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1 Joint Modeling Framework

In this section we present a general definition of the framework of joint models for longitu-

dinal and survival data that will be used later on for planning the optimal visit schedule.

Let Dn = {Ti, δi,yi; i = 1, . . . , n} denote a sample from the target population, where T ∗i

denotes the true event time for the i-th subject, Ci the censoring time, Ti = min(T ∗i , Ci) the

corresponding observed event time, and δi = I(T ∗i ≤ Ci) the event indicator, with I(·) being

the indicator function that takes the value 1 when T ∗i ≤ Ci, and 0 otherwise. In addition,

we let yi denote the ni × 1 longitudinal response vector for the i-th subject, with element

yil denoting the value of the longitudinal outcome taken at time point til, l = 1, . . . , ni.

To accommodate different types of longitudinal responses in a unified framework, we

postulate a generalized linear mixed effects model. In particular, the conditional distribution
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of yi given a vector of random effects bi is assumed to be a member of the exponential family,

with linear predictor given by

k
[
E{yi(t) | bi}

]
= ηi(t) = x>i (t)β + z>i (t)bi, (1)

where k(·) denotes a known one-to-one monotonic link function, and yi(t) denotes the value of

the longitudinal outcome for the i-th subject at time point t, xi(t) and zi(t) denote the time-

dependent design vectors for the fixed-effects β and for the random effects bi, respectively.

The random effects are assumed to follow a multivariate normal distribution with mean zero

and variance-covariance matrix D. For the survival process, we assume that the risk for an

event depends on a function of the subject-specific linear predictor ηi(t) and/or the random

effects. More specifically, we have

hi(t | Hi(t),wi) = lim
∆t→0

Pr{t ≤ T ∗i < t+ ∆t | T ∗i ≥ t,Hi(t),wi}
/

∆t

= h0(t) exp
[
γ>wi + f{Hi(t), bi,α}

]
, t > 0, (2)

where Hi(t) = {ηi(s), 0 ≤ s < t} denotes the history of the underlying longitudinal process

up to t, h0(·) denotes the baseline hazard function, wi is a vector of baseline covariates with

corresponding regression coefficients γ. Function f(·), parameterized by vector α, specifies

which components/features of the longitudinal outcome process are included in the linear

predictor of the relative risk model. Some examples, motivated by the literature (Brown

2009; Rizopoulos and Ghosh 2011; Rizopoulos 2012; Taylor et al. 2013; Rizopoulos et al.

2014), are:

f{Hi(t), bi,α} = αηi(t),

f{Hi(t), bi,α} = α1ηi(t) + α2η
′
i(t), with η′i(t) =

dηi(t)

dt
,

f{Hi(t), bi,α} = α

∫ t

0

ηi(s) ds,

f{Hi(t), bi,α} = α>bi.

These formulations of f(·) postulate that the hazard of an event at time t may be associated

with the underlying level of the biomarker at the same time point, the slope of the longitu-

dinal profile at t, the accumulated longitudinal process up to t, or the random effects alone.

Finally, the baseline hazard function h0(·) is modeled flexibly using a B-splines approach,
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i.e.,

log h0(t) = γh0,0 +

Q∑
q=1

γh0,qBq(t,v), (3)

where Bq(t,v) denotes the q-th basis function of a B-spline with knots v1, . . . , vQ and γh0
the vector of spline coefficients. To avoid the task of choosing the appropriate number

and position of the knots, we include a relatively high number of knots (e.g., 15 to 20)

and appropriately penalize the B-spline regression coefficients γh0 for smoothness using the

differences penalty (Eilers and Marx 1996).

For the estimation of joint model’s parameters we use a Bayesian approach based on

Markov chain Monte Carlo (MCMC) algorithms. The expression for the posterior distribu-

tion of the model parameters given the observed data is derived under the assumptions that

given the random effects, both the longitudinal and event time process are independent, and

the longitudinal responses of each subject are independent. Formally we have,

p(yi, Ti, δi | bi,θ) = p(yi | bi,θ) p(Ti, δi | bi,θ), (4)

p(yi | bi,θ) =
∏
l

p(yil | bi,θ), (5)

where θ denotes the full parameter vector, and p(·) denotes an appropriate probability

density function. Under these assumptions the posterior distribution is given by:

p(θ, b) ∝
n∏
i=1

ni∏
l=1

p(yil | bi,θ) p(Ti, δi | bi,θ) p(bi | θ) p(θ), (6)

where

p(yil | bi,θ) = exp

{[
yilψil(bi)− c{ψil(bi)}

]/
a(ϕ)− d(yil, ϕ)

}
,

with ψil(bi) and ϕ denoting the natural and dispersion parameters in the exponential family,

respectively, c(·), a(·), and d(·) are known functions specifying the member of the exponential

family, and for the survival part

p(Ti, δi | bi,θ) = hi(Ti | Hi(Ti, bi))
δi exp

{
−
∫ Ti

0

hi(s | Hi(s, bi)) ds
}
,

with hi(·) given by (2). The integral in the definition of the survival function

Si(t | Hi(t), bi,wi) = exp
{
−
∫ t

0

h0(s) exp
[
γ>wi + f{Hi(s), bi,α}

]
ds
}
, (7)
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does not have a closed-form solution, and thus a numerical method must be employed for its

evaluation. Standard options are the Gauss-Kronrod and Gauss-Legendre quadrature rule.

