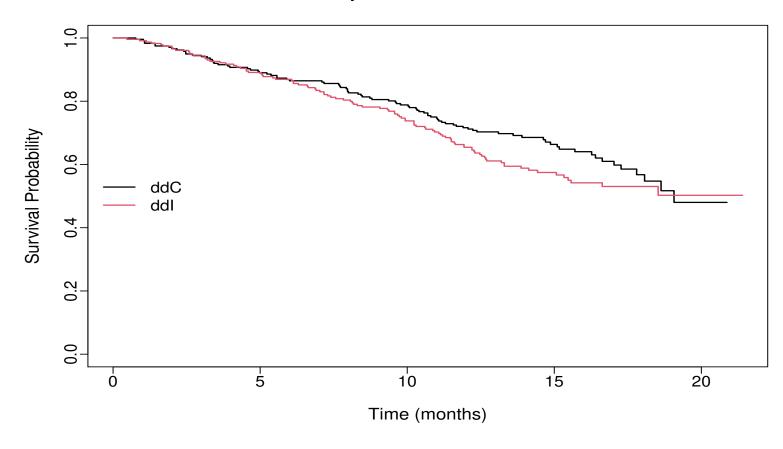
- AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine therapy (AZT) (Abrams et al., NEJM, 1994)
- The aim of this study was to compare the efficacy and safety of two alternative antiretroviral drugs, didanosine (ddl) and zalcitabine (ddC)
- Outcomes of interest:
 - \triangleright time to death
 - ▷ randomized treatment: 230 patients ddl and 237 ddC
 - \triangleright CD4 cell count measurements at baseline, 2, 6, 12 and 18 months
 - \triangleright prevOI: previous opportunistic infections

1.1 Motivating Longitudinal Studies (cont'd)



1.1 Motivating Longitudinal Studies (cont'd)

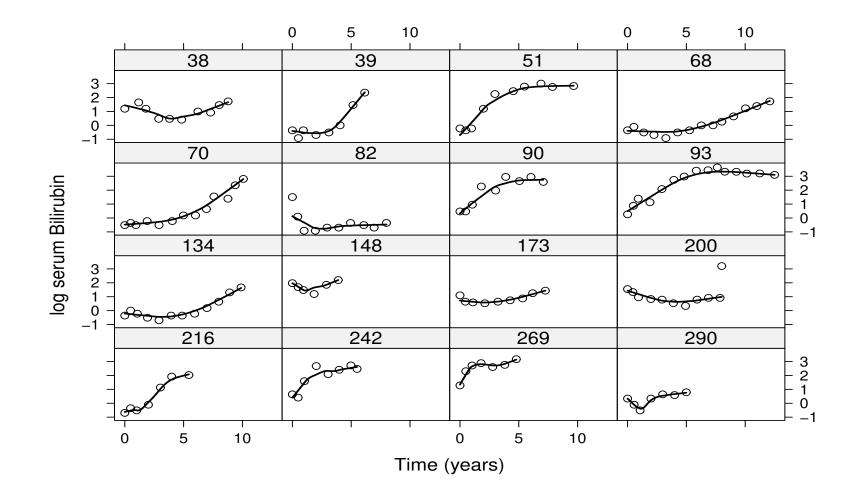
Kaplan-Meier Estimate



• Research Questions:

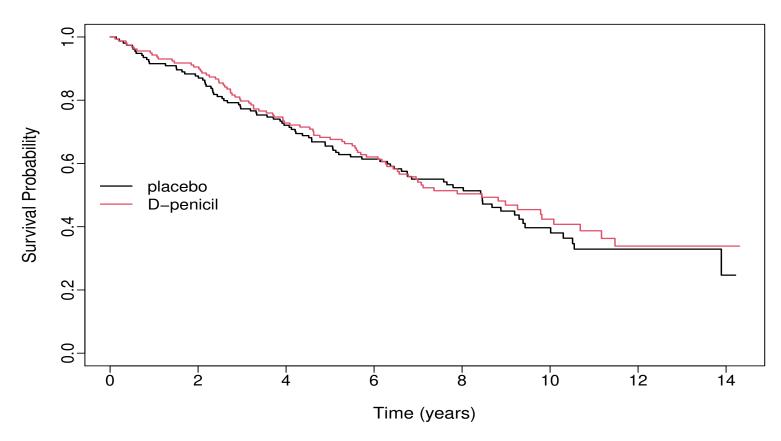
- ▷ How strong is the association between CD4 cell count and the risk of death?
- ▷ Is CD4 cell count a good biomarker?
 - * if treatment improves CD4 cell count, does it also improve survival?

- PBC: Primary Biliary Cirrhosis:
 - \triangleright a chronic, fatal but rare liver disease
 - > characterized by inflammatory destruction of the small bile ducts within the liver
- Outcomes of interest:
 - \triangleright time to death or liver transplantation
 - ▷ randomized treatment: 158 patients received D-penicillamine and 154 placebo
 - > longitudinal bilirubin levels, cholesterol, prothrombin time (continuous)
 - ▷ longitudinal ascites, hepatomegaly, edema (categorical)



1.1 Motivating Longitudinal Studies (cont'd)

Kaplan-Meier Estimate



• Research Questions:

- ▷ How strong is the association between bilirubin and the risk of death?
- b How the observed serum bilirubin levels could be utilized to provide predictions of survival probabilities?
- ▷ Can bilirubin discriminate between patients of low and high risk?

- Depending on the questions of interest, different types of statistical analysis are required
- We will distinguish between two general types of analysis
 - ▷ separate analysis per outcome
 - \triangleright joint analysis of outcomes
- Focus on each outcome separately
 - > does treatment affect survival?
 - ▷ are the average longitudinal evolutions different between males and females?

 $\triangleright \dots$

- Focus on multiple outcomes
 - Complex effect estimation: how strong is the association between the longitudinal evolution of CD4 cell counts and the hazard of death?
 - Handling implicit outcomes: focus on longitudinal outcomes but with dropout or random visit times

Part II

Linear Mixed-Effects Models

- Repeated evaluations of the same outcome in each subject over time
 - \triangleright CD4 cell count in HIV-infected patients
 - > serum bilirubin in PBC patients

Measurements on the same subject are expected to be (positively) correlated

• This implies that standard statistical tools, such as the *t*-test and simple linear regression that assume independent observations, are not optimal for longitudinal data analysis.

• The direct approach to model correlated data \Rightarrow *multivariate regression*

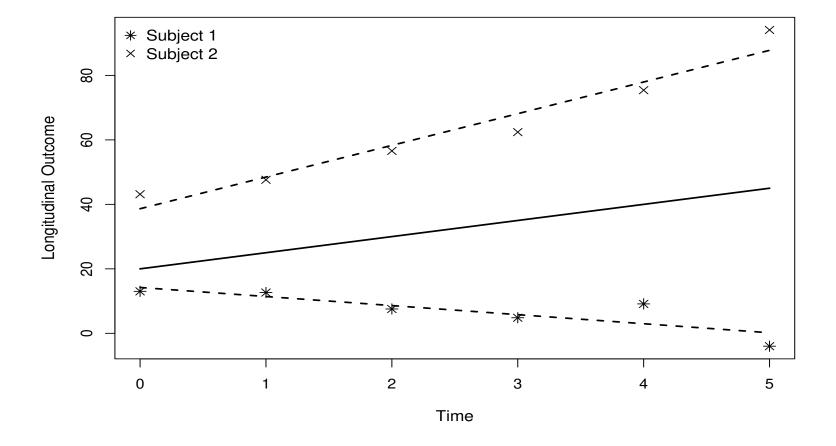
$$y_i = X_i \beta + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, V_i),$$

where

 $\triangleright y_i$ the vector of responses for the *i*th subject

- $\triangleright X_i$ design matrix describing structural component
- $\triangleright V_i$ covariance matrix describing the correlation structure
- There are several options for modeling V_i , e.g., compound symmetry, autoregressive process, exponential spatial correlation, Gaussian spatial correlation, ...

• Alternative intuitive approach: Each subject in the population has her own subject-specific mean response profile over time



• The profile of each subject over time can be described by a linear model

$$y_{ij} = \tilde{\beta}_{i0} + \tilde{\beta}_{i1}t_{ij} + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2),$$

where

 $\triangleright y_{ij}$ the *j*th response of the *i*th subject $\triangleright \tilde{\beta}_{i0}$ is the intercept and $\tilde{\beta}_{i1}$ the slope for subject *i*

 Assumption: Subjects are randomly sampled from a population ⇒ subject-specific regression coefficients are also sampled from a population of regression coefficients

$$\tilde{\beta}_i \sim \mathcal{N}(\beta, D)$$

• We can reformulate the model as

$$y_{ij} = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})t_{ij} + \varepsilon_{ij},$$

where

 $\triangleright \beta$ s are known as the *fixed effects*

 \triangleright b_i s are known as the *random effects*

• In accordance for the random effects we assume

$$b_i = \begin{bmatrix} b_{i0} \\ b_{i1} \end{bmatrix} \sim \mathcal{N}(0, D)$$

• Put in a general form

$$\begin{cases} y_i = X_i\beta + Z_ib_i + \varepsilon_i, \\\\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_{n_i}), \end{cases}$$

with

- $\triangleright X$ design matrix for the fixed effects β
- $\triangleright Z \text{ design matrix for the random effects } b_i$ $\triangleright b_i \perp \perp \varepsilon_i$

- Interpretation:
 - $\triangleright \beta_j$ denotes the change in the average y_i when x_j is increased by one unit
 - $> b_i$ are interpreted in terms of how a subset of the regression parameters for the *i*th subject deviates from those in the population
- Advantageous feature: population + subject-specific predictions
 - $\rhd\beta$ describes mean response changes in the population
 - $\triangleright \beta + b_i$ describes individual response trajectories

Example: We fit a linear mixed model for the AIDS dataset assuming
 b different average longitudinal evolutions per treatment group (fixed part)
 b random intercepts & random slopes (random part)

$$\begin{cases} y_{ij} = \beta_0 + \beta_1 t_{ij} + \beta_2 \{ dd \mathbf{I}_i \times t_{ij} \} + b_{i0} + b_{i1} t_{ij} + \varepsilon_{ij}, \\ \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

• <u>Note</u>: We did not include a main effect for treatment due to randomization

	Value	Std.Err.	<i>t</i> -value	p-value
eta_0	7.189	0.222	32.359	< 0.001
β_1	-0.163	0.021	-7.855	< 0.001
β_2	0.028	0.030	0.952	0.342

• No evidence of differences in the average longitudinal evolutions between the two treatments

- **R>** There are two primary packages in R for mixed models analysis:
 - \triangleright Package **nlme**
 - * fits linear & nonlinear mixed effects models, and marginal models for normal data
 - * allows for both random effects & correlated error terms
 - * several options for covariances matrices and variance functions
 - ▷ Package Ime4
 - * fits linear, nonlinear & generalized mixed effects models
 - * uses only random effects
 - * allows for nested and crossed random-effects designs

- R> We will only use package nlme because package JMbayes2 accepts as an argument a linear mixed model fitted by nlme
- R> The basic function to fit linear mixed models is lme() and has three basic arguments
 b fixed: a formula specifying the response vector and the fixed-effects structure
 b random: a formula specifying the random-effects structure
 b data: a data frame containing all the variables

R> The data frame that contains all variables should be in the *long format*

Subject	У	time	gender	age
1	5.1	0.0	male	45
1	6.3	1.1	male	45
2	5.9	0.1	female	38
2	6.9	0.9	female	38
2	7.1	1.2	female	38
2	7.3	1.5	female	38
÷		:	:	:

- **R>** Using formulas in R
 - $\triangleright \mathsf{CD4} = \mathsf{Time} + \mathsf{Gender}$ $\Rightarrow \boxed{\mathsf{cd4} \sim \texttt{time} + \texttt{gender}}$
 - $\label{eq:cd4} \begin{array}{l} \triangleright \mbox{ CD4} = \mbox{Time} + \mbox{Gender} + \mbox{Time}*\mbox{Gender} \\ \Rightarrow \mbox{ cd4} \sim \mbox{time} + \mbox{gender} + \mbox{time}:\mbox{gender} \\ \Rightarrow \mbox{ cd4} \sim \mbox{time} * \mbox{gender} \mbox{(the same)} \end{array}$

$$\begin{array}{l} \triangleright \ \mathsf{CD4} = \mathsf{Time} + \mathsf{Time}^2 \\ \Rightarrow \ \mathsf{cd4} \ \sim \ \mathsf{time} \ + \ \mathsf{I}(\mathsf{time}^2) \\ \Rightarrow \ \mathsf{cd4} \ \sim \ \mathsf{poly}(\mathsf{time}, \ 2) \end{array}$$

R> <u>Note:</u> the intercept term is included by default

R> The code used to fit the linear mixed model for the AIDS dataset (p. 21) is as follows

summary(lmeFit)

- A major challenge for the analysis of longitudinal data is the problem of **missing** data
 - studies are designed to collect data on every subject at a set of prespecified follow-up times
 - ▷ often subjects miss some of their planned measurements for a variety of reasons
- We can have different patterns of missing data

Subject	Visits				
	1	2	3	4	5
1	X	X	Х	X	X
2	x	X	X	?	?
3	?	X	X	X	X
4	?	X	?	X	?

- ▷ Subject 1: Completer
- ▷ Subject 2: dropout
- ▷ Subject 3: late entry
- ▷ Subject 4: intermittent

- Implications of missingness:
 - \triangleright we collect less data than originally planned \Rightarrow *loss of efficiency*
 - \triangleright not all subjects have the same number of measurements \Rightarrow *unbalanced datasets*
 - \triangleright missingness may depend on outcome \Rightarrow *potential bias*
- For the handling of missing data, we introduce the missing data indicator

$$r_{ij} = \begin{cases} 1 & \text{if } y_{ij} \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$$

• We obtain a partition of the complete response vector y_i

 \triangleright observed data y_{ij}^o , containing those y_{ij} for which $r_{ij} = 1$

 \triangleright missing data y_{ij}^m , containing those y_{ij} for which $r_{ij} = 0$

To describe the probabilistic relation between the measurement and dropout processes, Rubin (1976, Biometrika) has introduced three mechanisms

• Missing Completely At Random (MCAR): The probability that responses are missing is unrelated to both y_i^o and y_i^m

$$p(r_i \mid \boldsymbol{y}_i^o, \boldsymbol{y}_i^m) = p(r_i)$$

• Examples

- subjects go out of the study after providing a pre-determined number of measurements
- ▷ laboratory measurements are lost due to equipment malfunction

• Features of MCAR:

- \triangleright The observed data y_i^o can be considered a random sample of the complete data y_i
- \triangleright We can use any statistical procedure that is valid for complete data
 - * sample averages per time point
 - * linear regression, ignoring the correlation (consistent, but not efficient)
 - * *t*-test at the last time point

* ...

