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Extension of the association structure in
joint models to include weighted
cumulative effects
Katya Mauff,a*† Ewout W. Steyerberg,b Giel Nijpels,c,d

Amber A.W.A van der Heijdene and Dimitris Rizopoulosa

Motivated by a study measuring diabetes-related risk factors and complications, we postulate an extension to the
standard formulation of joint models for longitudinal and survival outcomes, wherein the longitudinal outcome
has a cumulative effect on the hazard of the event, weighted by recency. We focus on the relationship between the
biomarker HbA1c and the development of sight threatening retinopathy, since the impact of the HbA1c marker
on the risk of sight threatening retinopathy is expected to be cumulative, with the evolution of the HbA1c marker
over time contributing to progressively greater damage to the vascular structure of the retina. Opting for a para-
metric approach, we propose the use of the normal and skewed normal probability density functions as weight
functions, estimating the relevant parameters directly from the data. The use of the recency-weighted cumulative
effect specification allows us to incorporate differences in the development of the longitudinal profile over time
in the calculation of hazard ratios between subjects. The proposed functions provide us with parameters with
clinically relevant interpretations while retaining a degree of flexibility. In addition, they also allow answering of
important clinical questions regarding the relative importance of various segments of the biomarkers history in
the estimation of the risk of the event. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

Very often in medical studies, data on multiple outcomes of interest are simultaneously recorded. Typ-
ically, these data take the form of a longitudinal or repeated measurement outcome and time-to-event
records. Individual analyses of these outcomes is possible for simpler hypotheses regarding differing
average longitudinal profiles between groups of interest, or the impact of treatment on the risk of an event.
However, in instances where the association between the longitudinal and time-to-event outcomes is of
specific interest, or where we would like to assess the impact of an endogenous time-varying covariate
measured with error on the risk of the event occurrence, joint modelling approaches are preferred.

In the standard formulation of joint models, the current underlying value of the subject-specific marker
is assumed to be associated with the risk of an event occurring at the same time t, through an association
parameter 𝛼. However, this particular functional form may not be adequate in describing the association
structure between the outcomes in all settings. To this end, alternative association structures have been
proposed [1–3], two of which are as follows: first, to allow the risk of an event to depend on the slope
of the longitudinal profile and, second, to postulate that the risk of an event at time t is dependent on the
integrated longitudinal profile (a cumulative effect).

Motivated by a study on diabetes research, we focus in this paper on the cumulative effect association
structure. More specifically, the data considered are that from the Hoorn Diabetes Care System (DCS)
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cohort. The DCS cohort represents a complete dataset on the natural course of type 2 diabetes with annual
highly protocolised follow-up measurements on diabetes-related risk factors and complications. Of spe-
cific interest is the diagnosis of retinopathy, in particular, sight threatening retinopathy (STR), and the
impact of HbA1c (glycated haemoglobin) on the development of STR. Retinopathy is characterized by
ongoing inflammation and vascular remodelling of the retina over time, with a higher glucose burden
contributing to the risk of further microvascular damage, resulting in leakage and bleeding, devascular-
ization, and the formation of new vessel development in other areas of the retina, causing visual loss and
eventually the risk of blindness. HbA1c is a form of glycosylated haemoglobin expressing the 3-month
average plasma glucose concentration [4]. The test is limited to a 3-month average because the lifespan
of a red blood cell is 3 months. It is formed in a non-enzymatic glycation pathway by haemoglobin’s
exposure to plasma glucose. Higher values of HbA1c indicate poorer control of blood glucose levels, and
while specific values of 7.5% or 58 mmol/mol have been identified as important thresholds in the risk of
developing retinopathy, the impact of HbA1c on the risk of retinopathy and STR is expected to be cumu-
lative, with the evolution of the HbA1c level over time contributing to progressively greater damage to
the vascular structure of the retina.

