Optimizing Personalized Predictions using Joint Models

Dimitris Rizopoulos
Department of Biostatistics, Erasmus University Medical Center, the Netherlands

d.rizopoulos@erasusmc.nl

Survival Analysis for Junior Researchers
April 3rd, 2014, Warwick
1.1 Introduction

- The majority of the biostatistics literature in this area has focused on:
 - several extensions of the standard joint model, new estimation approaches, ...

- Recently joint models have been utilized to provide individualized predictions
 - Rizopoulos (Biometrics, 2011); Proust-Lima and Taylor (Biostatistics, 2009); Yu et al. (JASA, 2008)
1.1 Introduction (cont’d)

- **Goals of this talk:**

 ▶ Introduce joint models
 ▶ Dynamic individualized predictions of survival probabilities;
 ▶ Study the importance of the association structure;
 ▶ Combine predictions from different joint models
1.2 Illustrative Case Study

- Aortic Valve study: Patients who received a human tissue valve in the aortic position
 - data collected by Erasmus MC (from 1987 to 2008);
 - 77 received sub-coronary implantation; 209 received root replacement

- Outcomes of interest:
 - death and re-operation → composite event
 - aortic gradient

- Research Question:
 - Can we utilize available aortic gradient measurements to predict survival/re-operation
2.1 Joint Modeling Framework

- To answer our questions of interest we need to postulate a model that relates
 - the aortic gradient with
 - the time to death or re-operation

- **Problem:** Aortic gradient measurement process is an **endogenous** time-dependent covariate (Kalbfleisch and Prentice, 2002, Section 6.3)

 - Endogenous (aka internal): the future path of the covariate up to any time $t > s$ is affected by the occurrence of an event at time point s, i.e.,

 $$
 \Pr\{Y_i(t) | Y_i(s), T_i^* \geq s\} \neq \Pr\{Y_i(t) | Y_i(s), T_i^* = s\},
 $$

 where $0 < s \leq t$ and $Y_i(t) = \{y_i(s), 0 \leq s < t\}$
2.1 Joint Modeling Framework (cont’d)

- What is special about endogenous time-dependent covariates
 - measured with error
 - the complete history is not available
 - existence directly related to failure status

- What if we use the Cox model?
 - the association size can be severely underestimated
 - true potential of the marker will be masked
2.1 Joint Modeling Framework (cont’d)

![Graph of observed Aortic Gradient and time-dependent Cox model with death event at 3 years.]

- **Observed Aortic Gradient**
- **Time-dependent Cox**

Time (years): 0, 1, 2, 3, 4, 5

Y-Axis: \(\sqrt{\text{AoGrad}} \)

Death Event: At 3 years
2.1 Joint Modeling Framework (cont’d)

- To account for the special features of these covariates a new class of models has been developed

Joint Models for Longitudinal and Time-to-Event Data

- Intuitive idea behind these models
 1. use an appropriate model to describe the evolution of the marker in time for each patient
 2. the estimated evolutions are then used in a Cox model

- Feature: Marker level is **not** assumed constant between visits
2.1 Joint Modeling Framework (cont’d)
2.1 Joint Modeling Framework (cont’d)

- Some notation
 - T_i^*: True time-to-death for patient i
 - T_i: Observed time-to-death for patient i
 - δ_i: Event indicator, i.e., equals 1 for true events
 - y_i: Longitudinal aortic gradient measurements
2.1 Joint Modeling Framework (cont’d)

- We define a standard joint model

 \[h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp \left\{ \gamma^\top w_i + \alpha m_i(t) \right\}, \]

 where
 * \(m_i(t) = \text{the true & unobserved value of aortic gradient at time } t \)
 * \(\mathcal{M}_i(t) = \{ m_i(s), 0 \leq s < t \} \)
 * \(\alpha \) quantifies the effect of aortic gradient on the risk for death/re-operation
 * \(w_i \) baseline covariates
2.1 Joint Modeling Framework (cont’d)