• Missing At Random (MAR): The probability that responses are missing is related to y_i^o , but is unrelated to y_i^m

$$p(r_i \mid \boldsymbol{y}_i^o, \boldsymbol{y}_i^m) = p(r_i \mid \boldsymbol{y}_i^o)$$

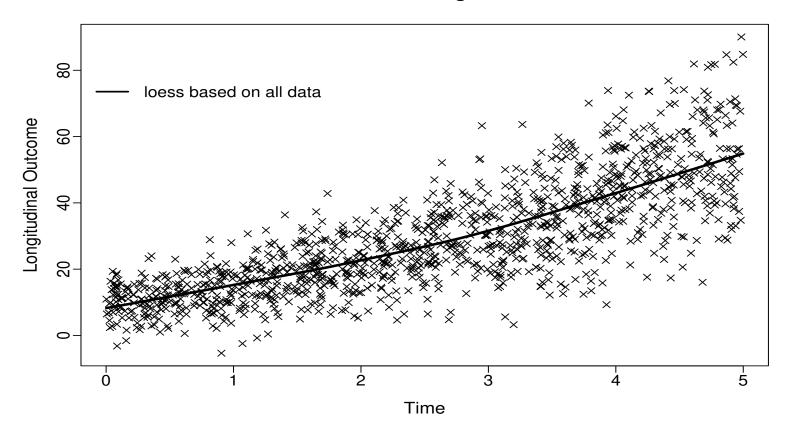
- Examples
 - study protocol requires patients whose response value exceeds a threshold to be removed from the study
 - > physicians give rescue medication to patients who do not respond to treatment

- Features of MAR:
 - The observed data cannot be considered a random sample from the target population
 - \triangleright Not all statistical procedures provide valid results

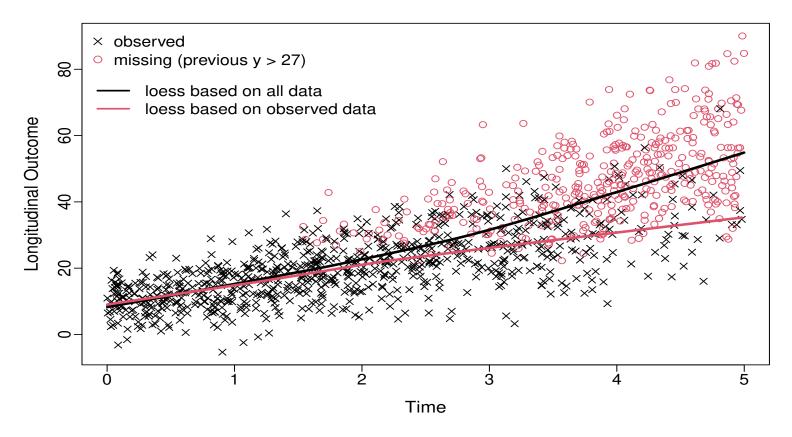
Not valid under MAR	Valid under MAR
sample marginal evolutions	sample subject-specific evolutions
methods based on moments, such as GEE	likelihood based inference
mixed models with misspecified correlation structure	mixed models with correctly specified correlation structure
marginal residuals	subject-specific residuals

2.3 Missing Data Mechanisms (cont'd)

MAR Missingness



MAR Missingness



• Missing Not At Random (MNAR): The probability that responses are missing is related to y_i^m , and possibly also to y_i^o

$$p(r_i \mid \boldsymbol{y_i^m}) \quad \text{or} \quad p(r_i \mid \boldsymbol{y_i^o}, \boldsymbol{y_i^m})$$

• Examples

- In studies on drug addicts, people who return to drugs are less likely than others to report their status
- ▷ in longitudinal studies for quality-of-life, patients may fail to complete the questionnaire at occasions when their quality-of-life is compromised

• Features of MNAR

- The observed data cannot be considered a random sample from the target population
- \triangleright Only procedures that explicitly model the joint distribution $\{y^o_i, y^m_i, r_i\}$ provide valid inferences

Analysis that are valid under MAR will not be valid under MNAR

We cannot tell from the data at hand whether the missing data mechanism is MAR or MNAR

<u>Note:</u> We can distinguish between MCAR and MAR

Part III Relative Risk Models

- The characteristic that distinguishes the analysis of time-to-event outcomes from other areas in statistics is **Censoring**
 - ▷ the event time of interest is not fully observed for all subjects under study
- Implications of censoring:
 - ▷ standard tools, such as the sample average, the *t*-test, and linear regression cannot be used
 - b inferences may be sensitive to misspecification of the distribution of the event times

- Several types of censoring:
 - ▷ Location of the true event time wrt the censoring time: *right*, *left* & *interval*
 - Probabilistic relation between the true event time & the censoring time: informative & non-informative (similar to MNAR and MAR)

Here we focus on non-informative right censoring

- Notation (*i* denotes the subject)
 - $\triangleright T_i^*$ 'true' time-to-event
 - $\triangleright C_i$ the censoring time (e.g., the end of the study or a random censoring time)
- Available data for each subject
 - \triangleright observed event time: $T_i = \min(T_i^*, C_i)$
 - \triangleright event indicator: $\delta_i = 1$ if event; $\delta_i = 0$ if censored

Our aim is to make valid inferences for T_i^* but using only $\{T_i, \delta_i\}$

• **Relative Risk Models** assume a multiplicative effect of covariates on the hazard scale, i.e.,

$$h_i(t) = h_0(t) \exp(\gamma_1 w_{i1} + \gamma_2 w_{i2} + \ldots + \gamma_p w_{ip}) \Rightarrow$$

$$\log h_{i}(t) = \log h_{0}(t) + \gamma_{1}w_{i1} + \gamma_{2}w_{i2} + \ldots + \gamma_{p}w_{ip},$$

where

 $\triangleright h_i(t)$ denotes the hazard of an event for patient i at time t $\triangleright h_0(t)$ denotes the baseline hazard $\triangleright w_{i1}, \ldots, w_{ip}$ a set of covariates

- **Cox Model:** We make no assumptions for the baseline hazard function
- Parameter estimates and standard errors are based on the log partial likelihood function

$$p\ell(\gamma) = \sum_{i=1}^{n} \delta_i \Big[\gamma^{\top} w_i - \log \Big\{ \sum_{j: T_j \ge T_i} \exp(\gamma^{\top} w_j) \Big\} \Big],$$

where only patients who had an event contribute

• Example: For the PBC dataset were interested in the treatment effect while correcting for sex and age effects

$$h_i(t) = h_0(t) \exp(\gamma_1 \text{D-penic}_i + \gamma_2 \text{Female}_i + \gamma_3 \text{Age}_i)$$

	Value	HR	Std.Err.	z-value	p-value
γ_1	-0.138	0.871	0.156	-0.882	0.378
γ_2	-0.493	0.611	0.207	-2.379	0.017
γ_3	0.021	1.022	0.008	2.784	0.005

- **R>** The primary package in R for the analysis of survival data is the **survival** package
- R> A key function in this package that is used to specify the available event time information in a sample at hand is Surv()
- R> For right censored failure times (i.e., what we will see in this course) we need to provide the observed event times time, and the event indicator status, which equals 1 for true failure times and 0 for right censored times

Surv(time, status)

R> Cox models are fitted using function coxph(). For instance, for the PBC data the following code fits the Cox model that contains the main effects of 'drug', 'sex' and 'age':

```
summary(CoxFit)
```

R> The two main arguments are a formula specifying the design matrix of the model and a data frame containing all the variables

- Often interest in the association between a time-varying covariate and the risk of an event
 - ▷ treatment changes with time (e.g., dose)
 - ▷ time-dependent exposure (e.g., smoking, diet)
 - ▷ markers of disease or patient condition (e.g., blood pressure, PSA levels)
 - $\triangleright \dots$
- Example: In the PBC study, are the longitudinal bilirubin measurements associated with the hazard of death?

- To answer our questions of interest we need to postulate a model that relates
 - \triangleright the serum bilirubin with
 - \triangleright the time-to-death
- The association between **baseline** marker levels and the risk of death can be estimated with standard statistical tools (e.g., Cox regression)
- When we want to study time-varying covariates, a more **careful consideration** is required

• There are two types of time-varying covariates

(Kalbfleisch & Prentice, The Stat. Anal. of Failure Time Data, 2002)

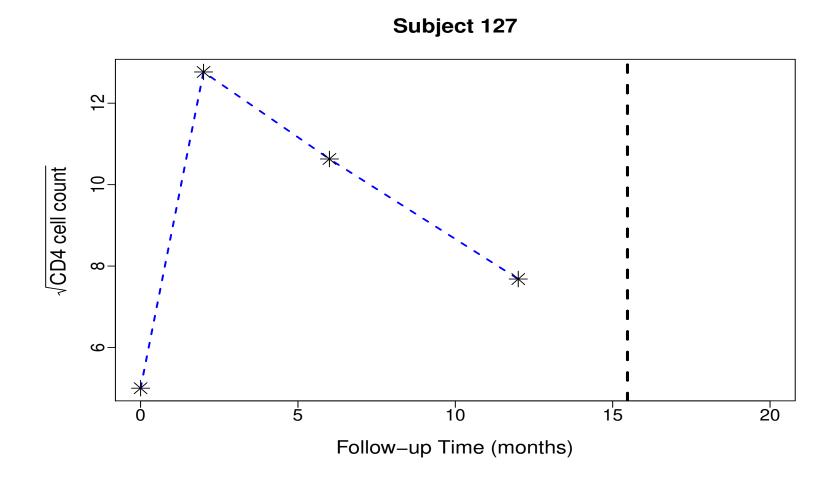
 \triangleright External (aka exogenous): the value of the covariate at time point t is not affected by the occurrence of an event at time point u, with t > u

▷ Internal (aka endogenous): not External

• This is a difficult concept and we will try to explain it with an example...

- Example: Consider a study on asthma, in particular on the time until an asthma attack for a group of patients
- We have two time-varying covariates: Pollution levels & a biomarker for asthma
- \bullet Say a patient had an asthma attack at a particular time point u
 - \triangleright Pollution levels
 - * will the pollution levels at time t > u be affected by the fact that the patient had an attack at $u? \Rightarrow No$
 - \triangleright Biomarker
 - * will the biomarker level at time t > u be affected by the fact that the patient had an attack at $u? \Rightarrow Yes$

- It is **important** to distinguish between these two types of time-varying covariates, because the type of covariate dictates the appropriate type of analysis
- In our motivating examples all time-varying covariates are Biomarkers ⇒ These are always endogenous covariates
 - ▷ measured with error (i.e., biological variation)
 - ▷ the complete history is not available
 - ▷ existence directly related to failure status



• The Cox model presented earlier can be extended to handle time-varying covariates using the counting process formulation

$$h_i(t \mid \mathcal{Y}_i(t), w_i) = h_0(t) R_i(t) \exp\{\gamma^\top w_i + \alpha y_i(t)\},\$$

where

- $\triangleright N_i(t)$ is a counting process which counts the number of events for subject i by time t,
- $\triangleright h_i(t)$ denotes the intensity process for $N_i(t)$,
- $\triangleright R_i(t)$ denotes the at risk process ('1' if subject *i* still at risk at *t*), and
- $\triangleright y_i(t)$ denotes the value of the time-varying covariate at t

• Interpretation:

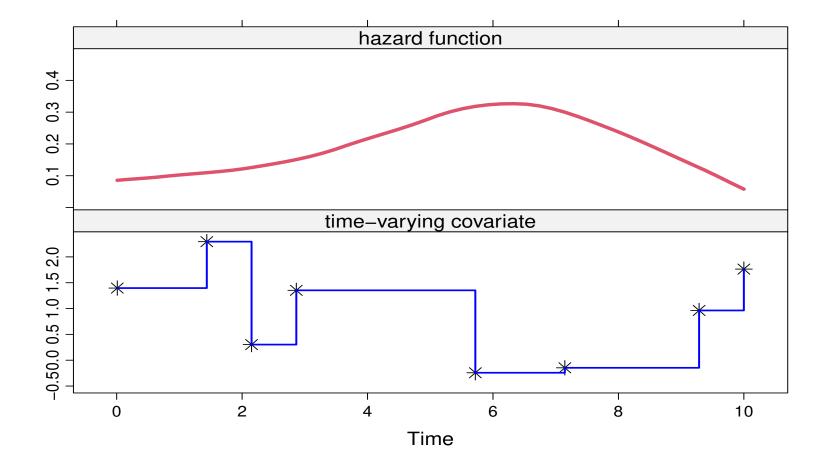
$$h_i(t \mid \mathcal{Y}_i(t), w_i) = h_0(t) R_i(t) \exp\{\gamma^\top w_i + \alpha y_i(t)\}$$

 $exp(\alpha)$ denotes the relative increase in the risk of an event at time t that results from one unit increase in $y_i(t)$ at the same time point

• Parameters are estimated based on the log-partial likelihood function

$$p\ell(\gamma, \alpha) = \sum_{i=1}^{n} \int_{0}^{\infty} \left\{ R_{i}(t) \exp\{\gamma^{\top} w_{i} + \alpha y_{i}(t)\} - \log\left[\sum_{j} R_{j}(t) \exp\{\gamma^{\top} w_{j} + \alpha y_{j}(t)\}\right] \right\} dN_{i}(t)$$

- How does the extended Cox model handle time-varying covariates?
 - ▷ assumes no measurement error
 - ▷ step-function path
 - \triangleright existence of the covariate is not related to failure status



• Therefore, the extended Cox model is only valid for exogenous time-varying covariates

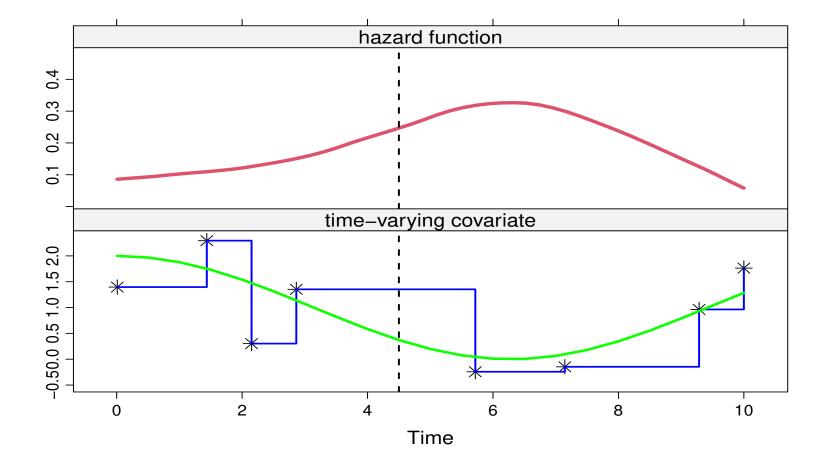
Treating endogenous covariates as exogenous may produce spurious results!

Part IV The Basic Joint Model

• To account for the special features of endogenous covariates a new class of models has been developed

Joint Models for Longitudinal and Time-to-Event Data

- Intuitive idea behind these models
 - 1. use an appropriate model to describe the evolution of the covariate/marker over time for each patient
 - 2. the estimated evolutions are then used in a Cox model
- Feature: covariate level's are **not** assumed constant between visits



• Some notation

- $\triangleright T_i^*$: True event time for patient *i*
- $\triangleright T_i$: Observed event time for patient *i*
- $\triangleright \delta_i$: Event indicator, i.e., equals 1 for true events
- $\triangleright y_i$: Longitudinal covariate
- We will formulate the joint model in 3 steps in particular, ...

- Step 1: Let's assume that we know $m_i(t)$, i.e., the *true* & *unobserved* value of the covariate at time t
- Then, we can define a standard relative risk model

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\},\$$

- $\triangleright \mathcal{M}_i(t) = \{ \underline{m_i(s)}, 0 \le s < t \}$ longitudinal history
- $\triangleright \alpha$ quantifies the association between the time-varying covariate and the risk of an event
- $\triangleright w_i$ baseline covariates

- Step 2: From the observed longitudinal data $y_i(t)$ reconstruct the covariate history for each subject
- Mixed effects model (we focus, for now, on continuous covariates)

$$y_i(t) = \mathbf{m}_i(t) + \varepsilon_i(t)$$

= $x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$

$$\triangleright x_i(t)$$
 and β : Fixed-effects part
 $\triangleright z_i(t)$ and b_i : Random-effects part, $b_i \sim \mathcal{N}(0, D)$

- Step 3: The two processes are associated \Rightarrow define a model for their joint distribution
- Joint Models for such joint distributions are of the following form (Tsiatis & Davidian, Stat. Sinica, 2004)

$$p(y_i, T_i, \delta_i) = \int p(y_i \mid b_i) \{ h(T_i \mid b_i)^{\delta_i} S(T_i \mid b_i) \} p(b_i) db_i,$$

 $\triangleright b_i$ a vector of random effects that explains the interdependencies $\triangleright p(\cdot)$ density function; $S(\cdot)$ survival function

- Key assumption: Full Conditional Independence ⇒ random effects explain all interdependencies
 - ▷ the longitudinal outcome is independent of the time-to-event outcome
 - b the repeated measurements in the longitudinal outcome are independent of each other

$$p(y_i, T_i, \delta_i \mid b_i) = p(y_i \mid b_i) p(T_i, \delta_i \mid b_i)$$
$$p(y_i \mid b_i) = \prod_j p(y_{ij} \mid b_i)$$

Caveat: CI is difficult to test

- The censoring and visiting^{*} processes are assumed non-informative:
- Decision to withdraw from the study or appear for the next visit
 - may depend on observed past history (baseline covariates + observed longitudinal responses)
 - no additional dependence on underlying, latent subject characteristics associated with prognosis

*The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which longitudinal measurements are collected.

