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. Erasmus MC
1.1 Introduction

e Often in follow-up studies different types of outcomes are collected

e Explicit outcomes
> multiple longitudinal responses (e.g., markers, blood values)

> time-to-event(s) of particular interest (e.g., death, relapse)

e Implicit outcomes
> missing data (e.g., dropout, intermittent missingness)

> random visit times
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1.2 lllustrative Case Study

e Aortic Valve study: Patients who received a human tissue valve in the aortic position

> data collected by Erasmus MC (from 1987 to 2008);
77 received sub-coronary implantation; 209 received root replacement

e Outcomes of interest:
> death and re-operation — composite event

> aortic gradient
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. Erasmus MC
1.3 Research Questions

e Depending on the questions of interest, different types of statistical analysis are
required

e Focus on each outcome separately
> does treatment affect survival?
> are the average longitudinal evolutions different between males and females?

> ...
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1.3 Research Questions (cont’d)

e Focus on multiple outcomes

> Complex effect estimation: how strong is the association between the longitudinal
outcome and the hazard rate of death?

> Handling implicit outcomes: focus on the longitudinal outcome but with dropout
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1.3 Research Questions (cont’d)

In the Aortic Valve dataset:

e Research Question:

> Can we utilize available aortic gradient measurements to predict
survival /re-operation
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1.4 Goals

e Methods for the separate analysis of such outcomes are well established in the
literature

e Survival data:

> Cox model, accelerated failure time models, . ..

e Longitudinal data

> mixed effects models, GEE, marginal models, ...
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1.4 Goals (cont’d)

e Goals of this talk:

> Introduce joint models
* definition
* association structures
* dynamic predictions

> lllustrate software capabilities in R
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2.1 Joint Modeling Framework

e To answer our questions of interest we need to postulate a model that relates
> the aortic gradient with

> the time to death or re-operation

e Problem: Aortic gradient is an endogenous time-dependent covariate (Kalbfleisch and
Prentice, 2002, Section 6.3)

> Measurements on the same patient are correlated

> Endogenous (aka internal): the future path of the covariate up to any time ¢t > s
IS affected by the occurrence of an event at time point s

JM & JMbayes — August 11, 2015 8/35



2.1 Joint Modeling Framework (cont’d)

Eraspmus MC

e What is special about endogenous time-dependent covariates
> measured with error
> the complete history is not available

> existence directly related to failure status

e What if we use the Cox model?
> the association size can be severely underestimated

> true potential of the marker will be masked
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2.1 Joint Modeling Framework (cont’d)
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2.1 Joint Modeling Framework (cont’d)

e To account for the special features of these covariates a new class of models has been
developed

Joint Models for Longitudinal and Time-to-Event Data

e |ntuitive idea behind these models

1. use an appropriate model to describe the evolution of the marker in time for each
patient

2. the estimated evolutions are then used in a Cox model

o Feature: Marker level is not assumed constant between visits
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2.1 Joint Modeling Framework (cont’d)
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2.1 Joint Modeling Framework (cont’d)

e We define a standard joint model

> |Survival Part:| Relative risk model

hi(t) = ho(t) exp{y " w; + am;(t)},

where

* m;(t) = the true & unobserved value of aortic gradient at time ¢

* o quantifies the effect of aortic gradient on the risk for death/re-operation
* w; baseline covariates
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2.1 Joint Modeling Framework (cont’d)

> |Longitudinal Part:

Reconstruct M;(t) = {m;(s),0 < s < t} using y;(t) and a

mixed effects model (we focus on continuous markers)

yi(t)

where

= m;(t) + (1)

=z (B + 2 ()b +ei(t), et) ~N(0,0%,

* x;(t) and B: Fixed-effects part
* 2;(t) and b;: Random-effects part, b; ~ N (0, D)
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3.1 Joint Models in R

e Joint models are fitted using function jointModel () from package JM. This
function accepts as main arguments a linear mixed model and a Cox PH model based
on which it fits the corresponding joint model

lmeFit <- 1me(CD4 ~ obstime + obstime:drug,
random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

jointFit <- jointModel(lmeFit, coxFit, timeVar = "obstime",
method = "piecewise-PH-aGH")

summary (jointFit)
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3.1 Joint Models in R

e Argument method specifies the type of relative risk model and the type of numerical
integration algorithm — the syntax is as follows:

<baseline hazard>-<parameterization>-<numerical integration>

Available options are:

> "piecewise-PH-GH": PH model with piecewise-constant baseline hazard

> "spline-PH-GH": PH model with B-spline-approximated log baseline hazard
> "weibull-PH-GH": PH model with Weibull baseline hazard