- **Longitudinal Part:** Reconstruct $\mathcal{M}_i(t) = \{m_i(s), 0 \leq s < t\}$ using $y_i(t)$ and a mixed effects model (we focus on continuous markers)

$$y_i(t) = m_i(t) + \varepsilon_i(t)$$

$$= x_i^T(t)\beta + z_i^T(t)b_i + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$$

where

* $x_i(t)$ and β: Fixed-effects part
* $z_i(t)$ and b_i: Random-effects part, $b_i \sim \mathcal{N}(0, D)$
2.1 Joint Modeling Framework (cont’d)

- The two processes are associated ⇒ define a model for their joint distribution

- Joint Models for such joint distributions are of the following form

\[
p(y_i, T_i, \delta_i) = \int p(y_i | b_i) \{ h(T_i | b_i)^{\delta_i} S(T_i | b_i) \} p(b_i) \, db_i
\]

where

- \(b_i \) a vector of random effects that explains the interdependencies

- \(p(\cdot) \) density function; \(S(\cdot) \) survival function
3.1 Prediction Survival – Definitions

- We are interested in predicting survival probabilities for a new patient j that has provided a set of aortic gradient measurements up to a specific time point t.

- **Example:** We consider Patients 20 and 81 from the Aortic Valve dataset.
 - Dynamic Prediction: survival probabilities are dynamically updated as additional longitudinal information is recorded.
3.1 Prediction Survival – Definitions (cont’d)
3.1 Prediction Survival – Definitions (cont’d)

- More formally, we have available measurements up to time point t

\[
\mathcal{Y}_j(t) = \{y_j(s), 0 \leq s < t\}
\]

and we are interested in

\[
\pi_j(u \mid t) = \Pr\{T_j^* \geq u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\},
\]

where

\triangleright where $u > t$, and

\triangleright \mathcal{D}_n denotes the sample on which the joint model was fitted
3.2 Prediction Survival – Estimation

- Joint model is estimated using MCMC or maximum likelihood

- Based on the fitted model we can estimate the conditional survival probabilities
 - Empirical Bayes
 - fully Bayes/Monte Carlo (it allows for easy calculation of s.e.)

- For more details check:
3.2 Prediction Survival – Estimation (cont’d)

- It is convenient to proceed using a Bayesian formulation of the problem \(\Rightarrow \)
 \[\pi_j(u \mid t) \] can be written as

\[
\Pr\{T_j^* \geq u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\} = \int \Pr\{T_j^* \geq u \mid T_j^* > t, \mathcal{Y}_j(t); \theta\} \ p(\theta \mid \mathcal{D}_n) \ d\theta
\]

- The first part of the integrand using CI

\[
\Pr\{T_j^* \geq u \mid T_j^* > t, \mathcal{Y}_j(t); \theta\} = \\
= \int \frac{S_j\{u \mid \mathcal{M}_j(u, b_j, \theta); \theta\}}{S_i\{t \mid \mathcal{M}_i(t, b_i, \theta); \theta\}} \ p(b_i \mid T_i^* > t, \mathcal{Y}_i(t); \theta) \ db_i
\]
3.2 Prediction Survival – Estimation (cont’d)

- A Monte Carlo estimate of $\pi_i(u \mid t)$ can be obtained using the following simulation scheme:

Step 1. draw $\theta^{(\ell)} \sim [\theta \mid D_n]$ or $\theta^{(\ell)} \sim \mathcal{N}(\hat{\theta}, \hat{\mathcal{H}})$

Step 2. draw $b_i^{(\ell)} \sim \{b_i \mid T_i^* > t, \mathcal{Y}_i(t), \theta^{(\ell)}\}$

Step 3. compute $\pi_i^{(\ell)}(u \mid t) = S_i\{u \mid \mathcal{M}_i(u, b_i^{(\ell)}, \theta^{(\ell)}); \theta^{(\ell)}\} / S_i\{t \mid \mathcal{M}_i(t, b_i^{(\ell)}, \theta^{(\ell)}); \theta^{(\ell)}\}$

- Repeat Steps 1–3, $\ell = 1, \ldots, L$ times, where L denotes the number of Monte Carlo samples
3.3 Prediction Survival – Illustration