The penalized version of the B-spline approximation to the baseline hazard can be fitted

by specifying for γh0 the improper prior (Lang and Brezger 2004):

p(γh0 | τh) ∝ τ
ρ(K)/2
h exp

(
−τh

2
γ>h0Kγh0

)
,

where τh is the smoothing parameter that takes a Gamma(1, τhδ) prior distribution, with

a hyper-prior τhδ ∼ Gamma(10−3, 10−3), which ensures a proper posterior distribution for

γh0 (Jullion and Lambert 2007), K = ∆>r ∆r + 10−6I, with ∆r denoting the r-th difference

penalty matrix, and ρ(K) denotes the rank of K.

2 Aortic Valve Dataset

• Figure 1 shows the longitudinal trajectories of aortic gradient for Patients 7 and 81

from the Aortic Valve dataset (main paper Section 4).

• Tables 1 and 2 present the posterior means and 95% credible intervals of the parameters

of the joint models to the Aortic Valve data (main paper Section 4).
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Figure 1: Longitudinal trajectories of the square root aortic gradient for Patients 7 and 81.

Table 1: Estimated coefficients and 95% credibility intervals for the parameters of the lon-
gitudinal submodels fitted to the Aortic Valve dataset. The top part of the table refers to
the results for aortic gradient and the bottom part for aortic regurgitation. dij denotes the
ij-th element of the corresponding covariance matrix of the random effects.

M1 M2 M3 M4 M5

Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI)
Intercept 3.67 (3.33; 4.00) 3.66 (3.32; 4.01) 3.68 (3.34; 4.03) 3.67 (3.34; 4.02) 3.67 (3.32; 4.02)
B-spln1 3.28 (2.79; 3.83) 3.37 (2.84; 3.89) 3.31 (2.81; 3.84) 3.26 (2.76; 3.75) 3.34 (2.85; 3.83)
B-spln2 2.70 (2.33; 3.13) 2.77 (2.34; 3.21) 2.72 (2.35; 3.13) 2.68 (2.28; 3.08) 2.72 (2.31; 3.15)
Age -0.02 (-0.02; -0.01) -0.02 (-0.02; -0.01) -0.02 (-0.02; -0.01) -0.02 (-0.02; -0.01) -0.02 (-0.02; -0.01)
Female 0.17 (-0.06; 0.40) 0.17 (-0.06; 0.39) 0.17 (-0.04; 0.41) 0.18 (-0.05; 0.41) 0.18 (-0.04; 0.41)
σ 0.61 (0.58; 0.65) 0.62 (0.58; 0.65) 0.62 (0.58; 0.65) 0.61 (0.58; 0.65) 0.62 (0.58; 0.66)
d11 0.64 (0.48; 0.83) 0.62 (0.47; 0.80) 0.63 (0.48; 0.84) 0.64 (0.47; 0.82) 0.61 (0.46; 0.81)
d21 -0.69 (-1.44; -0.06) -0.51 (-1.19; 0.10) -0.64 (-1.38; -0.04) -0.69 (-1.42; -0.05) -0.53 (-1.23; 0.12)
d31 -0.43 (-1.05; 0.09) -0.40 (-0.97; 0.15) -0.43 (-1.00; 0.13) -0.46 (-1.10; 0.11) -0.34 (-0.96; 0.28)
d22 13.61 (9.66; 18.74) 13.87 (9.79; 19.14) 13.50 (9.76; 18.14) 13.91 (9.85; 19.09) 13.06 (9.26; 17.83)
d32 8.14 (4.40; 13.62) 9.46 (5.84; 14.20) 8.05 (4.55; 12.82) 8.70 (4.61; 13.66) 8.01 (4.09; 13.47)
d33 7.04 (3.11; 12.99) 8.08 (4.62; 13.25) 6.63 (3.32; 11.71) 7.80 (3.55; 14.06) 7.31 (3.06; 15.57)
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Table 2: Estimated coefficients and 95% credibility intervals for the parameters of the sur-
vival submodels fitted to the Aortic Valve dataset.