- Joint models require a full specification of the joint distribution
 - ▷ we need an assumption for the baseline hazard
- General Advice: Use a parametric but flexible model for $h_0(t)$:

$$\log h_0(t) = \gamma_{h_0,0} + \sum_{q=1}^Q \gamma_{h_0,q} B_q(t,v),$$

 $\triangleright B_q(t, v)$ denotes the q-th basis function of a B-spline with knots v_1, \ldots, v_Q $\triangleright \gamma_{h_0}$ a vector of spline coefficients

• Penalize spline coefficients for smoothness

$$p(\gamma_{h_0} \mid \tau_h) \propto \tau_h^{\rho/2} \exp\left(-\frac{\tau_h}{2}\gamma_{h_0}^{\top}\Delta_r^{\top}\Delta_r\gamma_{h_0}\right),$$

where

- $\triangleright \tau_h$ smoothing parameter
- $\triangleright \Delta_r$ denotes *r*-th differences penalty matrix

 $\triangleright \rho \text{ rank of } \Delta_r^\top \Delta_r$

- Under the Bayesian paradigm both θ and $\{b_i, i = 1, \dots, n\}$ are regarded as parameters
- Inference is based on the full posterior distribution

$$p(\theta, b \mid T, \delta, y) = \frac{\prod_{i} p(T_{i}, \delta_{i} \mid b_{i}; \theta) \ p(y_{i} \mid b_{i}; \theta) \ p(b_{i}; \theta) \ p(\theta)}{\prod_{i} p(T_{i}, \delta_{i}, y_{i})}$$

$$\propto \prod_{i=1}^{n} \left\{ p(T_i, \delta_i \mid b_i; \theta) \ p(y_i \mid b_i; \theta) \ p(b_i; \theta) \right\} \ p(\theta)$$

- No closed-form solutions for the integrals in the normalizing constant \Rightarrow MCMC or Hamiltonian Monte Carlo
- For MCMC estimation, combination of Gibbs and Metropolis-Hastings algorithm
 Probbins-Monro adaptive optimal scaling
- To gain in efficiency, we can do block-updating for many of the parameters, i.e.,
 ▷ fixed effects β
 - \triangleright random effects b_i
 - \triangleright baseline covariates in the survival submodel γ

• Inference then proceeds in the usual manner from the MCMC output, e.g.,

 \triangleright posterior means, variances, and standard errors

 \triangleright credible intervals

▷...

- Model comparison: Information Criteria for Predictive Accuracy
 - ▷ Deviance information criterion (DIC)
 - ▷ Watanabe-Akaike information criterion (WAIC)
 - ▷ log pseudo-marginal likelihood (LPML)
- Two versions available
 - \triangleright conditional on the random effects
 - ▷ marginalized over the random effects

Preferable is to work with the marginalized versions

• Example: To illustrate the virtues of joint modeling, we compare it with the standard time-dependent Cox model for the AIDS data

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) \\ = \beta_0 + \beta_1 t + \beta_2 \{t \times dd I_i\} + b_{i0} + b_{i1} t + \varepsilon_i(t), \qquad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \end{cases}$$
$$h_i(t) = h_0(t) \exp\{\gamma dd I_i + \alpha m_i(t)\}, \end{cases}$$

	JM	Cox	
	\log HR (std.err)	\log HR (std.err)	
Treat	0.35(0.21)	$0.31 \ (0.15)$	
$CD4^{1/2}$	-0.28(0.04)	-0.19(0.02)	

• Clearly, there is a considerable effect of ignoring the measurement error, especially for the CD4 cell counts

• A unit decrease in $CD4^{1/2}$, results in a

▷ Joint Model: 1.32-fold increase in risk (95% CI: 1.23; 1.43)

- ▷ **Time-Dependent Cox**: 1.21-fold increase in risk (95% CI: 1.16; 1.27)
- Which one to believe?
 - b a lot of theoretical and simulation work has shown that the Cox model underestimates the true association size of endogenous time-varying covariates

R> Joint models are fitted using function jm() from package JMbayes2, e.g.,

CoxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id)</pre>

jointFit <- jm(CoxFit, lmeFit, time_var = "obstime")</pre>

summary(jointFit)

R> The data frame given in lme() should be in the long format, while the data frame given to coxph() should have one line per subject*

 \triangleright the ordering of the subjects needs to be the same

- R> The scale of the time variables in the mixed and Cox models need to be the sameb i.e., both in months, or both in years, etc.
- **R>** Argument time_var specifies the time variable in the linear mixed model

* Unless you want to include exogenous time-varying covariates or handle competing risks

R> Useful functions

- > summary(): summarizes the fitted model
- > compare_jm(): compares fitted models using DIC and WAIC
- > coef(), fixef(), ranef(): extract estimated coefficients and random effects
- > traceplot() & ggtraceplot: produces traceplots
- > densplot() & ggdensityplot(): produces density plots
- > predict(): calculates predictions

• So far we have focused on handling endogenous covariates for time-to-event outcomes

However, joint models are also used to account for missing data in longitudinal outcomes

• To show this connection more clearly

 $\triangleright T_i = \min\left(T_i^*, C_i\right)$

 $\triangleright T_i^*$: time to dropout due to an "event"

- $\triangleright C_i$: time to dropout due to "censoring"
- $\triangleright y_i^o$: longitudinal measurements before T_i^* or C_i
- $\triangleright y_i^m$: longitudinal measurements after T_i^* or C_i

• Missing data mechanism:

$$p(T_i^* \mid y_i^o, y_i^m) = \int p(T_i^* \mid b_i) \ p(b_i \mid y_i^o, y_i^m) \ db_i$$

still depends on y_i^m , which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show different longitudinal evolutions than patients who do not

- What about censoring?
 - \triangleright censoring also corresponds to dropout for the longitudinal outcome
- Likelihood-based inferences for joint models provide valid inferences when censoring is MCAR or MAR
 - ▷ a patient relocates to another country (MCAR)
 - > a patient is excluded from the study when her longitudinal response exceeds a pre-specified threshold (MAR)

Joint models allow to distinguish between two types of dropout

- Subject drops out at time T_i and $\delta_i = 0 \Rightarrow MCAR/MAR$ dropout
- Subjects drops out at time T_i and $\delta_i = 1 \Rightarrow MNAR$ dropout

• Joint models belong to the class of *Shared Parameter Models*

$$p\left(y_{i}^{o}, y_{i}^{m}, T_{i}^{*}, C_{i}; \theta, \psi\right) = \int p\left(y_{i}^{o}, y_{i}^{m}, T_{i}^{*}, C_{i}, b_{i}; \theta, \psi, D\right) db_{i}$$

- Key assumptions:
 - ▷ Conditional Independence
 - \triangleright Non Informative Censoring

$$\int p\left(T_i^* \mid b_i; \psi^{T^*}\right) p\left(C_i \mid y_i^o; \psi^C\right) p\left(y_i^o, y_i^m \mid b_i; \theta\right) p\left(b_i; D\right) db_i$$

• On the subject specific level:

$$\int p\left(T_{i} \mid \boldsymbol{b_{i}}; \psi^{T^{*}}\right) p\left(y_{i}^{o}, y_{i}^{m} \mid \boldsymbol{b_{i}}; \theta\right) p\left(b_{i}; D\right) db_{i}, \ i : \mathsf{dropout} \quad \rightarrow \quad \mathsf{MNAR}$$
$$\int p\left(C_{i} \mid y_{i}^{o}; \psi^{C}\right) p\left(y_{i}^{o}, y_{i}^{m} \mid \boldsymbol{b_{i}}; \theta\right) p\left(b_{i}; D\right) db_{i}, \ i : \mathsf{censored} \quad \rightarrow \quad \mathsf{MAR}$$

- The other two well-known frameworks for MNAR data are
 - \triangleright Selection models

$$p(y_i^o, y_i^m, T_i^*) = p(y_i^o, y_i^m) \; p(T_i^* \mid y_i^o, y_i^m)$$

▷ Pattern mixture models:

$$p(y_i^o, y_i^m, T_i^*) = p(y_i^o, y_i^m \mid T_i^*) \; p(T_i^*)$$

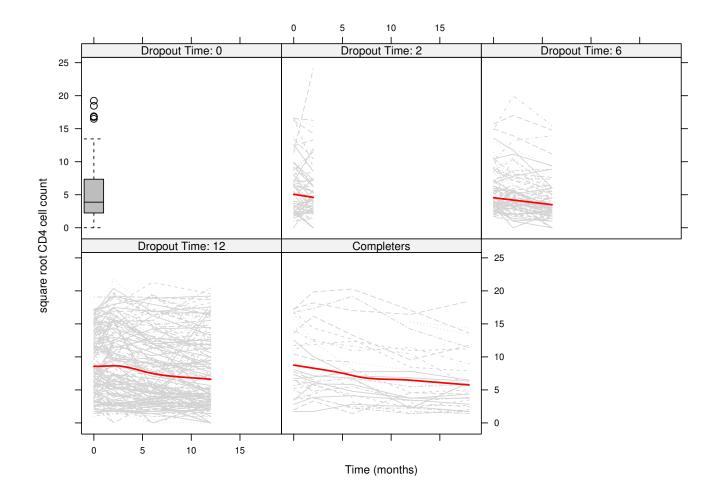
• These two model families are primarily applied with discrete dropout times and cannot be easily extended to continuous time

• Example: In the AIDS data set we have a considerable amount of missing data

	ddC		ddl	
Dropout Pattern	Ν	%	Ν	%
OXXXX	29	14.4%	32	15.6%
OOXXX	35	17.4%	37	18.0%
000XX	41	20.4%	47	22.9%
0000X	85	42.3%	76	37.1%
00000	11	5.5%	13	6.3%
Total	201	100%	205	100%

• The sample evolutions of the $\sqrt{CD4}$ cell counts per dropout pattern have the form

4.5 Connection with Missing Data (cont'd)



- Example: In the AIDS data we want to investigate how dropout affects inferences
- A comparison between
 - $\triangleright \text{ linear mixed-effects model} \Rightarrow \mathsf{MAR}$
 - \triangleright joint model dropout due to death \Rightarrow MNAR
 - \triangleright joint model dropout due to death or other causes \Rightarrow MNAR
- MAR assumes that dropout depends only on the observed data

$$p(T^*_i \mid y^o_i, y^m_i) = p(T^*_i \mid y^o_i)$$

	LMM (MAR)	JM (MNAR)	JM (MNAR)	
		dropout-death	dropout-all	
	value (s.e.)	value (s.e)	value (s.e)	
Inter	7.19 (0.22)	7.19 (0.3)	7.19 (0.3)	
Time	-0.16 (0.02)	-0.19 (0.04)	-0.17 (0.04)	
Treat:Time	0.03 (0.03)	0.01 (0.05)	0.02 (0.05)	

Minimal sensitivity in parameter estimates & standard deviations
 ⇒ Warning: This does not mean that this is always the case!

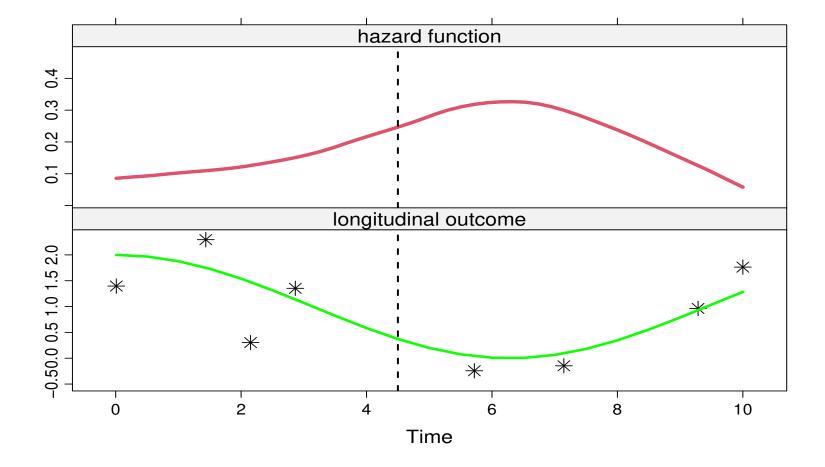
$\mathbf{Part}~\mathbf{V}$

Extensions of Joint Models

• The standard joint model

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$



• The standard joint model

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$

Is this the only option? Is this the most optimal choice?

- <u>Note</u>: Inappropriate modeling of time-varying covariates may result in surprising results
- Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to test the effect of cigarette smoking on survival of patients who underwent coronary artery surgery
 - b the estimated effect of current cigarette smoking was positive on survival although not significant (i.e., patient who smoked had higher probability of survival)
 - b most of those who had died were smokers but many stopped smoking at the last follow-up before their death

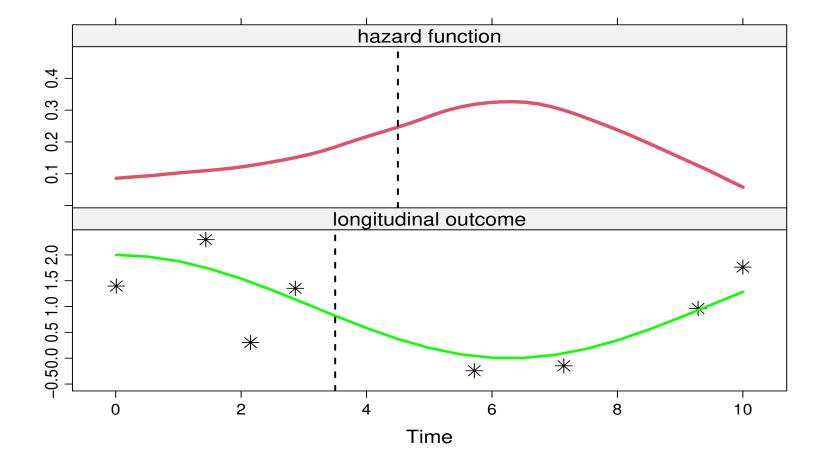
We need to carefully consider the functional form of time-varying covariates

• Let's see some possibilities...

• Lagged Effects: The hazard of an event at t is associated with the level of the marker at a previous time point:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t_+^c)\},\$$

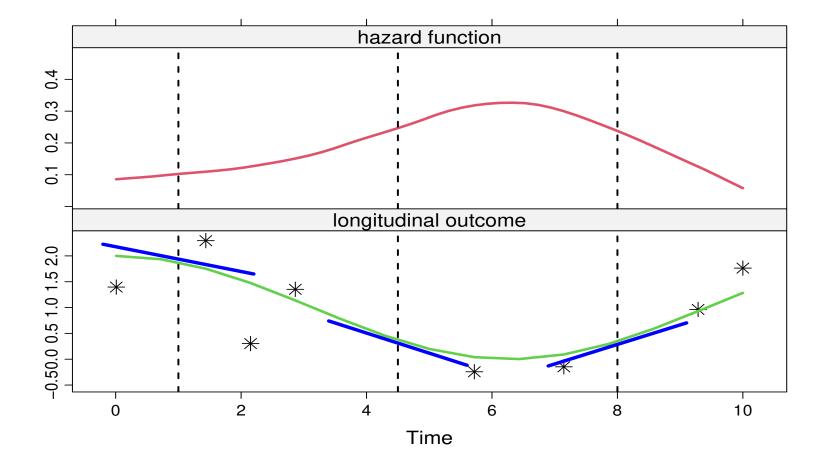
$$t_+^c = \max(t - c, 0)$$



• *Time-dependent Slopes:* The hazard of an event at t is associated with both the current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha_1 m_i(t) + \alpha_2 m'_i(t)\},\$$

$$m_i'(t) = \frac{d}{dt} \{ x_i^\top(t)\beta + z_i^\top(t)b_i \}$$



• The definition of the slope is

$$m'_i(t) = \lim_{\epsilon \to 0} \frac{m_i(t+\epsilon) - m_i(t)}{\epsilon}$$

the change in the longitudinal profile as ϵ approaches zero

- It can be challenging to interpret
 - \triangleright it is the 'current' slope

• *Time-dependent Slopes 2:* The hazard of an event at t is associated with the change of the trajectory the last year:

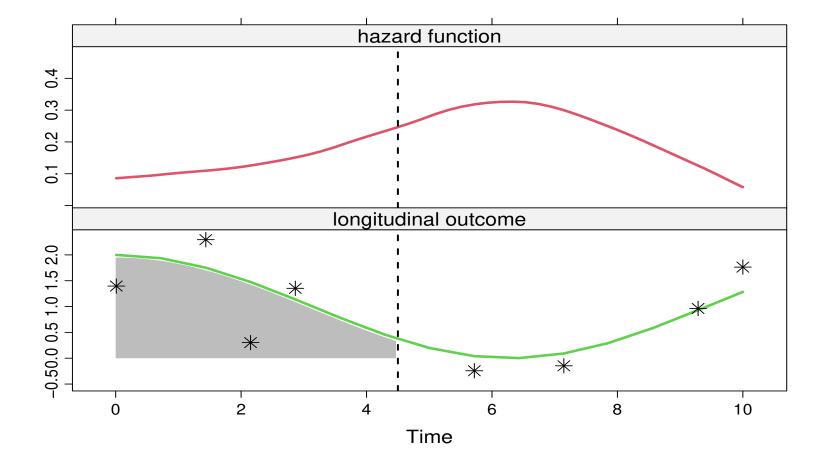
$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha \Delta m_i(t)\},\$$

$$\Delta m_i(t) = m_i(t) - m_i(t-1)$$

• *Cumulative Effects:* The hazard of an event at t is associated with the whole area under the trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{\gamma^\top w_i + \alpha \int_0^t m_i(s) \ ds\right\}$$

• Area under the longitudinal trajectory taken as a summary of $\mathcal{M}_i(t)$



• *Cumulative Effects 2:* The hazard of an event at t is associated with the whole area under the trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{\gamma^{\top} w_i + \alpha \frac{\int_0^t m_i(s) \, ds}{t}\right\}$$

• We account for the observation period

• Weighted Cumulative Effects (convolution): The hazard of an event at t is associated with the area under the weighted trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{\gamma^\top w_i + \alpha \int_0^t \varpi(t-s) m_i(s) \, ds\right\},$$

where $\varpi(\cdot)$ an appropriately chosen weight function, e.g.,

- ▷ Gaussian density
- \triangleright Student's-*t* density
- ▷...