- **Example:** We fit a joint model to the Aortic Valve data

- Longitudinal submodel
 - fixed effects: natural cubic splines of time (d.f. = 3), operation type, and their interaction
 - random effects: Intercept, & natural cubic splines of time (d.f. = 3)

- Survival submodel
 - type of operation, age, sex + *underlying* aortic gradient level
 - log baseline hazard approximated using B-splines
• Based on the fitted joint model we estimate $\pi_j(u \mid t)$ for Patients 20 and 81

• We used the fully Bayesian approach with 500 Monte Carlo samples, and we took as estimate

$$\hat{\pi}_j(u \mid t) = \frac{1}{L} \sum_{\ell=1}^{L} \pi_j^{(\ell)}(u \mid t)$$

and calculated the corresponding 95% pointwise CIs
3.3 Prediction Survival – Illustration (cont’d)
3.3 Prediction Survival – Illustration (cont’d)

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick
3.3 Prediction Survival – Illustration (cont’d)
3.3 Prediction Survival – Illustration (cont’d)
3.3 Prediction Survival – Illustration (cont’d)

Patient 20

Patient 81

Re-Operation-Free Survival
3.3 Prediction Survival – Illustration (cont’d)
3.4 Prediction Longitudinal

- In some occasions it may be also of interest to predict the longitudinal outcome.

- We can proceed in the same manner as for the survival probabilities: We have available measurements up to time point t

\[\mathcal{Y}_j(t) = \{y_j(s), 0 \leq s < t\} \]

and we are interested in

\[\omega_j(u \mid t) = E\{y_j(u) \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\}, \quad u > t \]
3.4 Prediction Longitudinal (cont’d)

- To estimate $\omega_j(u \mid t)$ we can follow a similar approach as for $\pi_j(u \mid t)$ – Namely, $\omega_j(u \mid t)$ is written as:

$$E\{y_j(u) \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\} = \int E\{y_j(u) \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n; \theta\} p(\theta \mid \mathcal{D}_n) \, d\theta$$

- With the first part of the integrand given by:

$$E\{y_j(u) \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n; \theta\} =$$

$$= \int \{x_j^\top(u)\beta + z_j^\top(u)b_j\} p(b_j \mid T_j^* > t, \mathcal{Y}_j(t); \theta) \, db_j$$
4.1 Association Structures

- The standard joint model

\[
\begin{align*}
 h_i(t \mid \mathcal{M}_i(t)) &= h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\
 y_i(t) &= m_i(t) + \varepsilon_i(t) \\
 &= x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t),
\end{align*}
\]

where \(\mathcal{M}_i(t) = \{m_i(s), 0 \leq s < t\} \)
4.1 Association structures (cont’d)
4.1 Association Structures (cont’d)

- The standard joint model

\[
\begin{align*}
 h_i(t \mid M_i(t)) &= h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\
 y_i(t) &= m_i(t) + \varepsilon_i(t) \\
 &= x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t),
\end{align*}
\]

where \(M_i(t) = \{m_i(s), 0 \leq s < t\} \)

Is this the only option? Is this the most optimal for prediction?
4.1 Association Structures (cont’d)

• **Note:** Inappropriate modeling of time-dependent covariates may result in surprising results

• **Example:** Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to test the effect of cigarette smoking on survival of patients who underwent coronary artery surgery

 ▶ the estimated effect of current cigarette smoking was positive on survival although not significant (i.e., patient who smoked had higher probability of survival)

 ▶ most of those who had died were smokers but many stopped smoking at the last follow-up before their death
4.3 Time-dependent Slopes

- The hazard for an event at \(t \) is associated with both the current value and the slope of the trajectory at \(t \) (Ye et al., 2008, Biometrics):

\[
h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha_1 m_i(t) + \alpha_2 m_i'(t)\},
\]

where

\[
m_i'(t) = \frac{d}{dt}\{x_i^\top(t)\beta + z_i^\top(t)b_i\}
\]
4.3 Time-dependent Slopes (cont’d)