In the context of the standard Cox model, several authors [5–7] have discussed the use of recency
weighted cumulative exposure models, where the cumulative effect of the exposure history is modelled
as a weighted sum of all past values, with weights representing the relative importance of the values as
a function of the time elapsed since exposure. Abrahamowicz et al. [8] considered a parametric time-
dependent weight function for inclusion in the extended Cox model, whereby the weighted cumulative
exposure is calculated at each time point u rather than only once at the end of the study, but specified
the values of the parameters a priori. Further research [9] suggested the use of regression spline-based
methods in place of the parametric weight function, as a means of estimating the function directly from
the data.

In the analysis of the DCS cohort, we are interested in determining the impact of the entire history of
the endogenous HbA1c level on the risk of developing STR, and propose the use of a time-dependent
recency-weighted cumulative exposure association structure for the inclusion of the marker in the relative
risk model, now within the context of joint models. Our work may be seen as an extension of the proposal
by Abrahamowicz et al. [8], in which we utilize joint models to account for the endogenous nature of
the longitudinal outcome, and we estimate the relevant parameters of two proposed parametric weight
functions directly from the data. The motivation behind the choice of the parametric approach is prior
knowledge of the often exhibited functional form seen in many longitudinal biomarkers, similar to an
exponential decay curve, with more recent biomarker levels being more relevant than early follow-up
values. In addition, such weight functions also provide a clinically relevant interpretation of parameters,
while retaining flexibility.

The rest of the paper is organized as follows. In Section 2, we define the standard joint model and
the model with a weighted cumulative association structure. We then introduce the two potential weight
functions in Section 2.2 and discuss the estimation procedure in Section 3. Finally, in Section 4, we
present the results of the analysis of the DCS data, together with a further illustration of the proposed
methodology using the well-known primary biliary cirrhosis (PBC) data introduced by Murtaugh et al.
[10], as well as the results of a small scale simulation study.

2. Model formulation

2.1. The joint model with cumulative association structure

Let Dn = {Ti, 𝛿i, yi; i = 1,… , n} denote a sample from the target population, where T∗
i denotes the true

event time for the i-th subject , Ci the censoring time, Ti = min(T∗
i ,Ci) is the corresponding observed

event time, and 𝛿i = I(T∗
i ≤ Ci) is the event indicator, with I(.) being the indicator function that takes the

value 1 when T∗
i ≤ Ci, and 0 otherwise.

Allowing yi to denote the ni × 1 longitudinal response vector for the i-th subject, with element yij

denoting the value of the longitudinal outcome taken at time point tij, j = 1,… , ni, we then propose
a generalized linear mixed effects model for the longitudinal outcome as follows. We assume that the
conditional distribution of yi, given a vector of random effects bi, is a member of the exponential family,
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with linear predictor given by

g[E{yi(t) ∣ bi}] = 𝜂i(t, bi) = x⊤i (t)𝜷 + z⊤i (t)bi, (1)

where g(.) is a known one-to-one monotonic link function, yi(t) is the value of the longitudinal outcome
for the i-th subject at time point t, and xi(t) and zi(t) are the time-dependent design vectors for the fixed-
effects 𝜷 and for the random effects bi, respectively. The random effects are assumed to have a multivariate
normal distribution with mean zero and variance-covariance matrix D.

For the time-to-event outcome, we make the assumption that the risk for an event depends on a function
of the subject-specific linear predictor 𝜂i(t, bi). In the simplest version of the joint model, we assume that
the hazard for an event at any time t is associated with the current underlying value of the biomarker
at the same time point, denoted as 𝜂i(t, bi) and defined in (1) and that the strength of this association is
measured by parameter 𝛼

hi(t ∣ 𝜂i(t, bi),wi(t)) = lim
Δt→0

Pr{t ≤ T∗
i < t + Δt ∣ T∗

i ≥ t, 𝜂i(t, bi), wi(t)}
Δt

(2)

= h0(t) exp{𝜸⊤wi(t) + 𝛼𝜂i(t, bi)}, (3)

where h0(.) denotes the baseline hazard function and wi is a vector of baseline (or exogenous time-
varying) covariates with corresponding regression coefficients 𝜸.