> "weibull-AFT-GH": AFT model with Weibull baseline hazard

> "Cox-PH-GH": PH model with unspecified baseline hazard

GH stands for standard Gauss-Hermite; using aGH invokes the pseudo-adaptive
Gauss-Hermite rule
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3.1 Joint Models in R

e Joint models under the Bayesian approach are fitted using function
jointModelBayes () from package JMbayes. This function works in a very similar
manner as function jointModel (), e.g.,

lmeFit <- 1me(CD4 ~ obstime + obstime:drug,

random = ~ obstime | patient, data = aids)
coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)
jointFitBayes <- jointModelBayes(lmeFit, coxFit, timeVar = "obstime")

summary (jointFitBayes)
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3.1 Joint Models in R

Erasmus MC

e JMbayes is more flexible (in some respects):
> directly implements the MCMC
> allows for categorical longitudinal data as well
> allows for general transformation functions
> penalized B-splines for the baseline hazard function

> ...
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3.1 Joint Models in R

e In both packages methods are available for the majority of the standard generic
functions + extras

> summary (), anova(), vcov(), logLik()
> coef (), fixef (), ranef ()

> fitted(), residuals()

> plot()

> xtable () (you need to load package xtable first)
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Erasmus MC
4.1 Association Structures

e The standard assumption is
‘

hi(t | Mu(t)) = ho(t) exp{y "w; + am; (1)},

vit) = m(t) + &)
=z ()3 + 2 ()b + &i(t),

where M, (t) = {m,;(s),0 < s < t}
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4.1 Association structures (cont’d)
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. Erasmus MC
4.1 Association Structures (cont’d)

e The standard assumption is

/

hi(t | Mi(t)) = ho(t) exp{y "w; + am;(t)},

vit) = mu(t) +&i(?)
=z (t)B+ 2 ()b + &i(t),

\

where M, (t) = {m,;(s),0 < s < t}

Is this the only option? Is this the most optimal for
prediction?
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4.2 Time-dependent Slopes

e The hazard for an event at ¢ is associated with both the current value and the slope
of the trajectory at ¢ (Ye et al.,, 2008, Biometrics):

hi(t | Mi(t)) = ho(t) exp{y " w; + cxm,(t) + aomi(t)},

where

mi(t) = Sl (15 + = ()b
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4.2 Time-dependent Slopes (cont’d)
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4.3 Cumulative Effects

e The hazard for an event at ¢ is associated with area under the trajectory up to t:

hi(t | M;(t)) = ho(t) exp{yTwi + a/ot m;(s) ds}

e Area under the longitudinal trajectory taken as a summary of M;(t)
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4.3 Cumulative Effects (cont’d)

Erasmus Mic
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4.5 Association Structures in JM & JMbayes

e Both package give options to define the aforementioned association structures
> in JM via arguments parameterization & derivForm

> in JMbayes via arguments param & extraForm

e JMbayes also gives the option for general transformation functions, e.g.,

hi(t | M;(t)) = ho(t) exp{y " w; + aqnm,(t) + asmi(t) x Treat; +
azmi(t) + ag(mi(t))*},
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5.1 Predictions — Definitions

e We are interested in predicting survival probabilities for a new patient j that has
provided a set of aortic gradient measurements up to a specific time point ¢

e [Example:| We consider Patients 20 and 81 from the Aortic Valve dataset
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5.1 Predictions — Definitions (cont’d)

Patient 20 | T Patient 81

10+

|Aortic Gradient (mmHg)

Follow—up Time (years)
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5.1 Predictions — Definitions (cont’d)
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10+
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5.1 Predictions — Definitions (cont’d)
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5.1 Predictions — Definitions (cont’d)

e What do we know for these patients?
> a series of aortic gradient measurements

> patient are event-free up to the last measurement

e Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded
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5.3 Dyn. Predictions — lllustration

Patient 20 | T Patient 81

10+

|Aortic Gradient (mmHg)

Follow—up Time (years)
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5.3 Dyn. Predictions — lllustration (cont’d)

Erasmus MC
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5.3 Dyn. Predictions — lllustration (cont’d)
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5.3 Dyn. Predictions — lllustration (cont’d)
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5.3 Prediction Survival — lllustration (cont’d)

Erasmus MC
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5.3 Dyn. Predictions — lllustration (cont’d)
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5.3 Dyn. Predictions — lllustration (cont’d)
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5.2 Predictions — JM & JMbayes

e Individualized predictions of survival probabilities are computed by function
survfitJM() — for example, for Patient 2 from the PBC dataset we have

sfit <- survfitJM(jointFit, newdata = pbc2[pbc2$id == "2", ])
sfit
plot(sfit)

plot(sfit, include.y = TRUE)

# shiny app in JMbayes
JMbayes: :runDynPred ()
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6. Resources

e JM
> JSS paper (http://www.jstatsoft.org/v35/109/)

> book for joint models (http://jmr.r-forge.r-project.org/)

e JMbayes
> JSS paper (http://arxiv.org/abs/1404.7625; to appear)
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Thank you for your attention!
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