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick
4.4 Cumulative Effects

- The hazard for an event at t is associated with area under the trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{ \gamma^\top w_i + \alpha \int_0^t m_i(s) \, ds \right\}$$

- Area under the longitudinal trajectory taken as a summary of $\mathcal{M}_i(t)$
4.4 Cumulative Effects (cont’d)
4.5 Weighted Cumulative Effects

- The hazard for an event at t is associated with the area under the weighted trajectory up to t:

$$h_i(t \mid M_i(t)) = h_0(t) \exp\left\{ \gamma^T w_i + \alpha \int_0^t \varpi(t - s)m_i(s) \, ds \right\},$$

where $\varpi(\cdot)$ appropriately chosen weight function, e.g.,

- Gaussian density
- Student’s-t density
- . . .
4.6 Shared Random Effects

- The hazard for an event at t is associated with the random effects of the longitudinal submodel:

$$h_i(t \mid M_i(t)) = h_0(t) \exp(\gamma^T w_i + \alpha^T b_i)$$

Features

▷ time-independent (no need to approximate the survival function)

▷ interpretation more difficult when we use something more than random-intercepts & random-slopes
4.7 Parameterizations & Predictions

<table>
<thead>
<tr>
<th>Follow-up Time (years)</th>
<th>Aortic Gradient (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

![Graph of Patient 81](image-url)
Five joint models for the Aortic Valve dataset

> the same longitudinal submodel, and

> relative risk submodels

\[h_i(t) = h_0(t) \exp \left\{ \gamma_1 \text{TypeOP}_i + \gamma_2 \text{Sex}_i + \gamma_3 \text{Age}_i + \alpha_1 m_i(t) \right\}, \]

\[h_i(t) = h_0(t) \exp \left\{ \gamma_1 \text{TypeOP}_i + \gamma_2 \text{Sex}_i + \gamma_3 \text{Age}_i + \alpha_1 m_i(t) + \alpha_2 m'_i(t) \right\}, \]

\[h_i(t) = h_0(t) \exp \left\{ \gamma_1 \text{TypeOP}_i + \gamma_2 \text{Sex}_i + \gamma_3 \text{Age}_i + \alpha_1 \int_0^t m_i(s) ds \right\} \]
4.7 Parameterizations & Predictions (cont’d)

\[h_i(t) = h_0(t) \exp \left\{ \gamma_1 \text{TypeOP}_i + \gamma_2 \text{Sex}_i + \gamma_3 \text{Age}_i + \alpha_1 \int_0^t \varpi(t - s) m_i(s) ds \right\}, \]

where \(\varpi(t - s) = \phi(t - s)/\{\Phi(t) - 0.5\} \), with \(\phi(\cdot) \) and \(\Phi(\cdot) \) the normal pdf and cdf, respectively.

\[h_i(t) = h_0(t) \exp(\gamma_1 \text{TypeOP}_i + \gamma_2 \text{Sex}_i + \gamma_3 \text{Age}_i + \alpha_1 b_{i0} + \alpha_2 b_{i1} + \alpha_3 b_{i2} + \alpha_4 b_{i4}) \]
4.7 Parameterizations & Predictions (cont’d)

Survival Outcome

<table>
<thead>
<tr>
<th>Re-Operation-Free Survival</th>
<th>u = 2.3</th>
<th>u = 3.3</th>
<th>u = 5.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weighted Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value+Slope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>u = 7.3</th>
<th>u = 9.1</th>
<th>u = 12.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared RE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weighted Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value+Slope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick
4.7 Parameterizations & Predictions (cont’d)

- The chosen parameterization can influence the derived predictions
 - especially for the survival outcome

How to choose between the competing association structures?
The easy answer is to employ information criteria, e.g., AIC, BIC, DIC, . . .

However, a problem is that the longitudinal information dominates the joint likelihood ⇒ will not be sensitive enough wrt predicting survival probabilities

In addition, thinking a bit more deeply, is the same single model the most appropriate
▷ for all future patients?
▷ for the same patient during the whole follow-up?