As previously mentioned, this simple formulation may not always be most appropriate in the case of
more complex relationships between the longitudinal and time-to-event processes [9]. Here we focus on
a specific alternative formulation of the model, which accounts for a cumulative effect of the longitudinal
outcome by including the integral of the longitudinal trajectory from baseline up to time t in the linear
predictor of the relative risk submodel [11,12]. This specification may also increase the statistical power
of the analyses [8].

Specifically,

hi(t) = h0(t) exp

{
𝜸⊤wi(t) + 𝛼 ∫

t

0
𝜂i(s, bi) ds

}
, (4)

where ∫ t
0 𝜂i(s, bi) ds is defined as the signed area of the region in the xy-plane that is bounded by the graph

of 𝜂i(s, bi), the x-axis, and the vertical lines s = 0 and s = t. The area above the x-axis adds to the total
and that below the x-axis subtracts from the total. For any particular time point t, 𝛼 measures the strength
of the association between the risk for an event at time point t and the signed area (hereafter referred to
as the area) under the longitudinal trajectory up to the same time t, with the area under the longitudinal
trajectory taken as a summary of the whole marker history Hi(t) = {𝜂i(s, bi), 0 ≤ s < t}.

The interpretation of 𝛼 differs depending on the model specification, whereby previously, under the
standard joint model formulation, 𝛼 indicated the resultant increase in the log hazard ratio of the event for
a 1-unit increase in the value of the longitudinal profile at the same time t; it now determines the change
in the log hazard ratio for a 1-unit increase in the area under the longitudinal trajectory. This is clinically
advantageous, as it allows calculating hazard ratios between patients utilizing their whole longitudinal
profile rather than only their current value as in formulation (3). However, a potential limitation of this
formulation is that we will not be able to discriminate (with respect to risk) between two patients who
may have different longitudinal profiles but the same area under these profiles.

Figures 1 and 2 illustrate the use of the proposed cumulative effect parameterization on the estimation
of the hazard at time t and the interpretation of the association parameter 𝛼. Figure 1 demonstrates the
observed values and estimated longitudinal profiles for two randomly selected subjects from the DCS
cohort. The x-axis denotes the follow-up time in years and is truncated at the maximum of the event
times for the two subjects. The hazard ratio between the two subjects for any time t ≤ min(T1,T2) for
i = 1, 2 (where Ti is the observed event time for subject i as previously defined) may be calculated as
in (3), using the corresponding value of the biomarker from the estimated subject-specific longitudinal
profiles (as marked by the X’s at time t = 6 for example). This is in contrast to the Last Value Carried
Forward (LVCF) approach seen in the extended Cox model and indicated on the graph by the dotted line
of the step-function.

Extending this parameterization to the cumulative effect, the hazard at any time point t is associated
with the entire area under the longitudinal profile, as demonstrated in Figure 2(a).
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Figure 1. Longitudinal profiles for randomly selected subjects from the DCS cohort.

2.2. Introduction of weights

The cumulative effect as defined in (4) assumes that all past values of the biomarker from 0 up to time
t are of equivalent importance. This may be realistic for studies with shorter follow-up periods, but for
many biomarkers, it may be unreasonable to assume that values at baseline are as important as values
after a much longer period of follow-up. To allow for potentially complex behaviour of the biomarker
over time and, by extension, the association between the values of the biomarker at various time points
and the estimated risk, we require a more flexible approach [6, 13].

For the majority of biomarkers measured in humans, we expect that more recent values may be more
relevant in the estimation of the hazard at time t than values further away from this time point, requiring
a weight function that is a decreasing function of time. This expectation has been previously noted in the
literature, with Vacek [7], suggesting the use of the exponential and normal cumulative distribution func-
tions to assign heavier weights to earlier values, and the use of the normal density function in assigning
maximum weight to values at time s, ∀s ≤ t. The normal density function is used again by Abrahamowicz
et al. [8], where they define:

𝜛(t − s)+ = exp
{
−

(t − s)2+
2𝜎2

}
,

where 𝜛(.) is an appropriately chosen weight function that places different weights at different time
points, with (t− s)+ = t− s when t > s and zero otherwise, and t− s denotes time elapsed since exposure.
In both papers, however, the parameters of the density functions were specified a priori; in the case of
Abrahamowicz et al. [8], two alternative weight functions were considered, in which the scale parameter
(given by 𝜎), which controls the rate of change in the weights over time, was selected such that the weight
was equal to 0.5 for two specific, clinically relevant values of t − s. In this paper, we follow a similar
approach but utilize both the normal and skewed normal distributions as weight functions (to allow for
greater flexibility), estimating the necessary parameters directly from the data. More specifically, to allow
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Figure 2. Longitudinal profiles for randomly selected subjects from the DCS cohort with (a) cumulative effect
and (b) weighted cumulative effect as estimated using the normal density function.

for differential weights in the cumulative effect formulation, we specify

hi(t) = h0(t) exp

{
𝜸⊤wi(t) + 𝛼∫

t

0
𝜛(t − s)+𝜂i(s, bi) ds

}
, (5)

where (t − s)+ is defined as above and s denotes a time prior to or equal to t. The weight functions that
we consider are as follows:

𝜛(t − s)+ =

1

𝜎
√

2𝜋
exp−{(t − s)+}2∕2𝜎2

∫ t.max
0

1

𝜎
√

2𝜋
exp−{x}2∕2𝜎2dx

(6)

and

𝜛(t − s)+ =
1

v𝜋
exp{−(t − s)+∕2v2} ∫ 𝜅(t−s)+∕v

−∞ exp(−𝜆2∕2)d𝜆

∫ t.max
0

1
v𝜋

exp{−x∕2v2} ∫ 𝜅x∕v
−∞ exp{−𝜆2∕2}d𝜆dx

, (7)

with mean 0 and parameters scale v and shape 𝜅 estimated. Figures S1 and S2 show various possible
weight functions resulting from different parameter values for the standardized normal (6) and skewed
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normal density functions (7), respectively. The solid line in Figure S1 represents the normal density
function with 𝜎 = 1, for t ≥ 0. This has a much steeper decline than the line for which 𝜎 = 5 and
a demonstrably shorter period of time wherein the weights are above zero. Figure S2 demonstrates the
additional flexibility in the shape of the weight function achieved through the use of the skewed normal
density function. Comparison of the three darker lines in Figure S2, representing the 𝜅 shape parameter
values of 0, 1 and 4, with a scale parameter value of 1, with the solid line in Figure S1, demonstrates
specifically a flexibility in the presumed peak or mode of the function, whereby the peak is shifted to the
right. Different values of 𝜅 thus allow for more flexibility in the structure of the function, altering the
linearity and therefore the local rate of decline.

In the case of the normal density weight function, estimation of 𝜎 may indicate how much of the history
of the longitudinal biomarker may be important in predicting the occurrence of future events, through
use of the 68− 95− 99.7 rule. This intuitive interpretation of the scale parameter is no longer applicable
when using the skewed normal density function, although the period of interest can still be determined
for this more flexible option directly from the estimated weight function itself.

To further facilitate the answering of questions regarding the relative importance of various segments
of the biomarkers history, we can calculate the area under the density curve for time intervals of specific
interest. Because the CDF of the weight function is equal to 1 by design (through the use of the normalized
parameterization of the weight functions), we can define the relative area under the curve (AUC), denoted
by rAUC, as

rAUC{t,(t−s)+} = F(t − s)+ − F(t). (8)

Calculating the relative AUC for the two weight functions in Figure S1 corresponding to 𝜎 = 1 and
𝜎 = 5, respectively, the interval from 0 to 0.5 would account for approximately 37.3% (cumulatively) of
the relative weight for the standard normal density curve (𝜎 = 1), where the same interval would account
for only 17.1% for the density curve with 𝜎 = 5, and the weights for the latter function would be more
equally distributed across the entire time period, a pattern that would indicate a much longer period of
clinical relevance.