• *Random Effects:* The hazard of an event at t is associated <u>only</u> with the random effects of the longitudinal model:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp(\gamma^\top w_i + \alpha^\top b_i)$$

- Features:
 - ▷ avoids numerical integration for the survival function
 - \triangleright interpretation of α more difficult, especially in high-dimensional random-effects settings

- Example: Sensitivity of inferences for the longitudinal process to the choice of the functional forms for the AIDS data
- We use the same mixed model as before, i.e.,

$$y_i(t) = m_i(t) + \varepsilon_i(t)$$

$$= \beta_0 + \beta_1 t + \beta_2 \{ t \times \mathrm{ddI}_i \} + b_{i0} + b_{i1} t + \varepsilon_i(t)$$

and the following four survival submodels

• Model I (current value)

$$h_i(t) = h_0(t) \exp\{\gamma \mathrm{dd}\mathbf{I}_i + \alpha_1 m_i(t)\}$$

• Model II (current slope)

 $h_i(t) = h_0(t) \exp\{\gamma \mathrm{dd}\mathbf{I}_i + \alpha_2 m'_i(t)\},\$

$$\triangleright m_i'(t) = \beta_1 + \beta_2 \mathrm{ddI}_i + b_{i1}$$

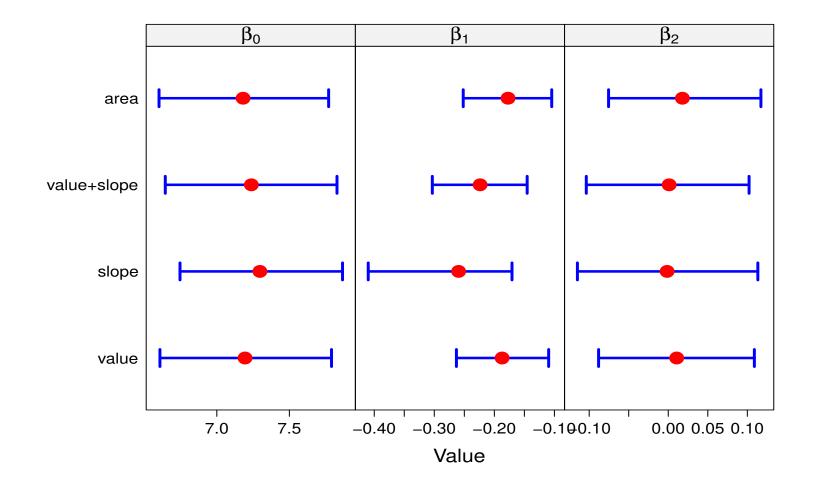
• Model II (current value + current slope)

$$h_i(t) = h_0(t) \exp\{\gamma \mathrm{dd}\mathbf{I}_i + \alpha_1 m_i(t) + \alpha_2 m_i'(t)\}$$

• Model IV (area)

$$h_i(t) = h_0(t) \exp\left\{\gamma \mathrm{dd}\mathbf{I}_i + \alpha_3 \frac{\int_0^t m_i(s) \, ds}{t}\right\},\,$$

$$\triangleright \int_0^t m_i(s) \, ds = \beta_0 t + \frac{\beta_1}{2} t^2 + \frac{\beta_2}{2} \{ t^2 \times \mathrm{dd} \mathbf{I}_i \} + b_{i0} t + \frac{b_{i1}}{2} t^2$$



- There are some differences between the functional forms
 - \triangleright especially in the slope parameters
- Therefore, a sensitivity analysis should not stop at the standard joint model functional forms but also consider alternative association structures

R> In JMbayes2 the specification of functional forms is done via the functional_forms argument

▷ e.g., the following code includes the area and slope in the linear predictor, and the interaction of the former with sex

```
jm(CoxFit, lmeFit, time_var = "time",
   functional_forms = ~ area(y) + value(y) + area(y):sex)
```


- R> The area() function calculates the *Cumulative Effects 2* functional form, where the integral is divide by the length of the period
- R> The slope() function can be used for the *Time-dependent Slopes 2* functional form via

slope(..., eps = 1, direction = "back")

- So far we have concentrated on a single continuous longitudinal outcome
- But very often we may have several outcomes we wish to study, some of which could be categorical
- Example: In the PBC dataset we have used serum bilirubin as the most important marker, but during follow-up several other markers have been recorded
 - > serum cholesterol (continuous)

```
▷ edema (3 categories)
```

```
▷ ascites (2 categories)
```

```
▷...
```


We need to extend the basic joint model!

- To handle multiple longitudinal outcomes of different types we use Generalized Linear Mixed Models
 - \triangleright We assume Y_{i1}, \ldots, Y_{iJ} for each subject, each one having a distribution in the exponential family, with expected value

$$m_{ij}(t) = E(y_{ij}(t) \mid b_{ij}) = g_j^{-1} \{ x_{ij}^{\top}(t) \beta_j + z_{ij}^{\top}(t) b_{ij} \},\$$

with $g(\cdot)$ denoting a link function

• Correlation between the longitudinal outcomes is captured by assuming a multivariate normal distribution for the random effects

$$b_i = \begin{bmatrix} b_{i1} \\ \vdots \\ b_{iJ} \end{bmatrix} \sim \mathcal{N}(0, D)$$

Two ways to include the longitudinal markers in the survival submodel
 conditional expected value

$$h_i(t) = h_0(t) \exp\{\gamma^{\top} w_i + \sum_{j=1}^J \alpha_j m_{ij}(t)\}$$

▷ or conditional linear predictor

$$\begin{cases} h_i(t) = h_0(t) \exp\left\{\gamma^{\top} w_i + \sum_{j=1}^J \alpha_j \eta_{ij}(t)\right\} \\\\ \eta_{ij} = x_{ij}^{\top}(t) \beta_j + z_{ij}^{\top}(t) b_{ij} \end{cases}$$

- Full Conditional Independence: Given the random effects
 - ▷ the repeated measurements in each outcome are independent,
 - \triangleright the longitudinal outcomes are independent of each other, and
 - Iongitudinal outcomes are independent of the time-to-event outcome

$$p(y_{ij} \mid b_{ij}) = \prod_{k=1}^{n_{ij}} p(y_{ij,k} \mid b_{ij})$$
 $p(y_i \mid b_i) = \prod_j p(y_{ij} \mid b_{ij})$
 $p(y_i, T_i, \delta_i \mid b_i) = \prod_j p(y_{ij} \mid b_{ij}) p(T_i, \delta_i \mid b_i)$

- Features of multivariate joint models
 - b using CI is straightforward to extend joint models to multiple longitudinal outcomes of different types
 - ▷ computationally much more intensive due to the high dimensional random effects

- Example: Multivariate joint model for the PBC dataset
 - ▷ log(ser Bilir): linear mixed-effects model
 - * fixed effects: intercept and linear time effect
 - * random effects: intercept and linear time effect
 - > spiders: mixed-effects logistic regression model
 - * fixed effects: intercept and linear time effect
 - * random effects: intercept

▷ time-to-death: relative risk model

* baseline covariates: drug and age

* Analysis I: conditional linear predictor

* Analysis II: conditional expected value

• Analysis I: conditional linear predictor

	Value	Std.Dev.	2.5%	97.5%
D-penicil	-0.080	0.250	-0.566	0.408
Age	0.064	0.010	0.045	0.083
value(logSB)	1.306	0.136	1.055	1.583
value(spiders)	0.077	0.056	-0.032	0.188

• Analysis II: conditional expected value

	Value	Std.Dev.	2.5%	97.5%
D-penicil	-0.091	0.250	-0.577	0.399
Age	0.064	0.010	0.044	0.084
value(logSB)	1.309	0.146	1.042	1.617
<pre>expit(value(spiders))</pre>	0.572	0.387	-0.262	1.314

R> To fit a multivariate joint model in **JMbayes2** we need first to fit a series of univariate mixed models.

▷ for non-Gaussian longitudinal data we use **GLMMadaptive**

• Arguments of mixed_model()

▷ **fixed**: formula for the response outcome and fixed effects

- ▷ random: formula for random effects
- > family: distribution of longitudinal outcome

 \triangleright data: dataset

- R> To fit a multivariate joint model, we use jm() as before but we now provide a list() of mixed models
 - ▷ an example for the PBC dataset using serum bilirubin (continuous) and spiders (binary)

```
lmmFit <- lme(log(serBilir) ~ year, data = pbc2, random = ~ year | id)</pre>
```

```
CoxFit <- coxph(Surv(years, status2) ~ drug + age, data = pbc2.id)</pre>
```

```
jm(CoxFit, list(lmmFit, melrFit), time_var = "year")
```


- **R>** The default in jm() is to include the conditional linear predictor $\eta_{ij}(t)$ in the survival submodel
 - b to include the conditional expected value, we can use the functional_forms
 argument, e.g.,

```
jm(CoxFit, list(lmmFit, melrFit), time_var = "year",
  functional_forms = ~ value(log(serBilir)) +
        vexpit(value(spiders)),
  n_iter = 20000L, n_burnin = 10000L)
```


R> Function jm() allows for various types of mixed models

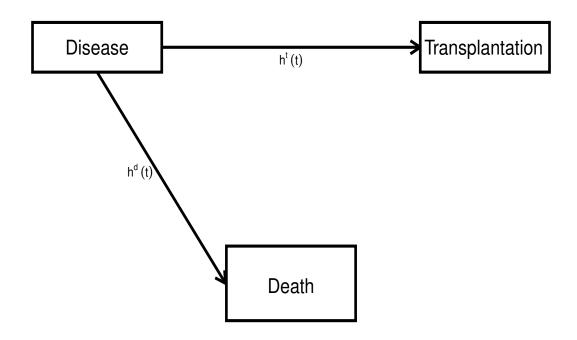
▷ continuous: Student's t, Beta, Gamma, censored normal

▷ categorical: Binomial, Poisson, Negative Binomial, Beta Binomial

For more info see $https://drizopoulos.github.io/JMbayes2/ \rightarrow Articles \rightarrow Non-Gaussian Mixed Models$

- Often multiple failure times are recorded
 - ▷ competing risks
 - b transitions to multiple states
 - ▷ recurrent events
- Example: In the PBC dataset \Rightarrow competing risks
 - ▷ Some patients received a liver transplantation
 - So far we have used the composite event, i.e. death or transplantation whatever comes first
 - When interest only is on one type of event, the other should be considered as a competing risk

- Competing risks:
 - ▷ Death precludes the occurrence of transplantation
 - \triangleright Transplantation modifies the risk of death



• Joint models with competing risks:

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) = x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \\ h_i^d(t) = h_0^d(t)\exp\{\gamma_d^{\top}w_i + \alpha_d m_i(t)\}, \\ h_i^{tr}(t) = h_0^{tr}(t)\exp\{\gamma_{tr}^{\top}w_i + \alpha_{tr} m_i(t)\}, \end{cases}$$

where

▷
$$h_i^d(t)$$
 hazard function for death
▷ $h_i^{tr}(t)$ hazard function for transplantation

• In the estimation, the only difference is in the construction of the likelihood part for the event process

$$p(T_i, \delta_i \mid b_i; \theta) = \prod_{k=1}^K \left[h_{0k}(T_i) \exp\{\gamma_k^\top w_i + \alpha_k m_i(T_i)\} \right]^{I(\delta_i = k)}$$
$$\times \exp\left(-\sum_{k=1}^K \int_0^{T_i} h_{0k}(s) \exp\{\gamma_k^\top w_i + \alpha_k m_i(s)\} \ ds\right),$$

with

 $\triangleright T_i = \min(T_{i1}^*, \ldots, T_{iK}^*, C_i)$, with C_i denoting the censoring time $\triangleright \delta_i \in \{0, 1, \ldots, K\}$, with 0 corresponding to censoring

- This is different than in standard Cox models
 - ▷ i.e., we cannot fit a cause-specific hazard joint model by treating events from other causes as censored

- Example: Competing risks analysis for the PBC dataset
 - ⊳ log(ser Bilir): linear mixed-effects model
 - * fixed effects: intercept, drug, linear time, interaction drug with time
 - * random effects: intercept and linear time
 - b time to death or transplantation: relative risk model
 - * competing risks: transplantation and death
 - * baseline covariates: drug *different* per competing risk
 - * time-varying: current value log ser Bilir *different* per competing risk

	Value	Std.Dev.	2.5%	97.5%
D-penicil	-0.396	0.565	-1.562	0.709
D-penicil:dead	0.478	0.563	-0.552	1.668
value(logSB)	1.135	0.212	0.744	1.561
value(logSB):dead	0.101	0.217	-0.331	0.543

R> Function jm() can fit joint models with competing risks and multi-state processes; an example with competing risks

b first, the survival data have to be prepared in the competing risks long format using function crLong(), e.g.,

pbc2.id[pbc2.id\$id %in% c(1,2,5), c("id", "years", "status")]

	id	years	status
1	1	1.095170	dead
2	2	14.152338	alive
5	5	4.120578	transplanted

	id	years	status	CR	status2
1	1	1.095170	dead	dead	1
1.1	1	1.095170	dead	transplanted	0
2	2	14.152338	alive	dead	0
2.1	2	14.152338	alive	transplanted	0
5	5	4.120578	transplanted	dead	0
5.1	5	4.120578	transplanted	transplanted	1

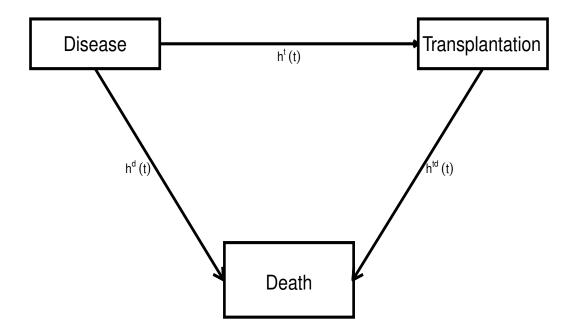
R> To fit the joint model, we first fit the linear mixed and relative risk models as before
 ▷ for the latter we use the data in the competing risks long and put the event-type variable as strata

R> Then the joint model is fitted with the code

```
jm(CoxFit_CR, lmeFit_CR, time_var = "year",
    functional_forms = ~ value(log(serBilir)) * CR)
```

For more info see https://drizopoulos.github.io/JMbayes2/ \rightarrow Articles \rightarrow Competing Risks

- Multi-state models:
 - > Transition between transplantation and death is of interest
 - Effect of covariates and/or biomarkers can be different for each transition



• Joint models with multi-state processes:

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) = x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \\ h_i^d(t) = h_0^d(t) \exp\left[w_i^{d^{\top}}\gamma_d + \alpha^d m_i(t)\right], \\ h_i^t(t) = h_0^t(t) \exp\left[w_i^{t^{\top}}\gamma_t + \alpha^t m_i(t)\right], \\ h_i^{td}(t) = h_0^{td}(t) \exp\left[w_i^{td^{\top}}\gamma_{td} + \alpha^{td} m_i(t)\right], \end{cases}$$

where

 $\triangleright h_i^d(t) \text{ transition intensity from disease to death}$ $\triangleright h_i^t(t) \text{ transition intensity from disease to transplantation}$ $\triangleright h_i^{td}(t) \text{ transition intensity from transplantation to death}$

Multi-state long-format **different** than the long format in Competing Risks

- General rule: 1 row per **possible** transition.
 - competing risks: always 2 rows per subject because **both transitions always possible** from starting state.
 - > multi-state: unequal number of rows per subject because not all transitions
 possible from starting state)

For more info see https://drizopoulos.github.io/JMbayes2/ → Articles → Multi-State Processes

- Multiple Failure Times: recurrent events
- Example: In the PBC dataset \Rightarrow recurrent events
 - ▷ Patients showed irregular visiting patterns
 - ▷ So far, when we fitted the joint model we assumed that the visiting process is non-informative
 - If this assumption is violated, we should also model this process in order to obtain valid inferences

• Joint model with recurrent (visiting process) & terminal events

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) = x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \\ r_i(t) = r_0(t)\exp\{\gamma_r^{\top}w_{ri} + \alpha_r m_i(t) + \mathbf{v}_i\}, \\ h_i(t) = h_0(t)\exp\{\gamma_h^{\top}w_{hi} + \alpha_h m_i(t) + \zeta\mathbf{v}_i\}, \end{cases}$$

with

 $ightarrow r_i(t)$ hazard function for the recurrent events $ightarrow h_i(t)$ hazard function for the terminal event $ightarrow \mathbf{v}_i$ frailty term accounting for the correlation in the recurrent events

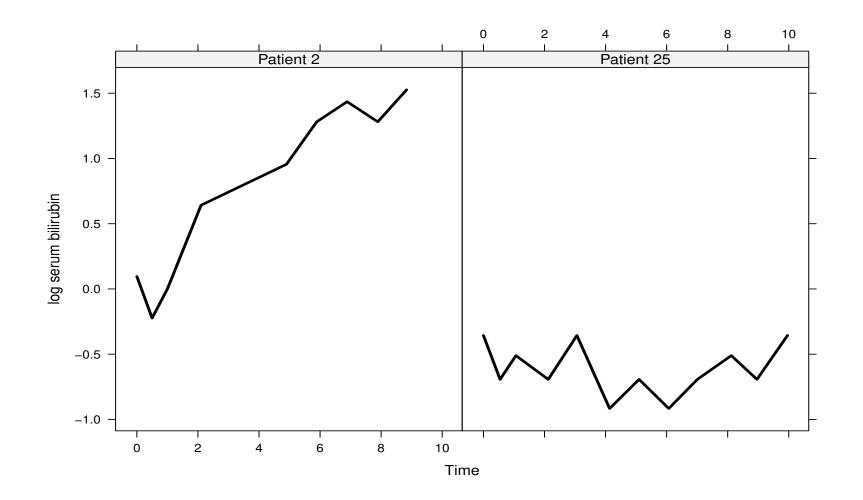
- Conditional independence assumptions augmented
 - \triangleright recurrent events are independent given v_i
 - \triangleright longitudinal measurements are independent giver b_i
 - \triangleright all three processes, namely
 - * longitudinal process,
 - $\ensuremath{^*}$ recurrent events process, and
 - * terminating event process are independent given $\{b_i, \mathbf{v}_i\}$
- We need to postulate a distribution for the frailty terms
 > typical choice is the Gamma because it's conjugate

Part VI Dynamic Predictions

- Nowadays there is great interest for prognostic models and their application to personalized medicine
- Examples are numerous
 - ▷ cancer research, cardiovascular diseases, HIV research, ...

Physicians are interested in accurate prognostic tools that will inform them about the future prospect of a patient in order to adjust medical care

- \bullet We are interested in predicting survival probabilities for a new patient j with serum bilirubin measurements up to time t
- Example: Patients 2 and 25 from the PBC dataset have 9 and 12 serum bilirubin measurements, respectively
 - Dynamic Prediction survival probabilities are dynamically updated as additional longitudinal information is recorded
- We need to account for the endogenous nature of the covariate
 - \triangleright providing measurements up to time point $t \Rightarrow$ the patient was still alive at time t



 \bullet More formally, for a new subject j we have available measurements up to time point t

$$\mathcal{Y}_j(t) = \{y_j(s), 0 \le s \le t\}$$

and we are interested in

$$\pi_j(u \mid t) = \mathsf{Pr}\big\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\big\},\$$

where

 \triangleright where u > t, and

 $\triangleright \mathcal{D}_n$ denotes the sample on which the joint model was fitted

- We assume that the joint model has been fitted to the data at hand
- Based on the fitted model, we can estimate the conditional survival probabilities (Rizopoulos, 2011, Biometrics)

- It is convenient to proceed using a Bayesian formulation of the problem $\Rightarrow \pi_j(u \mid t)$ can be written as

$$\mathsf{Pr}\big\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\big\} = \int \mathsf{Pr}\big\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t); \theta\big\} \ p(\theta \mid \mathcal{D}_n) \ d\theta$$

• The first part of the integrand takes the form

$$\Pr\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t); \theta\} =$$
$$= \int \frac{S_j\{u \mid \mathcal{M}_j(u, \boldsymbol{b}_j, \theta); \theta\}}{S_j\{t \mid \mathcal{M}_j(t, \boldsymbol{b}_j, \theta); \theta\}} p(\boldsymbol{b}_j \mid T_j^* > t, \mathcal{Y}_j(t); \theta) \ d\boldsymbol{b}_j$$

• A Monte Carlo estimate of $\pi_j(u \mid t)$ can be obtained using the following simulation scheme:

Step 1. draw $\theta^{(\ell)} \sim [\theta \mid \mathcal{D}_n]$

Step 2. draw $b_j^{(\ell)} \sim [b_j \mid T_j^* > t, \mathcal{Y}_j(t), \theta^{(\ell)}]$

Step 3. compute $\pi_j^{(\ell)}(u \mid t) = S_j \{ u \mid \mathcal{M}_j(u, \mathbf{b}_j^{(\ell)}, \boldsymbol{\theta}^{(\ell)}); \boldsymbol{\theta}^{(\ell)} \} / S_j \{ t \mid \mathcal{M}_j(t, \mathbf{b}_j^{(\ell)}, \boldsymbol{\theta}^{(\ell)}); \boldsymbol{\theta}^{(\ell)} \}$

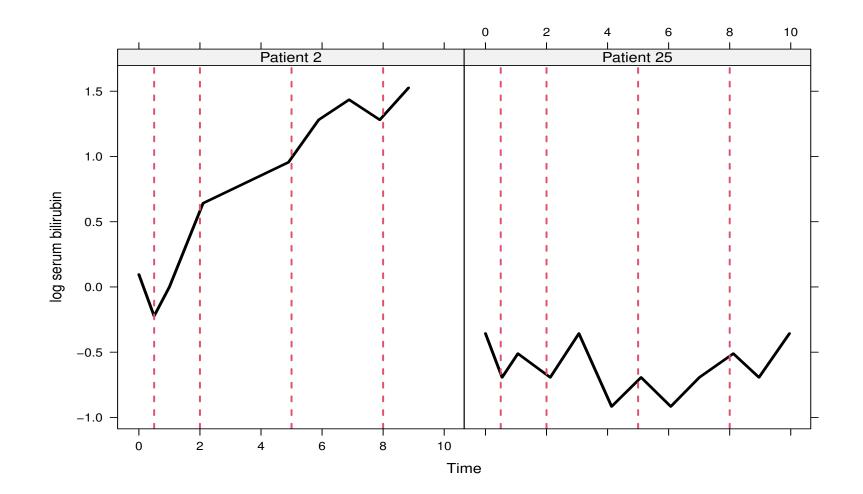
• Repeat Steps 1–3, $\ell = 1, \ldots, L$ times, where L denotes the number of Monte Carlo samples

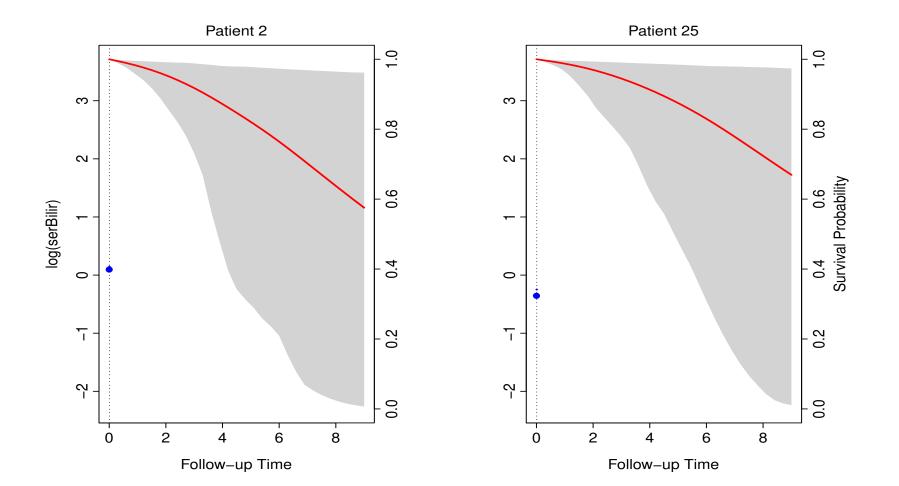
- Example: Dynamic predictions of survival probabilities for Patients 2 & 25 from the PBC dataset: We fit the joint model
- Longitudinal submodel
 - ▷ fixed effects: intercept & natural cubic splines of time with 3 d.f., sex, and interaction of the time effect with sex
 - ▷ random effects: intercept, natural cubic splines of time with 3 d.f.
- Survival submodel
 - \triangleright sex effect + *underlying* serum bilirubin level

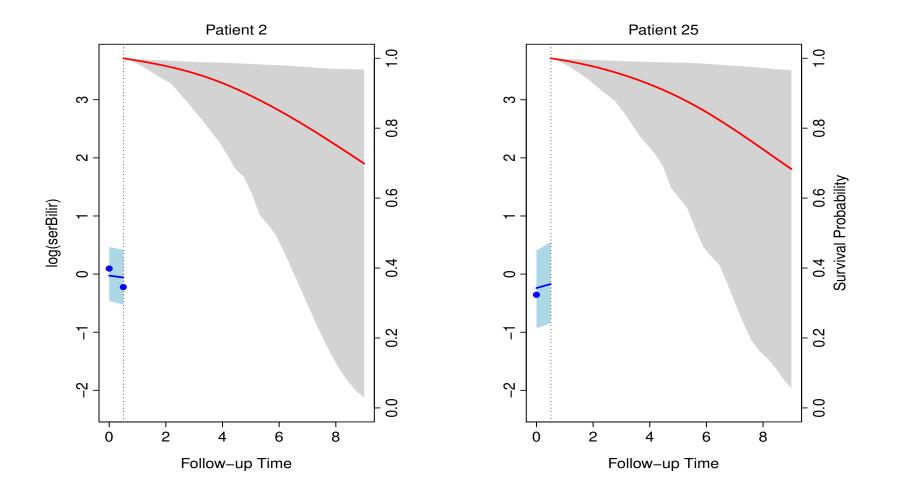
- Based on the fitted joint model we estimate $\pi_j(u \mid t)$ for Patients 2 and 25
- We use 500 Monte Carlo samples, and we took as estimate

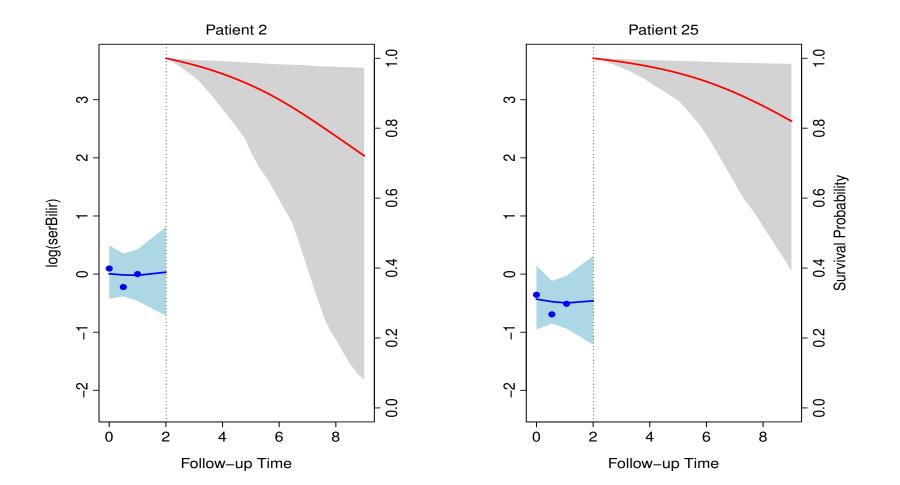
$$\hat{\pi}_j(u \mid t) = \text{mean}\{\pi_j^{(\ell)}(u \mid t), \ell = 1, \dots, L\}$$

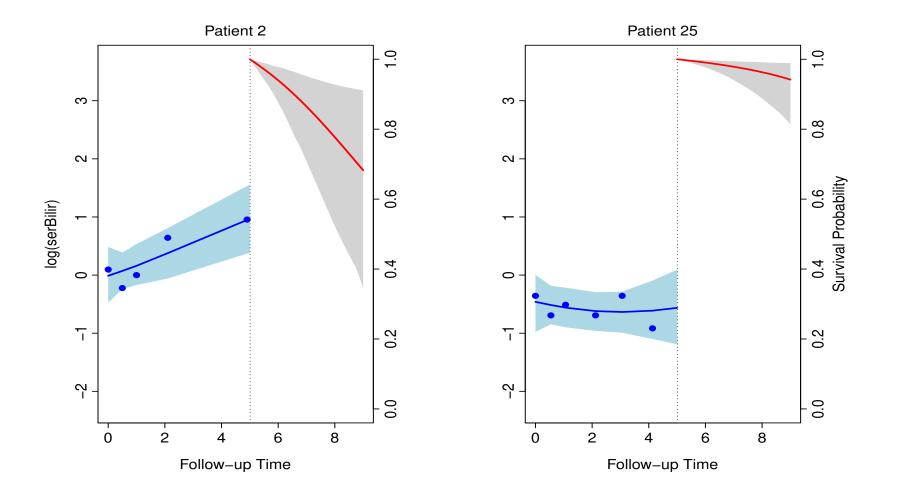
and calculated a corresponding 95% pointwise CIs

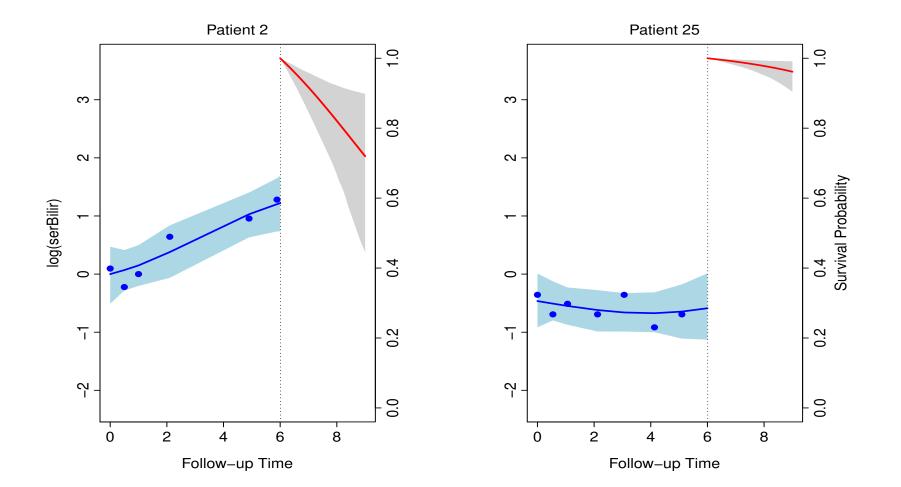


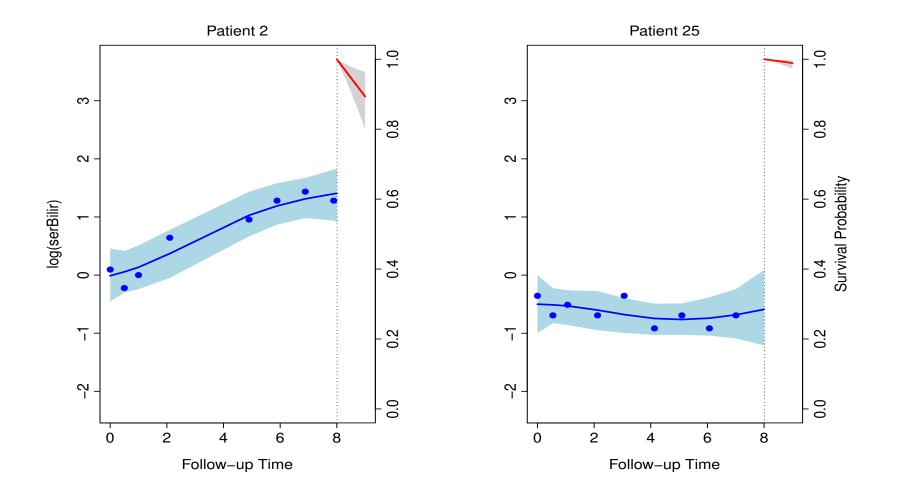












R> Individualized predictions of survival probabilities are computed by function predict() – for example, for Patient 2 from the PBC dataset we have

sfit

plot(sfit)