The most probable answer is No
4.8 Combining Joint Models

- To address this issue we will use Bayesian Model Averaging (BMA) ideas

- In particular, we assume M_1, \ldots, M_K
 - different association structures
 - different baseline covariates in the survival submodel
 - different formulation of the mixed model
 - ...

- Typically, this list of models will not be exhaustive
The aim is the same as before, using the available information for a future patient \(j \) up to time \(t \), i.e.,

\[T_j^* > t \]

\[\mathcal{Y}_j(t) = \{y_j(s), 0 \leq s \leq t\} \]

We want to estimate

\[\pi_j(u \mid t) = \Pr\{T_j^* \geq u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\}, \]

by averaging over the posited joint models
4.8 Combining Joint Models (cont’d)

- More formally we have

\[
\Pr\{T_j^* \geq u \mid D_j(t), D_n\} = \sum_{k=1}^{K} \Pr(T_j^* > u \mid M_k, D_j(t), D_n) p(M_k \mid D_j(t), D_n)
\]

where

\(D_j(t) = \{T_j^* > t, y_j(s), 0 \leq s \leq t\} \)

\(D_n = \{T_i, \delta_i, y_i, i = 1, \ldots, n\} \)

- The first part, \(\Pr(T_j^* > u \mid M_k, D_j(t), D_n) \), the same as before

 i.e., model-specific conditional survival probabilities
4.8 Combining Joint Models (cont’d)

- Working out the marginal distribution of each competing model we found some very attractive features of BMA,

\[
p(M_k \mid \mathcal{D}_j(t), \mathcal{D}_n) = \frac{p(\mathcal{D}_j(t) \mid M_k) p(\mathcal{D}_n \mid M_k) p(M_k)}{\sum_{\ell=1}^{K} p(\mathcal{D}_j(t) \mid M_\ell) p(\mathcal{D}_n \mid M_\ell) p(M_\ell)}
\]

▷ \(p(\mathcal{D}_n \mid M_k) \) marginal likelihood based on the available data

▷ \(p(\mathcal{D}_j(t) \mid M_k) \) marginal likelihood based on the new data of patient \(j \)

Model weights are both patient- and time-dependent
4.8 Combining Joint Models (cont’d)

- For different subjects, and even for the same subject but at different times points, different models may have higher posterior probabilities.

\[\downarrow \]

Predictions better tailored to each subject than in standard prognostic models

- In addition, the longitudinal model likelihood, which is
 \[p(D_n | M_k), \text{ and} \]
 \[\text{is not affected by the chosen association structure} \]
 will cancel out because it is both in the numerator and denominator.
4.8 Combining Joint Models (cont’d)

- **Example:** Based on the five fitted joint models
 - we compute BMA predictions for Patient 81, and
 - compare with the predictions from each individual model
4.8 Combining Joint Models (cont’d)

Patient 81

- Value
- Value+Slope
- Area
- Weighted Area
- Shared RE
- BMA

Re-Operation-Free Survival

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick
4.8 Combining Joint Models (cont’d)
4.8 Combining Joint Models (cont’d)

Patient 81

- Value
- Value+Slope
- Area
- Weighted Area
- Shared RE
- BMA

Re-Operation-Free Survival

Time

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick
4.8 Combining Joint Models (cont’d)
4.8 Combining Joint Models (cont’d)

Patient 81

Re-Operation-Free Survival

- Value
- Value+Slope
- Area
- Weighted Area
- Shared RE
- BMA

Time

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick
4.8 Combining Joint Models (cont’d)
5. Software – I

- Software: R package \textbf{JM} freely available via
 \url{http://cran.r-project.org/package=JM}

 - it can fit a variety of joint models + many other features

 - relevant to this talk: Functions \texttt{survfitJM()} and \texttt{predict()}

- More info available at:

 Web site: \url{http://jmr.r-forge.r-project.org/}
5. Software – II

- Software: R package **JMbayes** freely available via
 http://cran.r-project.org/package=JMbayes
 - it can fit a variety of joint models + many other features
 - relevant to this talk: Functions `survfitJM()`, `predict()` and `bma.combine()`

 GUI interface for dynamic predictions using package **shiny**
Thank you for your attention!