Revisiting Figure 2(b), assuming a weighted cumulative effect parameterization as in (5), we allow
the hazard at time t to depend only on the area under the longitudinal profile for a specific, clinically
relevant period of time, obtained via direct estimation of the relevant parameters of the weight function.
The association parameter 𝛼 now determines the change in the log hazard ratio for a 1-unit increase in
the area under the longitudinal trajectory for the specific time period for which the weights are non-zero.

3. Estimation

The model is estimated using the Bayesian approach, using Markov Chain Monte Carlo algorithms. We
assume conditional independence in the derivation of the posterior distribution of the model parameters;
that is, given the random effects that underlie both the longitudinal and survival processes, these processes
are independent of one another. The longitudinal responses of each subject are also assumed independent
conditional on the random effects for that subject. Formally, we have

p(yi,Ti, 𝛿i ∣ bi,𝜽) = p(yi ∣ bi,𝜽)p(Ti, 𝛿i ∣ bi,𝜽),
p(yi ∣ bi,𝜽) =

∏
j

p(yij ∣ bi,𝜽),

where 𝜽 denotes the full parameter vector and p(.) denotes an appropriate probability density function.
Under these assumptions, the posterior distribution is analogous to

p(𝜽, b) ∝
n∏

i=1

ni∏
j=1

p(yij ∣ bi,𝜽)p(Ti, 𝛿i ∣ bi,𝜽)p(bi ∣ 𝜽)p(𝜽),

where

p(yij ∣ bi,𝜽) = exp
{
[yij𝜓ij(bi) − c{𝜓ij(bi)}]∕a(𝜑) − d(yij, 𝜑)

}
,

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 3746–3759
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with 𝜓ij(bi) and 𝜑 denoting the natural and dispersion parameters in the exponential family, respectively,
and c(.), a(.) and d(.) are known functions specifying the member of the exponential family. For the
survival part,

p(Ti, 𝛿i ∣ bi,𝜽) = hi(Ti ∣ Hi(Ti))𝛿i exp

{
− ∫

Ti

0
hi(s ∣ Hi(s)) ds

}
,

with hi(.) as defined in (5). The survival function for the cumulative effects parameterization, given by

Si(t ∣ 𝜂i(t, bi),wi(t)) = exp

[
− ∫

t

0
h0(s) exp

{
𝜸⊤wi(s) + 𝛼 ∫

s

0
𝜛(s − u)+ 𝜂i(u) du

}
ds

]
, (9)

does not have a closed-form solution, and thus, a numerical method must be employed for its evalua-
tion. Standard options are the Gauss–Kronrod and Gauss-Legendre quadrature rules, adaptive Gaussian
quadrature rules, which utilize specific Kronrod-points of evaluation. Suitable selection of these points
allows abscissas from previous iterations to be reused as part of a new set of points, as opposed to
the recomputation of all abscissas at each iteration. Specifically, for the survival function specified in
equation (9), we have

S(t) = exp
[
−∫

Ti

0
hi(s)ds

]
(10)

≈ exp

[
−

Ti

2

15∑
m=1

𝜋mh0(𝜏m) exp

{
𝜸⊤wi(𝜏m) +

𝛼𝜏m

2

15∑
n=1

�̃�n𝜛

(𝜏m(1 − qn)
2

)
𝜂i𝜑mn

}]
(11)

where 𝜏m = Ti(qm+1)
2

, 𝜑mn = 𝜏m(qn+1)
2

, Ti is the observed failure time, 𝜋m and �̃�n denote prespecified
weights and qm and qn prespecified abscissas. Derivation of Equation (11) may be found in Section 1 of
the Supporting Information as per [14].