- In some occasions it may be also of interest to predict the longitudinal outcome
- \bullet We can proceed in the same manner as for the survival probabilities: We have available measurements up to time point t

$$\mathcal{Y}_j(t) = \{y_j(s), 0 \le s \le t\}$$

and we are interested in

$$\omega_j(u \mid t) = E\{y_j(u) \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\}, \quad u > t$$

• To estimate $\omega_j(u \mid t)$ we can follow a similar approach as for $\pi_j(u \mid t)$ – Namely, $\omega_j(u \mid t)$ is written as:

$$E\{y_j(u) \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\} = \int E\{y_j(u) \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n; \theta\} p(\theta \mid \mathcal{D}_n) d\theta$$

• With the first part of the integrand given by:

$$E\{y_j(u) \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n; \theta\} =$$
$$= \int \{x_j^\top(u)\beta + z_j^\top(u)b_j\} p(b_j \mid T_j^* > t, \mathcal{Y}_j(t); \theta) \ db_j$$

• A similar Monte Carlo simulation scheme:

Step 1. draw $\theta^{(\ell)} \sim [\theta \mid \mathcal{D}_n]$

Step 2. draw $b_j^{(\ell)} \sim [b_j \mid T_j^* > t, \mathcal{Y}_j(t), \theta^{(\ell)}]$

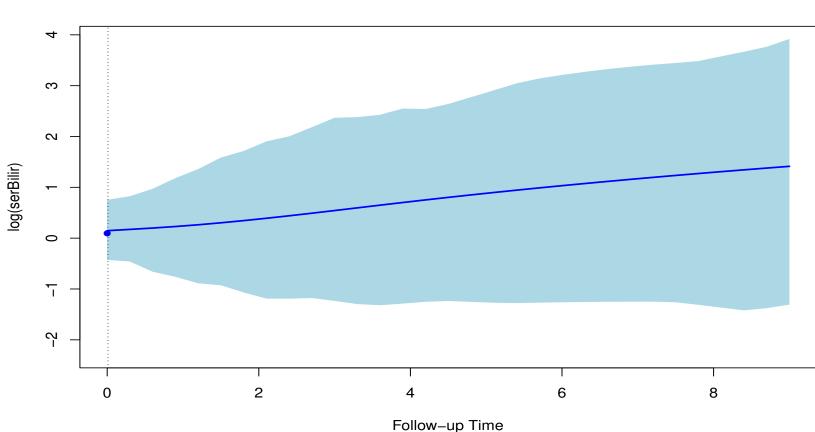
Step 3. compute $\omega_j^{(\ell)}(u \mid t) = x_j^\top(u)\beta^{(\ell)} + z_j^\top(u)b_j^{(\ell)}$

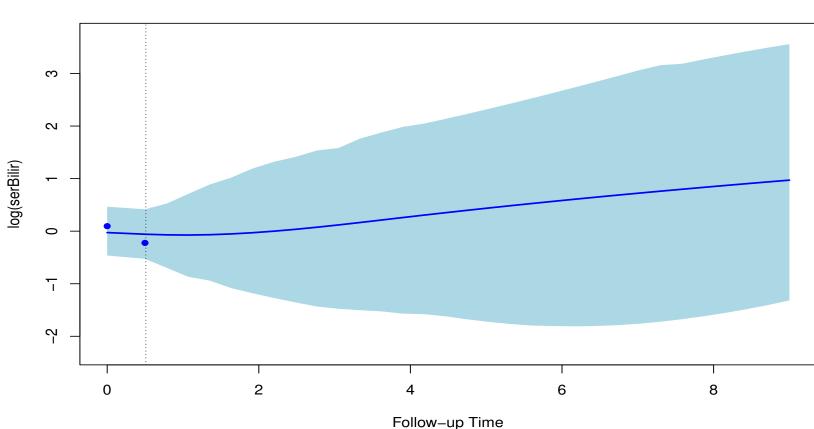
• Note: Prediction intervals can be easily computed by replacing Step 3 with a draw from:

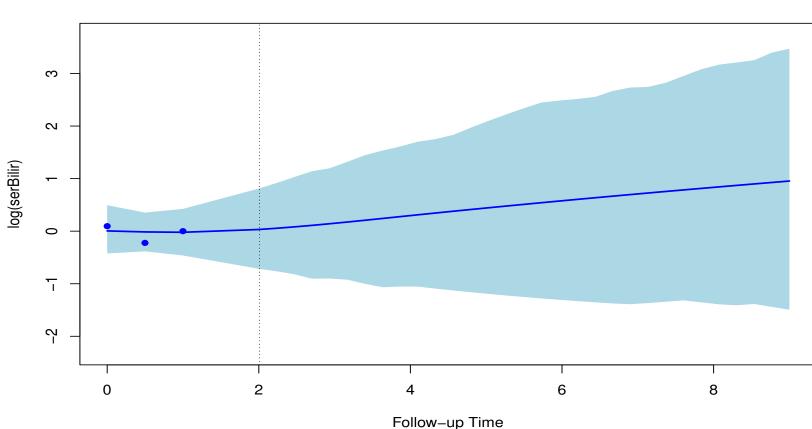
$$\omega_j^{(\ell)}(u \mid t) \sim \mathcal{N}\left\{x_j^{\top}(u)\beta^{(\ell)} + z_j^{\top}(u)b_j^{(\ell)}, \quad [\sigma^2]^{(\ell)}\right\}$$

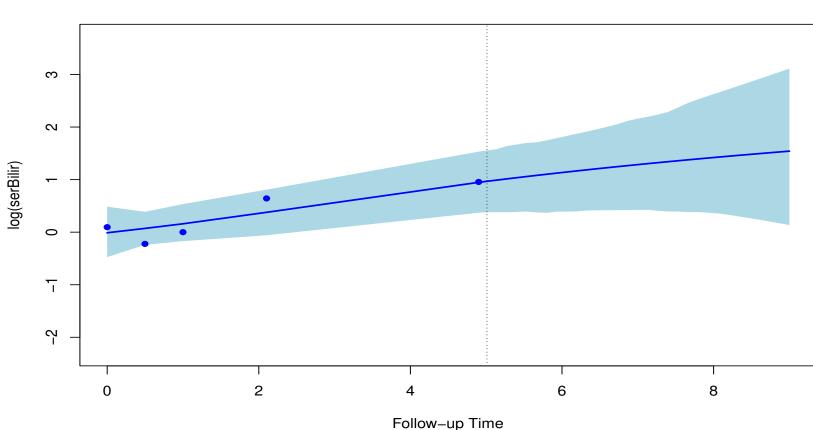
- Example: Dynamic predictions of survival probabilities for Patients 2 & 25 from the PBC dataset: We fit the joint model
- Longitudinal submodel
 - ▷ fixed effects: intercept & natural cubic splines of time with 3 d.f., sex, and interaction of the time effect with sex
 - ▷ random effects: intercept, natural cubic splines of time with 3 d.f.
- Survival submodel
 - \triangleright sex effect + *underlying* serum bilirubin level

• Based on the fitted joint model we estimate $\omega_j(u \mid t)$ for Patient 2

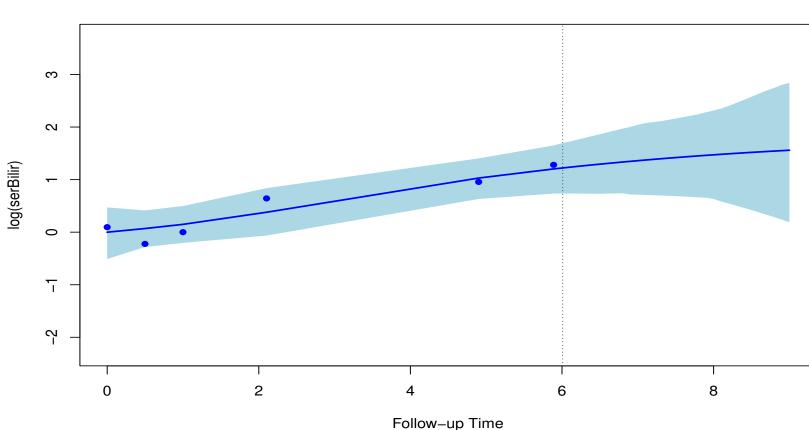




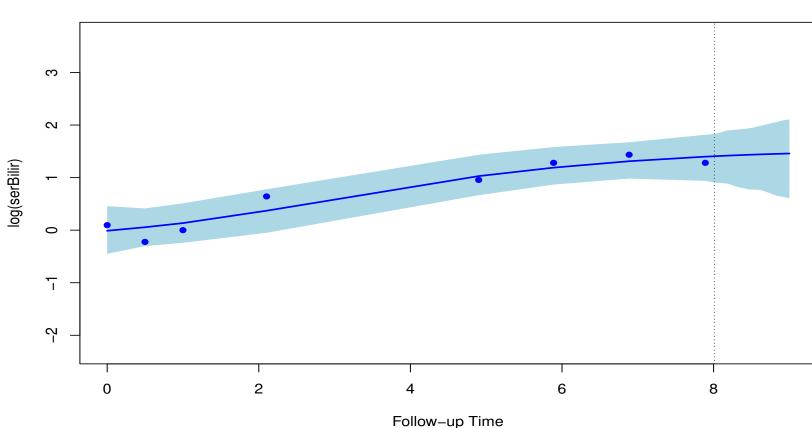




Patient 2



Patient 2



R> Individualized predictions for the longitudinal outcome are computed by function predict() – for example, for Patient 2 from the PBC dataset we have function

gfit

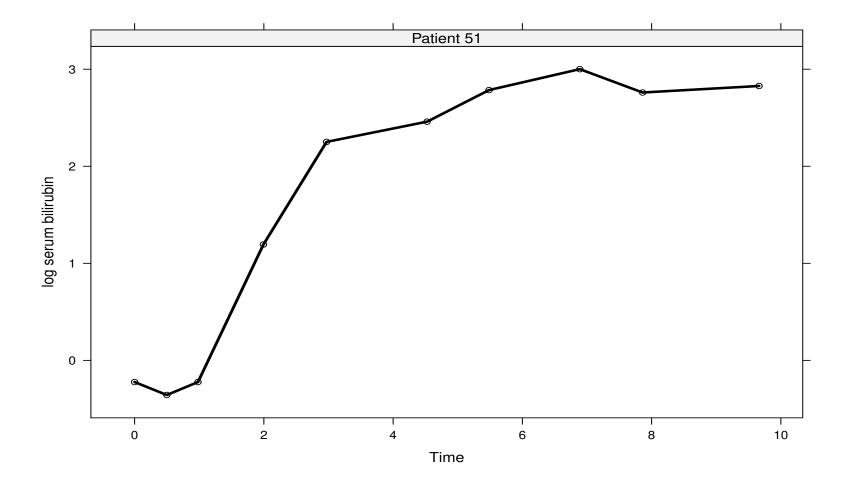
plot(gfit)

• All previous predictions were based on the standard joint model

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$

- We have seen earlier that there are several alternative functional forms (see Section 5.1)
- Relevant questions:
 - ▷ Does the assumed functional form affect predictions?
 - ▷ Which functional form is the most optimal?
- Example: We compare predictions for the longitudinal and survival outcomes under different parameterizations for Patient 51 from the PBC study



- Predictions based on five joint models for the PBC dataset
 - \triangleright the same longitudinal submodel as before, and
 - \triangleright relative risk submodels:

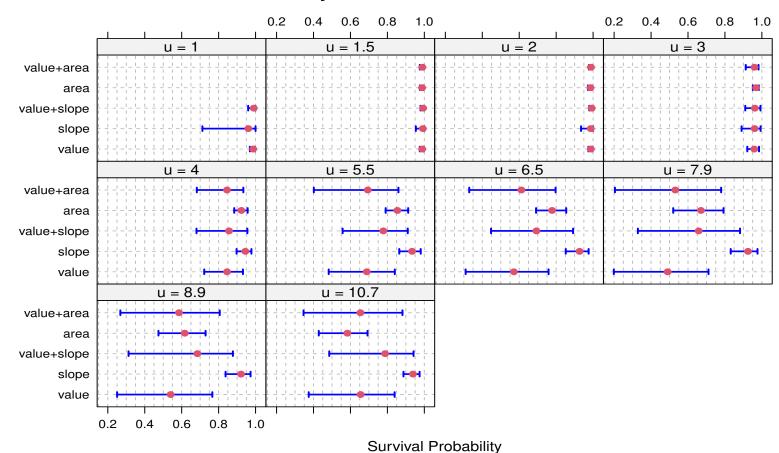
 $h_i(t) = h_0(t) \exp\{\gamma \mathbf{D} - \mathbf{pnc}_i + \alpha_1 m_i(t)\},\$

$$h_i(t) = h_0(t) \exp\{\gamma \mathbf{D} - \mathbf{pnc}_i + \alpha_2 m'_i(t)\},\$$

$$h_i(t) = h_0(t) \exp\{\gamma \mathtt{D-pnc}_i + \alpha_1 m_i(t) + \alpha_2 m'_i(t)\}$$

$$h_i(t) = h_0(t) \exp\left\{\gamma \mathsf{D-pnc}_i + \alpha_3 \frac{\int_0^t m_i(s) ds}{t}\right\},\$$

$$h_i(t) = h_0(t) \exp\left\{\gamma \mathsf{D-pnc}_i + \alpha_1 m_i(t) + \alpha_3 \frac{\int_0^t m_i(s) ds}{t}\right\},\$$



1yr-window Predictions

The chosen functional form can influence the derived predictions

• We compare the models using the information criteria

	DIC	WAIC	LPML
value $+$ slope	5322.683	22104.998	-5535.420
area	5346.029	23268.436	-5560.009
slope	5645.578	29600.396	-7353.621
value + area	5388.139	29840.361	-9110.958
value	5439.294	30513.206	-7230.238

• The value + slope model seems to be the 'best' - we will continue with this model

- We have seen how to calculate predictions of conditional survival probabilities
 b however, to use these predictions in practice we need to evaluate their accuracy
- Predictive accuracy measures
 - \triangleright Discrimination: sensitivity, specificity, ROC and AUC
 - > Calibration: comparison between predicted and observed probabilities
 - > Overall: combination of discrimination and calibration

• To assess the discriminative power of the model, we assume the following setting \triangleright using the available longitudinal data up to time t,

 \triangleright we are interested in events occurring in a medically-relevant interval $(t, t + \Delta t]$

• Based on the fitted joint model and for a particular threshold value $c \in [0, 1]$, we can term subject j a **case** if

 $\pi_j(t + \Delta t \mid t) \le c$

• Following, we can define sensitivity

$$\mathsf{SN}_t^{\Delta t}(c) = \Pr\{\pi_j(t + \Delta t \mid t) \le c \mid T_j^* \in (t, t + \Delta t]\},\$$

specificity

$$\mathsf{SP}_t^{\Delta t}(c) = \Pr\{\pi_j(t + \Delta t \mid t) > c \mid T_j^* > t + \Delta t\},\$$

and the corresponding $\ensuremath{\mathsf{AUC}}$

$$\mathsf{AUC}_t^{\Delta t} = \Pr\left[\pi_i(t + \Delta t \mid t) < \pi_j(t + \Delta t \mid t) \mid \{T_i^* \in (t, t + \Delta t]\} \cap \{T_j^* > t + \Delta t\}\right]$$

