Improving Dynamic Predictions from Joint Models using Time-Varying Effects

Eleni-Rosalina Andrinopoulou & Dimitris Rizopoulos
July 31, 2017
Learning-Health System Prostate Biopsies

- Screening has resulted in an increase in the number of newly diagnosed prostate cancers

- Up to 80% of men with PSA screen-detected prostate cancer are over-diagnosed

- Current treatments have a number of side effects
 - intervention should be restricted to those who need it
PRIAS Study

- A program in which men with early prostate cancer are managed by a follow-up strategy
 - biopsies at baseline, 1, 4, 7 and 10 years
 - or yearly after PSA doubling within a year

- Outcomes of interest:
 - time to Gleason score reclassification (from 6 to ≥ 7)
 - longitudinal PSA measurements
PRIAS Study (cont'd)

Outcome:
- Survival

Kaplan-Meier Estimate

Progression-free Probability vs Time (years)
PRIAS Study (cont'd)

- Research Questions:
 - How the longitudinal PSA profiles are related to Gleason Score reclassification?
 - How to derive dynamic predictions of progression probabilities?
 - How to optimally plan biopsies?
Time-varying Covariates

- To answer these questions we need to link
 - the time to progression (survival outcome)
 - the PSA measurements (longitudinal outcome)

- Biomarkers are *endogenous* time-varying covariates
 - their future path depends on previous events
 - standard time-varying Cox model not appropriate
Time-varying Covariates (cont'd)

To account for endogeneity we use the framework of

Joint Models for Longitudinal & Survival Data
The Basic Joint Model
The Basic Joint Model (cont'd)

- We need some notation
 - T_i^* the true progression time
 - T_i^L last biopsy time point Gleason Score was < 7
 - T_i^R first biopsy time point Gleason Score was ≥ 7
 - $T_i^R = \infty$ for patients who haven't progressed yet
 - y_i vector of longitudinal PSA measurements
 - $\mathcal{Y}_i(t) = \{y_i(s), 0 \leq s < t\}$
The Basic Joint Model (cont'd)

- Formally, we have

\[
\begin{align*}
 h_i(t) &= h_0(t) \exp\{\gamma^\top w_i + \alpha \eta_i(t)\} \\
 y_i(t) &= \eta_i(t) + \varepsilon_i(t) \\
 &= x_i^\top(t) \beta + z_i^\top(t) b_i + \varepsilon_i(t)
\end{align*}
\]

\[
b_i \sim \mathcal{N}(0, D), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2)
\]
The Basic Joint Model (cont'd)
The Basic Joint Model (cont'd)

- The longitudinal and survival outcomes are jointly modeled

\[p(y_i, T_{iL}, T_{iR}) = \int p(y_i \mid b_i) \times \left\{ S(T_{iL} \mid b_i) - S(T_{iR} \mid b_i) \right\} \times p(b_i) \, db_i \]

- the random effects \(b_i \) explain the interdependencies
The Basic Joint Model (cont'd)

- Estimation of joint models is based on either
 - Maximum likelihood (requires numerical integration)
 - Bayesian approaches (e.g., MCMC or HMC)

- Here, we follow a Bayesian approach
 - more on this later…
Functional Form

- The link between the two processes
 - the basic joint model assumes

\[
\begin{align*}
h_i(t) &= h_0(t) \exp\{\gamma^T w_i + \alpha \eta_i(t)\} \\
y_i(t) &= \eta_i(t) + \varepsilon_i(t) \\
&= x_i^T(t)\beta + z_i^T(t)\beta_i + \varepsilon_i(t)
\end{align*}
\]
Functional Form (cont'd)
Functional Form (cont'd)

Is this the only option?