M1,1 M2,1 M3,1 M4,1 M5,1

Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI) Value (95% CI)
Age 0.02 (0.01; 0.04) 0.02 (0.01; 0.04) 0.02 (0.01; 0.04) 0.02 (0.00; 0.03) 0.02 (0.01; 0.04)
Female -0.09 (-0.48; 0.29) -0.02 (-0.43; 0.36) -0.09 (-0.49; 0.30) -0.10 (-0.51; 0.29) 0.01 (-0.43; 0.45)
α1 0.19 (0.09; 0.30) 0.16 (0.02; 0.30) 0.02 (0.01; 0.03) -0.03 (-0.59; 0.51)
α2 2.40 (1.07; 3.82) 0.78 (-1.76; 2.99) 0.43 (0.26; 0.65)
α3 -0.02 (-0.75; 0.81)
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3 Simulation Study

The data in the simulation study presented in Section 5 of the main paper have been simu-

lated under the joint model:



yi(t) = ηi(t) + εi(t),

ηi(t) = (β0 + bi0) + (β1 + bi1,1)Bn(t, 1) + (β2 + bi2)Bn(t, 2)+

(β3 + bi3)Bn(t, 3),

εi(t) ∼ N (0, σ2),

bi ∼ N (0,D),

hi(t) = h0(t) exp
{
γ0 + γ1Groupi + α1ηi(t) + α2η

′
i(t)
}
,

h0(t) = φtφ−1,

where Bn(t, {1, 2, 3}) denotes the B-spline basis for a natural cubic spline with boundary

knots at baseline and 19.5 years and two internal knots placed at 2.1 and 5.5 years, and

Group denotes a dummy variable for the type of operation. The parameter values that we

used are:

* Fixed effects: β0 = 2.94, β1 = 1.30, β2 = 1.84, and β3 = 1.82;

* Random effects covariance matrix:

D =


0.71

0.33 2.68

0.07 3.81 7.62

1.26 4.35 5.40 8.00

 ;

* Measurement error standard deviation: σ = 0.60;

* Baseline covariates relative risk model: γ0 = −6.70 and γ1 = 0.50;

* Association parameters: α1 = 0.19 and α2 = −1.06;

* Baseline hazard: φ = 2;

* For each subject longitudinal measurements were planned to be taken at baseline, six

months, one year, and biannually thereafter up to year 19;
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* The censoring mechanism was based on a uniform distribution in the interval [0, 28].
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4 R Code

In this document we provide the relevant R code that can be used to fit joint models

and compute cvDĈL(t) and Û(u | t) which have been implemented in functions cvDCL()

and dynInfo(), respectively, available in package JMbayes (version >= 0.7-2; http:

//cran.r-project.org/package=JMbayes).

4.1 Fit Joint Models

# Fit the joint models with the different association structures

library("JMbayes")

lmeFit <- lme(sqrt(AoGradient) ~ ns(time, 2) + Age + sex, data = AoValv,

random = ~ ns(time, 2) | id)

coxFit <- coxph(Surv(Time, event) ~ Age + sex, data = AoValv.id, x = TRUE)

# value

jointFit1 <- jointModelBayes(lmeFit, coxFit, timeVar = "time",

n.iter = 100000, n.burnin = 10000)

# slope & value + slope

dForm <- list(fixed = ~ 0 + dns(time, 2), random = ~ 0 + dns(time, 2),

indFixed = 2:3, indRandom = 2:3)

jointFit2 <- update(jointFit1, param = "td-extra", extraForm = dForm)

jointFit3 <- update(jointFit1, param = "td-both", extraForm = dForm)

# integral

iForm <- list(fixed = ~ 0 + time + ins(time, 2) + I(time * Age) +

I(time * (sex == ’Female’)),

random = ~ 0 + time + ins(time, 2),

indFixed = 1:5, indRandom = 1:3)

jointFit4 <- update(jointFit1, param = "td-extra", extraForm = iForm)

# random effects

jointFit5 <- update(jointFit1, param = "shared-RE",
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n.iter = 200000, n.adapt = 5000)

4.2 Use of cvDCL()

# Which model is best at different time points

models <- list(jointFit1, jointFit2, jointFit3, jointFit4, jointFit5)

times <- c(5, 7, 9, 11, 13)

cvDCLs <- matrix(0, length(models), length(times))

for (i in seq_along(times)) {

cvDCLs[, i] <- sapply(models, cvDCL, newdata = AoValv, Tstart = times[i],

M = 1000)

}

dimnames(cvDCLs) <- list(paste0("jointFit", 1:5), paste("t =", times))

cvDCLs

4.3 Use of dynInfo()

# Data of Patient 81

ND <- AoValv[AoValv$id == 81, ]

# function to simulate longitudinal responses (the longitudinal

# submodel had as response the square root Aortic Gradient, hence to

# simulate on the original scale we need this function)

sfun <- function (eta, scale) {x <- rnorm(length(eta), eta, scale); x * x}

# loop over the visits of Patient 81

nn <- nrow(ND)

res81 <- vector("list", nn)

tup <- numeric(nn)

for (i in seq_len(nn)) {

# data up to visit i

ND.i <- ND[1:i, ]

# conditional survival probabilities

sfit <- survfitJM(jointFit2, newdata = ND.i)$summaries[[1]]
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# upper limit of the time interval to search for the optimal time

tup[i] <- min(5, max(sfit[sfit[, "Mean"] > 0.8, "times"] - max(ND.i$time)))

# find the optimal time

v <- dynInfo(jointFit2, newdata = ND.i, Dt = tup[i], simulateFun = sfun)

res81[[i]] <- v$summary

}

res81
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