- To estimate the sensitivity, specificity and the AUC, we need to account for censoring
- Two main approaches
 - ▷ model-based weights
 - inverse probability of censoring weighting (IPCW)
 (using Kaplan-Meier or other non-parametric estimators)

• IPCW

> *Advantage:* it provides unbiased estimates even when the model is misspecified

> *Disadvantage:* it requires that the model for the weights is correct

* in settings where joint models are used, challenging because censoring may depend on the longitudinal outcomes in a complex manner

- Model-based Weights
 - Advantage: it allows censoring to depend on the longitudinal history (in any possible manner)
 - > *Disadvantage:* it requires that the model is well calibrated

Because censoring often depends on the longitudinal history, we opt for model-based weights

• For the $\mathcal{R}(t)$ subjects at risk at time t (i.e., $T_i > t$), sensitivity is estimated as

$$\widehat{\mathsf{SN}}_t^{\Delta t}(c) = \frac{\sum_{i:T_i \ge t} I\{\widehat{\pi}_i(t + \Delta t \mid t) \le c\} \times \Omega_i}{\sum_{i:T_i > t} \Omega_i},$$

where

$$\Omega_i = \begin{cases} 1, & \text{if } T_i \leq t + \Delta t \text{ and } \delta_i = 1\\ 1 - \hat{\pi}_i (t + \Delta t \mid T_i), & \text{if } T_i \leq t + \Delta t \text{ and } \delta_i = 0 \end{cases}$$

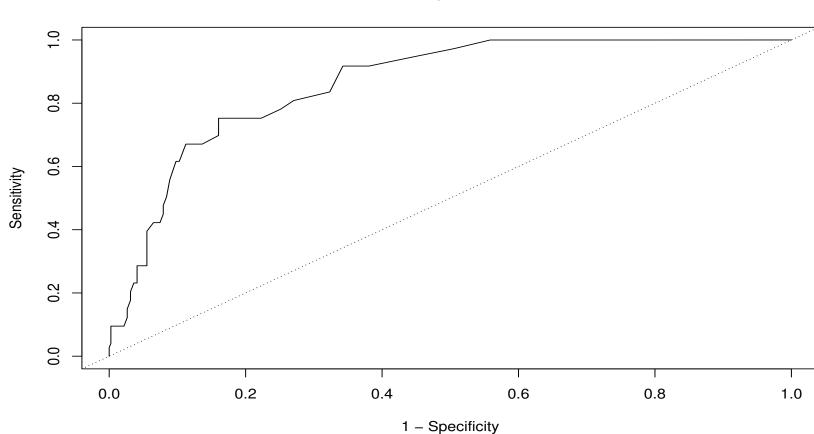
• And specificity as

$$\widehat{\mathsf{SP}}_t^{\Delta t}(c) = \frac{\sum_{i:T_i \ge t} I\{\widehat{\pi}_i(t + \Delta t \mid t) > c\} \times \Phi_i}{\sum_{i:T_i > t} \Phi_i},$$

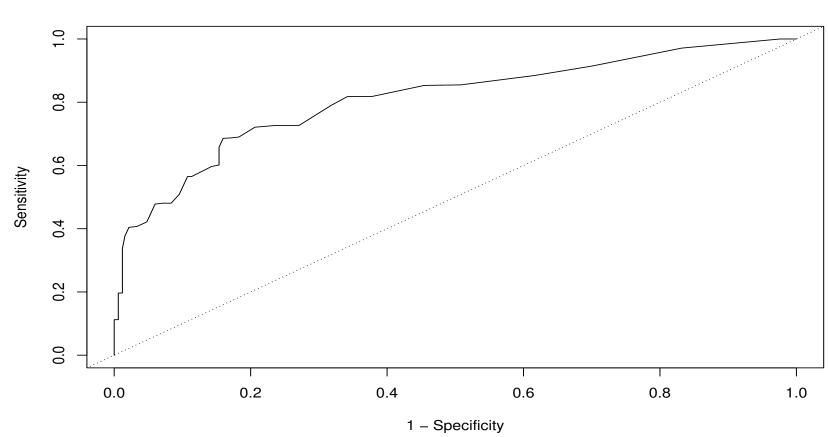
where

$$\Phi_i = \begin{cases} 1, & \text{if } T_i > t + \Delta t \\ \hat{\pi}_i(t + \Delta t \mid T_i), & \text{if } T_i \leq t + \Delta t \text{ and } \delta_i = 0 \end{cases}$$

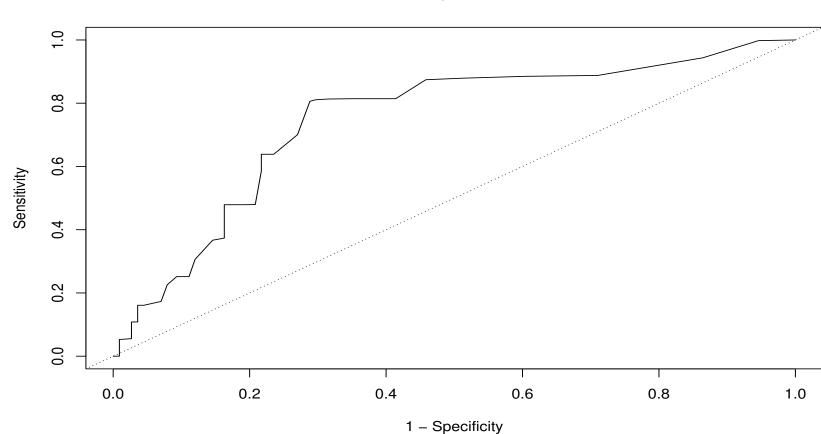
- Example: For the joint model fitted to the PBC dataset we have seen earlier
 we estimate dynamic sensitivity, specificity and the ROC curve
 at follow-up times t = 3, 5, and 7
 - \triangleright for $\Delta t = 2$



 $t = 3, \Delta t = 2$



 $t = 5, \Delta t = 2$



 $t = 7, \Delta t = 2$

• The corresponding AUCs are

Time	AUC
t = 3	0.86
t=5	0.81
t = 7	0.75

R> For a fitted joint model, we calculate the ROC curve and the corresponding AUC with the syntax

```
roc <- tvROC(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)</pre>
```

roc

plot(roc)

tvAUC(roc)

- Another relevant measure for quantifying predictive ability is *calibration*, i.e.,
 b how well can the joint model accurately predict future events
- Typically, calibration is assessed via graphical calibration curves
 a plot of observed vs predicted cumulative risk probabilities
 we have good calibration when the points are distributed along the main diagonal

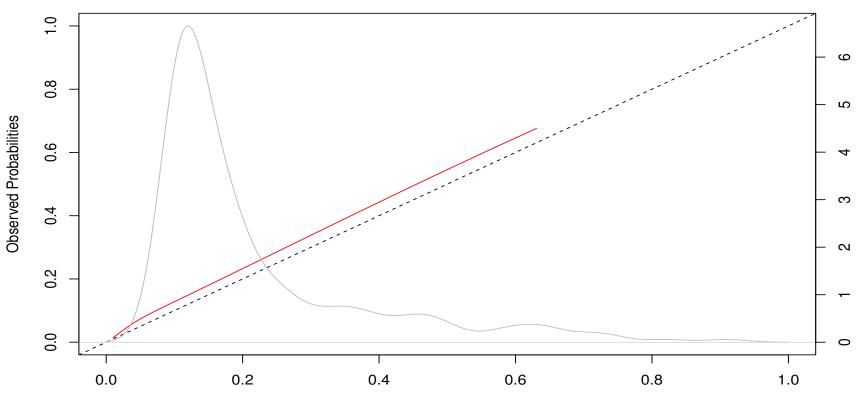
- In the context of survival analysis, the construction of these curves is complicated by censoring
- To account for censoring, we follow the recent approach of Austin et al. (SiM, 2020)
 - 1. we select a follow-up time t and a medically relevant interval Δt we only consider the subjects at risk at time t
 - 2. we calculate risk probabilities $\{1 \hat{\pi}_i(t + \Delta t \mid t)\}$ from the joint model
 - 3. we transform these probabilities using the cloglog link, i.e., $\log[-\log\{\hat{\pi}_i(t + \Delta t \mid t)\}]$

- 4. we fit a Cox model with predictor a natural cubic spline with 3 d.f. for the transformed probabilities
- 5. we set as the *predicted probabilities* a regular sequence between $\min\{1 \hat{\pi}_i(t + \Delta t \mid t)\}$ and $\max\{1 \hat{\pi}_i(t + \Delta t \mid t)\}$
- 6. we calculate the *observed probabilities*: cumulative risk probabilities from the Cox model for getting the event before $t + \Delta t$ with input variable the predicted probabilities regular sequence
- 7. we create the curve of the observed vs predicted probabilities

- <u>Note</u>: we account for censoring via the Cox model
 - ▷ censoring is **not** allowed to depend on the longitudinal history

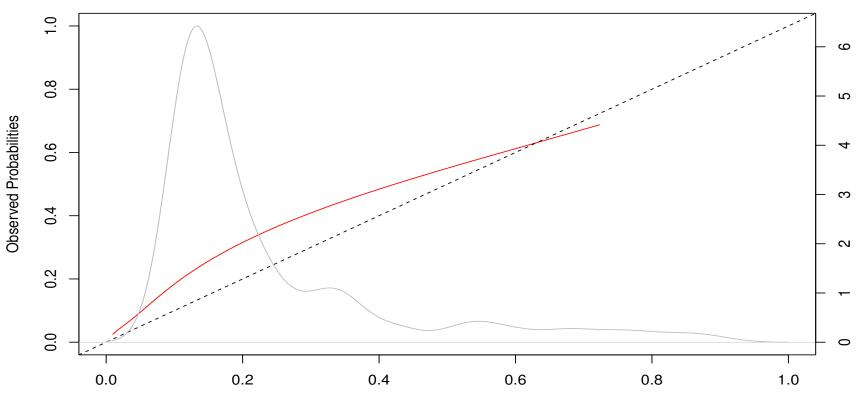
- Example: For the joint model fitted to the PBC dataset we have seen earlier
 we estimate dynamic calibration curves
 - \triangleright at follow-up times t = 3, 5, and 7

 $\triangleright \text{ for } \Delta t = 2$



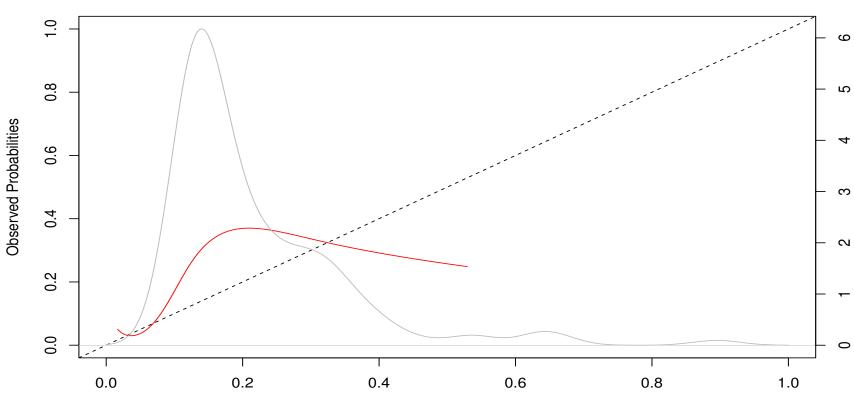
 $t = 3, \Delta t = 2$

Predicted Probabilities



 $t = 5, \Delta t = 2$

Predicted Probabilities



 $t = 7, \Delta t = 2$

Predicted Probabilities

R> For a fitted joint model, we calculate the calibration plot with the syntax

calibration_plot(jointFit, newdata = pbc2, Tstart = 3, Dt = 2)

- We have covered *discrimination* and *calibration* separately
- In standard survival analysis there are measures that combine the two concepts into one metric
 - ▷ the most-well know measure that achieves that is the *Brier score*

- In the joint modeling framework, we need to take into account the dynamic nature of the longitudinal marker
- The expected quadratic error of prediction (Brier score) has the form

$$\mathsf{PE}(t + \Delta t \mid t) = E\left[\{N_i(t + \Delta t) - \pi_i(t + \Delta t \mid t)\}^2\right]$$

where

$$\triangleright N_i(t) = I(T^*_i > t)$$
 is the "true" event status at time t

• An estimator for $\mathsf{PE}(t + \Delta t \mid t)$ that accounts for censoring

$$\begin{aligned} \widehat{\mathsf{PE}}(t + \Delta t \mid t) &= \{\mathcal{R}(t)\}^{-1} \sum_{i:T_i \ge t} I(T_i > u) \{1 - \hat{\pi}_i(t + \Delta t \mid t)\}^2 \\ &+ \delta_i I(T_i < t + \Delta t) \{0 - \hat{\pi}_i(t + \Delta t \mid t)\}^2 \\ &+ (1 - \delta_i) I(T_i < t + \Delta t) \left[\hat{\pi}_i(t + \Delta t \mid T_i) \{1 - \hat{\pi}_i(t + \Delta t \mid t)\}^2 \\ &+ \{1 - \hat{\pi}_i(t + \Delta t \mid T_i)\} \{0 - \hat{\pi}_i(t + \Delta t \mid t)\}^2 \right] \end{aligned}$$

where

- $\triangleright \mathcal{R}(t)$ denotes the number of subjects at risk at t
- \triangleright red part: subjects still event-free at $t + \Delta t$

 \triangleright blue part: subjects who had the event before $t+\Delta t$

 \triangleright green part: subject censored before $t + \Delta t$

- The weights used to account for censoring are model-based
 - ▷ censoring is allowed to depend on the longitudinal history in any possible manner
 - \triangleright the model needs to be well specified

- Example: For the joint model fitted to the PBC dataset we have seen earlier
 > we estimate the dynamic Brier score
 - \triangleright at follow-up times t = 3, 5, and 7

 \triangleright for $\Delta t = 2$

• The estimated Brier scores are

Time	Brier Score
t = 3	0.10
t=5	0.11
t=7	0.12

R> For a fitted joint model, we calculate the time-varying Brier score with the syntax

predErr <- tvBrier(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)</pre>

predErr

To obtain an objective assessment of the model's predictive capability, we need to validate the predictive accuracy measures

- *Internal* validation of the predictive accuracy measures can be achieved with standard re-sampling techniques
 - ▷ cross-validation (leave-one-out or better 10-fold)

 \triangleright Bootstrap

- In general time consuming because it requires fitting the joint model many times
 - ▷ take advantage of parallel computing (e.g., using package **parallel**)

- For *external* validation we calculate the predictive accuracy measures in a dataset from another cohort
 - ▷ perhaps after re-calibration

- R> Functions tvROC(), tvAUC(), calibration_plot() and tvBrier() facilitate
 this via their newdata argument
 - \triangleright in newdata you can provide a dataset other than the one used to fit the model

Part VII Closing

• When we need joint models for longitudinal and survival outcomes?

to handle endogenous time-varying covariates in a survival analysis context
 to account for nonrandom dropout in a longitudinal data analysis context

• How joint models work?

- \triangleright a mixed model for the longitudinal outcome
- \triangleright a relative risk model for the event process
- \triangleright explain interrelationships with shared random effects

• Where to pay attention when defining joint models?

- > model flexibly the subject-specific evolutions for the longitudinal outcome
- \triangleright consider how to model the association structure between the two processes \Rightarrow Functional Forms

• Extensions

- b under the full conditional independence assumption we can easily extend the basic joint model
- ▷ multiple longitudinal outcomes and/or multiple failure times
- b though more computationally intensive

• Individualized predictions

- b joint models can provide subject-specific predictions for the longitudinal and survival outcomes
- ▷ these are dynamically updated as extra information is recorded for the subjects
- ▷ joint models constitute an excellent tool for personalized medicine

The End!