- Especially when interest
 - in studying the association structure
 - predictions

- Let's see some possibilities…
Functional Form (cont'd)

- Some options: Biomarker's rate of change
 - In prostate cancer, fast increasing PSA indicative of cancer

\[
h_i(t) = h_0(t) \exp\{\gamma^\top w_i + \alpha_1 \eta_i(t) + \alpha_2 \eta'_i(t)\}
\]

where \(\eta'_i(t) = \frac{d}{dt} \eta_i(t) \)
Functional Form (cont'd)
Functional Form (cont'd)

- Some options: Biomarker's cumulative effect
 - In diabetes, the accumulated HbA1c levels are related to the risk of side effects
 \[
 h_i(t) = h_0(t) \exp \left\{ \gamma^T w_i + \alpha \int_0^t \eta_i(s) ds \right\}
 \]
 - or even weighted cumulative effects
 \[
 h_i(t) = h_0(t) \exp \left\{ \gamma^T w_i + \alpha \int_0^t \omega(t - s) \eta_i(s) ds \right\}
 \]
Functional Form (cont'd)
Functional Form (cont'd)

- Previous functional forms: *Which features of the longitudinal profiles relate to the risk of Gleason reclassification?*

But is the strength of the association constant over time?
Functional Form (cont'd)

- Allowing association parameters to be time-varying

\[h_i(t) = h_0(t) \exp\left\{ \gamma^\top w_i + \sum_{l=1}^{L} f_l(H_i(t), \alpha_l(t)) \right\} \]

- \(f(\cdot) \) specifies which features of the longitudinal profile enter in the linear predictor
 - value
 - slope
 - area
 - ...

22/32
Functional Form (cont'd)

- The time-varying functions $\alpha_l(t)$ are approximated using B-splines

\[\sum_{k=1}^{K} \lambda_k B_k(t, \mathbf{v}) \]

where

- $B_k(t, \mathbf{v})$ denotes the k-th basis function of B-spline with vector of knots \mathbf{v}
Functional Form (cont'd)

- To appropriately control for smoothness we use the following hierarchical prior specification

\[\lambda \sim \mathcal{N}(0, \tau_\lambda \mathbf{M}) \]

\[\tau_\lambda \sim \text{inv-Gamma}(1, 0.005) \]

where

- \[\mathbf{M} = \mathcal{D}_r^T \mathcal{D}_r + 10^{-6} \mathbf{I} \]
- \(\mathcal{D}_r \) denotes the \(r \)-th order differences matrix
PRIAS Study Analysis

- PSA growth

\[
\log_2(PSA) = \eta_i(t) + \varepsilon_i(t) \\
= \beta_0 + \sum_{k=1}^{3} \beta_k \text{NS}_k(t, \nu) + \beta_4 \text{Age} + \beta_5 \text{Age}^2 \\
+ b_{i0} + \sum_{k=1}^{2} b_{ik} \text{NS}_k(t, \nu) + \varepsilon_i(t) \\
b_i \sim \mathcal{N}(0, \mathbf{D}), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2)
\]
PRIAS Study Analysis (cont'd)

- Risk of reclassification

\[h_i(t) = h_0(t) \exp \left\{ \gamma_1 \text{Age} + \gamma_2 \text{Age}^2 + \alpha_1 \eta_i(t) + \alpha_2 \frac{d\eta_i(t)}{dt} \right\} \]

where

- \(\eta_i(t) \) log2(PSA) current value
- \(\frac{d\eta_i(t)}{dt} \) log2(PSA) velocity
PRIAS Study Analysis (cont'd)

- Results
PRIAS Study Analysis (cont'd)

- We allow for time-varying coefficients

\[h_i(t) = h_0(t) \exp\left\{ \gamma_1 \text{Age} + \gamma_2 \text{Age}^2 + \alpha_1(t)\eta_i(t) + \alpha_2(t) \frac{d\eta_i(t)}{dt} \right\} \]
PRIAS Study Analysis (cont'd)

Effect Type: Both
Parameter: Value

![Graph showing log hazard ratio over time](image-url)

Time (years)
Simulations

- Different scenarios with time-constant and time-varying effects

- *When true association time-constant*
 - assuming a time-varying coefficient did not affect predictive ability

- *When true association time-varying*
 - assuming a time-constant coefficient resulted in diminished predictive ability
Discussion

- The P-splines approach provides a flexible framework for estimating time-varying association parameters

- More info on current status of the project at http://www.drizopoulou.com/ (http://www.drizopoulou.com/)
Thank you for your attention!

http://www.drizopoulos.com/