- Andrinopoulou, E.R., Rizopoulos, D., Takkenberg, J. and Lesaffre, E. (2014). Joint modeling of two longitudinal outcomes and competing risk data. *Statistics in Medicine*, to appear.
- Brown, E. and Ibrahim, J. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. *Biometrics* **59**, 221–228.
- Brown, E. Ibrahim, J. and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. *Biometrics* **61**, 64–73.
- Chi, Y.-Y. and Ibrahim, J. (2006). Joint models for multivariate longitudinal and multivariate survival data. *Biometrics* **62**, 432–445.
- DeGruttola, V. and Tu, X. (1994). Modeling progression of CD-4 lymphocyte count and its relationship to survival time. *Biometrics* **50**, 1003–1014.
- Elashoff, R., Li, G. and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. *Biometrics* **64**, 762–771.

- Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. *Statistics in Medicine* **15**, 1663–1685.
- Gerds, T. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. *Biometrical Journal* **48**, 1029–1040.
- Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. *Biometrics* **61**, 92–105.
- Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. *Biostatistics* **1**, 465–480.
- Henderson, R., Diggle, P. and Dobson, A. (2002). Identification and efficacy of longitudinal markers for survival. *Biostatistics* **3**, 33–50.
- Hsieh, F., Tseng, Y.-K. and Wang, J.-L. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. *Biometrics* **62**, 1037–1043.

- Lin, H., Turnbull, B., McCulloch, C. and Slate, E. (2002). Latent class models for joint analysis of longitudinal biomarker and event process: Application to longitudinal prostate-specific antigen readings and prostate cancer. *Journal of the American Statistical Association* **97**, 53–65.
- Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. *Journal of the Royal Statistical Society, Series C* **58**, 65–81.
- Proust-Lima, C., Joly, P., Dartigues, J. and Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. *Computational Statistics and Data Analysis* 53, 1142–1154.
- Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. *Biostatistics* **10**, 535–549.
- Rizopoulos, D. (2012). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. *Computational Statistics and Data Analysis* **56**, 491–501.
- Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. *Biometrics* **67**, 819–829.

- Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. *Journal of Statistical Software* **35** (9), 1–33.
- Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. *Statistics in Medicine* **30**, 1366–1380.
- Rizopoulos, D., Hatfield, L.A., Carlin, B.P. and Takkenberg, J.J.M. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. *Journal of the American Statistical Association* 109, 1385–1397.
- Rizopoulos, D., Murawska, M., Andrinopoulou, E.-R., Molenberghs, G., Takkenberg, J. and Lesaffre, E. (2013). Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. *Submitted*.
- Rizopoulos, D. and Lesaffre, E. (2014). Introduction to the special issue on joint modelling techniques. *Statistical Methods in Medical Research* **23**, 3–10.
- Rizopoulos, D., Verbeke, G. and Lesaffre, E. (2009). Fully exponential Laplace approximation for the joint modelling of survival and longitudinal data. *Journal of the Royal Statistical Society, Series B* **71**, 637–654.

- Rizopoulos, D., Verbeke, G., Lesaffre, E. and Vanrenterghem, Y. (2008). A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. *Biometrics* **64**, 611–619.
- Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2010). Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. *Biometrics* **66**, 20–29.
- Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. *Biometrika* **95**, 63–74.
- Rubin, D. (1976). Inference and missing data. *Biometrika* 63, 581–592.
- Song, X., Davidian, M. and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. *Biometrics* **58**, 742–753.
- Taylor, J., Park, Y., Ankerst, D., Proust-Lima, C., Williams, S., Kestin, L., Bae, K., Pickles, T., and Sandler, H. (2013). Real-time individual predictions of prostate cancer recurrence using joint models. *Biometrics*, **69**, 206–213.
- Tseng, Y.-K., Hsieh, F. and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. *Biometrika* **92**, 587–603.

- Tsiatis, A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. *Biometrika* **88**, 447–458.
- Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. *Statistica Sinica* **14**, 809–834.
- Tsiatis, A., DeGruttola, V., and Wulfsohn, M. (1995). Modeling the relationship of survival to longitudinal data measured with error: Applications to survival and CD4 counts in patients with AIDS. *Journal of the American Statistical Association* **90**, 27–37.
- Viviani, S., Alfó, M. and Rizopoulos, D. (2014). Generalized linear mixed joint model for longitudinal and survival outcomes. *Statistics and Computing*, **24**, 417–427.
- Viviani, S., Rizopoulos, D. and Alfó, M. (2014). Local sensitivity of shared parameter models to nonignorability of dropout. *Statistical Modelling* **14**, 205–228.
- Wang, Y. and Taylor, J. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. *Journal of the American Statistical Association* **96**, 895–905.

- Wu, M. and Bailey, K. (1988). Analysing changes in the presence of informative right censoring caused by death and withdrawal. *Statistics in Medicine* **7**, 337–346.
- Wu, M. and Bailey, K. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. *Biometrics* **45**, 939–955.
- Wu, M. and Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. *Biometrics* **44**, 175–188.
- Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. *Biometrics* **53**, 330–339.
- Xu, C., Baines, P. and Wang, J.-L. (2014). Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data. *Biostatistics*, to appear.
- Xu, J. and Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated measures and times to events. *Applied Statistics* **50**, 375–387.

- Ye, W., Lin, X., and Taylor, J. (2008). Semiparametric modeling of longitudinal measurements and time-to-event data a two stage regression calibration approach. *Biometrics* **64**, 1238–1246.
- Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. *Statistica Sinica* **14**, 835–862.
- Yu, M., Taylor, J. and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. *Journal of the American Statistical Association* **108**, 178–187.
- Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. *The Annals of Statistics* **33**, 2132–2163.
- Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. *Biometrics* **63**, 332–341.

- Andrinopoulou, E.R., Rizopoulos, D., Jin, R., Bogers, A., Lesaffre, E. and Takkenberg, J. (2012). An introduction to mixed models and joint modeling: Analysis of valve function over time. *Annals of Thoracic Surgery* **93**, 1765–1772.
- Andrinopoulou, E.R., Rizopoulos, D., Geleijnse, M., Lesaffre, E., Bogers, A. and Takkenberg, J. (2015). Dynamic prediction of outcome for patients with severe aortic stenosis: Application of joint models for longitudinal and time-to-event data. *BMC Cardiovascular Disorders*, to appear.
- Daher Abdi, D.Z., Essig, M., Rizopoulos, D., Le Meur, Y., Premaud, A., Woillard, J.-B., Rerolle, J.-P., Marquet, P. and Rousseau, A. (2013). Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant recipients using a joint modeling approach. *Pharmacological Research* **72**, 52–60.
- Ibrahim, J., Chu, H. and Chen, L.-M. (2010). Basic concepts and methods for joint models of longitudinal and survival data. *Journal of Clinical Oncology* **28**, 2796–2801.
- Nunez, J., Nunez, E., Rizopoulos, D., Minana, G., Bodi, V., Bondanza, L., Husser, O., Merlos, P., Santas, E., Pascual-Figal, D.,; Chorro, F. and Sanchis, J. (2014). Red blood cell distribution width is longitudinally associated with mortality and incident anemia in heart failure patients. *Circulation Journal* **78**, 410–418.
- Rizopoulos, D. and Takkenberg, J. (2014). Tools & Techniques: Dealing with time-varying covariates in survival analysis joint models versus Cox models. *EuroIntervention* **10**, 285–288.

- Thabut, G., Christie, J., Mal, H., Fournier, M., Brugiere, O., Leseche, G., Castier, Y. and Rizopoulos, D. (2013). Survival benefit of lung transplant for cystic fibrosis since lung-allocation-score implementation. *American Journal of Respiratory and Critical Care Medicine* 187, 1335–1340.
- van der Linde, D., Roos-Hesselink, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap, S., Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Takkenberg, J. (2013). Surgical outcome of discrete subaortic stenosis in adults: A multicenter study. *Circulation* **127**, 1184–1191.
- van der Linde, D., Takkenberg, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap, S., Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Roos-Hesselink, J. (2013). Natural history of discrete subaortic stenosis in adults: A multicenter study. *European Heart Journal* 34, 1548–1556.

Part VIII Practicals

- We will fit a simple joint model to the PBC dataset
- Start R and load package JMbayes2, using library("JMbayes2")
- The longitudinal (long format) and survival information for the PBC patients can be found in data frames pbc2 and pbc2.id
 - \triangleright the variables that we will need are:

\triangleright pbc2

- * id: patient id number
- * **serBilir**: serum bilirubin
- * year: follow-up times in years
- * drug: treatment indicator

⊳pbc2.id

- * years: observed event times in years
- * status: 'alive', 'transplanted', 'dead'
- * drug: treatment indicator

• T1: Fit the linear mixed effects model for log serum bilirubin using function lme(), assuming simple linear evolutions over time for each subject, i.e., a simple random-intercepts and random-slopes structure and different average evolutions per treatment group (see pp. 24-??)

$$y_i(t) = \beta_0 + \beta_1 t + \beta_2 \{ \mathtt{D-penic}_i \times t \} + b_{i0} + b_{i1} t + \varepsilon_i(t)$$

• T2: Create the indicator for the composite event (i.e., 'alive' = 0, 'transplanted' or 'dead' = 1) using the code

pbc2.id\$status2 <- as.numeric(pbc2.id\$status != "alive")</pre>

- T3: Fit the Cox PH model using coxph() that includes only treatment as baseline covariate (see pp. 48–49)
- We want to fit the joint model

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) \\ = \beta_0 + \beta_1 t + \beta_2 \{ D-penic_i \times t \} + b_{i0} + b_{i1}t + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \\ h_i(t) = h_0(t) \exp\{\gamma D-penic_i + \alpha m_i(t)\}, \end{cases}$$

- T4: Fit this joint model based on the fitted linear mixed and Cox models using function jm() (see pp. 79–81)
- T5: Use the summary() method to obtain a detailed output of the fitted joint model interpret the results
 - > extract the Survival component from the result of summary() to calculate
 hazard ratios, i.e.,
 - ▷ exp(summary(fitted_model)\$Survival[c(1,3,4)])

- This model assumes that the strength of the association between the level of serum bilirubin and the risk for the composite event is the same in the two treatment groups
- To relax this additivity assumption we will add the interaction effect between serum bilirubin and treatment

$$\begin{split} y_i(t) &= m_i(t) + \varepsilon_i(t) \\ &= \beta_0 + \beta_1 t + \beta_2 \{ \texttt{D-penic}_i \times t \} + b_{i0} + b_{i1} t + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \\ h_i(t) &= h_0(t) \exp[\gamma \texttt{D-penic}_i + \alpha_1 m_i(t) + \alpha_2 \{\texttt{D-penic}_i \times m_i(t) \}], \end{split}$$

- To fit this model we need to define the functional_forms argument of jm().
 - b this argument accepts a formula with the functional form of the longitudinal outcomes, e.g.,
 - > functional_forms = ~ value(log(serBilir)) * drug
- T6: Define this argument and fit the corresponding joint model. Use the summary() method to obtained a detailed output and interpret the results
- T7: Use compare_jm() to compare the fitted models

- Start R and load package JMbayes2, using library("JMbayes2")
- The longitudinal (long format) and survival information for the PBC patients can be found in data frames pbc2 and pbc2.id. The variables that we will need are:

⊳ pbc2

- * id: patient id number
- * **serBilir**: serum bilirubin
- * year: follow-up times in years

⊳ pbc2.id

- * years: observed event times in years
- * **status**: 'alive', 'transplanted', 'dead'

- We will fit a joint model for the PBC dataset
 - Iongitudinal submodel: nonlinear subject-specific random slopes for log serum bilirubin

$$y_i(t) = m_i(t) + \varepsilon_i(t)$$

$$m_i(t) = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})N(t)_1 + (\beta_2 + b_{i2})N(t)_2 + (\beta_3 + b_{i3})N(t)_3$$

where $N(t)_k$ denote the basis for a natural spline with three degrees of freedom

▷ survival submodel: *true* effect of log serum bilirubin

 $h_i(t) = h_0(t) \exp\{\alpha m_i(t)\}$

- T1: Fit the linear mixed effects model for log serum bilirubin using function lme() (see pp. 24-??)
 - \triangleright to define the natural cubic splines use function ns()
 - > set d.f. to 3 and the boundary knots to the range of event times, i.e., ns(year, 3, B = c(0, 14.4))
 - \triangleright use the splines in both the fixed- and random-effects parts

```
b use optim() for the optimization, i.e.,
lme(..., control = lmeControl(opt = "optim"))
```


• T2: Create the indicator for the composite event (i.e., 'alive' = 0, 'transplanted' or 'dead' = 1) using the code

```
pbc2.id$status2 <- as.numeric(pbc2.id$status != "alive")</pre>
```

- T3: Fit the null Cox PH model using coxph() that does not include any covariates (see pp. 48–49)
- T4: Fit the corresponding joint model based on the fitted linear mixed and Cox models using function jm() (see pp. 79–81)

• We want to extend the previous joint model and include the current value and the time-dependent slope term, i.e.,

$$h_i(t) = h_0(t) \exp\{\alpha_1 m_i(t) + \alpha_2 m'_i(t)\}$$

• Because $m_i(t)$ contains splines, the calculation of $m'_i(t)$ is done using numerical derivatives

- T5: Fit the corresponding joint model using the functional_forms argument
 - b the term value(log(serBilir)) includes the current value
 - b the term slope(log(serBilir)) includes the current slope
 - increase the number of MCMC iterations to 8500 and the burn-in to 3500
 use summary() and interpret the results

```
jm(..., n_iter = 8500L, n_burnin = 3500L,
functional_forms = ~ value(log(serBilir)) + slope(log(serBilir))
```


- T6: Instead of the current slope, include how much log serum bilirubin changed the last year of follow-up
 - b use slope(log(serBilir), direction = "back", eps = 1) in the
 functional_forms argument

 \triangleright use summary() to interpret the results

T7: Fit the joint model with the Cumulative Effects 2 functional form
 > use the area() function in the functional_forms argument
 > use summary() to interpret the results

- We will work with the Liver Cirrhosis dataset
 - ▷ a placebo-controlled randomized trial on 488 liver cirrhosis patients
- Start R and load package JMbayes2, using library("JMbayes2")
- The longitudinal (long format) and survival information for the liver cirrhosis patients can be found in data frames prothro and prothros, respectively
 - \triangleright the variables that we will need are:

\triangleright prothro

- * id: patient id number
- * pro: prothrombin measurements
- * time: follow-up times in years
- * **treat**: randomized treatment

\triangleright prothros

- * Time: observed event times in years
- * death: event indicator with 0 = 'alive', and 1 = 'dead'
- * **treat**: randomized treatment

- We will fit the following joint model to the Liver Cirrhosis dataset
 - Iongitudinal submodel: linear subject-specific random slopes for prothrombin levels allowing for different average evolutions in the two treatment groups

$$egin{aligned} y_i(t) &= m_i(t) + arepsilon_i(t) \ m_i(t) &= eta_0 + eta_1 t + eta_2 \{ \texttt{Trt}_i imes t \} + b_{i0} + b_{i1} t \end{aligned}$$

▷ survival submodel: treatment effect & *true* effect of prothrobin

$$h_i(t) = h_0(t) \exp\{\gamma \operatorname{Trt}_i + \alpha m_i(t)\}$$

- T1: Fit the linear mixed model using lme(), the Cox model using coxph(), and the corresponding joint model using jm()
- We are interested in producing predictions of survival probabilities for Patient 155
- T2: Extract the data of Patient 155 using the code and drop the survival information

dataP155 <- prothro[prothro\$id == 155,]
dataP155\$Time <- dataP155\$death <- NULL</pre>

- T3: Using the first measurement of Patient 155, and the fitted joint model calculate his conditional survival probabilities using function predict() and plot it using the plot method (see p. 163)
- T4: Similarly, produce predictions for future longitudinal responses of Patient 155 using the predict() (see p. 170)
- T5: Combine the predictions in one plot
 - > say Spred are the survival predictions, and Lpred the longitudinal ones
 > use plot(Lpred, Spred)

- T6: Repeat the same procedure by including each time the next measurement of Patient 155 and see how his survival probabilities evolve dynamically over time as extra prothrombin measurements are recorded
 - ▷ first using only the first measurement,
 - b and following update the predictions after each new longitudinal measurement has been recorded
 - ▷ use a **for** loop to achieve this

- T7: Calculate the ROC and the corresponding AUC under the postulated model at year 3 and with a 1-year window (see p. 191)
- T8: Do the calibration plot for the same period (see p. 198)
- T9: Calculate the prediction error for the same period (see p. 205)