For the baseline hazard function h0(.), we specify a penalized version of the B-spline approximation,
with

log h0(t) = 𝜸h0,q
Bq(t, v),

where Bq(t, v) denotes the q-th basis function of a B-spline with knots v1,… , vQ and 𝜸h0
the vector of

spline coefficients, for which we specify the improper prior [15],

p(𝜸h0 ∣ 𝜏h) ∝ 𝜏
𝜌(K)∕2
h exp

(
−

𝜏h

2
𝜸⊤h0

K𝜸h0

)
,

where 𝜏h is the smoothing parameter that takes a Gamma(1, 0.005) hyper-prior in order to ensure a proper
posterior for 𝜸h0

, K = Δ⊤
r Δr, Δr denotes the r-th difference penalty matrix, and 𝜌(K) denotes the rank of

K.
For the remaining parameters 𝜽, we take standard prior distributions. Specifically, for the vector of

fixed effects of the longitudinal submodel 𝜷, for the regression parameters of the survival model 𝜸, and
for the association parameter 𝛼, we use independent univariate diffuse normal priors. For the covariance
matrix of the random effects, we assume an inverse Wishart prior, and when fitting a joint model with a
normally distributed longitudinal outcome, we take an inverse-Gamma prior for the variance of the error
terms 𝜎2. For the parameters of the weight function, we use non-informative Uniform priors. More details
regarding Bayesian estimation of joint models may be found in [16] and [2].

4. Analysis of motivating data sets

4.1. DCS data

We continue with the analysis of the DCS data introduced in Section 1. New patients entered the study
cohort each year and were then followed up over time. Clinical information was obtained by protocolised
annual follow-up measurements, at which time the presence of microvascular and macrovascular com-
plications was also identified. The year of entry was considered the baseline for each new patient, and
retina photograph scans for retinopathy were obtained within at least 2 years of entry into the database.

3752
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Sight threatening retinopathy is defined as a retinopathy diagnosis of grades 3–5 on the fundal photo-
graph using the EURODIAB coding system, and its development is dependent mainly on several risk
factors, such as the age of the patient, the diabetes duration, HbA1c, blood pressure and early stages of
retinopathy. The total glycaemic load plays an important role in the development of STR; a longer dura-
tion of diabetes in combination with higher HbA1c values results in a higher glycaemic burden and thus
in a higher risk of retinopathy.

Of the 8213 patients in the study period from 1998 to 2010, for whom both longitudinal data on clinical
information and retinopathy were available, 6294 patients were considered for inclusion in the analysis
presented here. Patients in whom STR was already present at baseline (within 2 years of entry) were
excluded (70 (0.9%)), together with those that did not have retina photograph results within 2 years of
their baseline year of entry (282 (3.4%)) and those that had no retina photograph results (921 (11.2%))
or no recorded HbA1c values (53 (0.7%)); 593 (7.2%) patients were also excluded due to missing values
in the covariates. Baseline characteristics for the 6294 patients are described in Table S1. During a mean
of 54.5 months of follow-up, 125 (2%) patients experienced the event of interest (first occurrence of
STR); 7.6% of patients presented with grade 1 (401 (6.4%)) or 2 (77 (1.2%)) retinopathy at baseline
(within 2 years of entry). The average age and duration of diabetes at baseline (calculated as the time
from diagnosis to entry) were 60.5 years (SD = 11.8) and 2.8 years (SD = 4.8), respectively, and the
mean baseline systolic and diastolic blood pressure were 142.9 mmHg (SD = 20.7) and 81.1 mmHg
(SD = 10.9), respectively.

For ease and speed of computation, a sample of 1125 subjects was selected, including all 125 subjects
who experienced the event of interest and a random sample of 1000 without the event. Their base-
line characteristics are also provided in Table S1 for comparison with those of the larger sample. The
subject-specific longitudinal profiles for HbA1c (mmol/mol) are illustrated for a smaller random sam-
ple of patients in Figure S3. Given the apparent non-linearity of these profiles, we include natural cubic
splines in both the fixed and random effects parts of the longitudinal model for HbA1c, also controlling
for the baseline systolic blood pressure, duration of diabetes, age at entry and presence or absence of
lower grade retinopathy at baseline;

yi(t) = (𝛽0 + bi0) + (𝛽1 + bi1)Bn(t, 𝜆1) + (𝛽2 + bi2)Bn(t, 𝜆2)
+ 𝛽3Baseline Agei + 𝛽4Duration of Diabetesi

+ 𝛽5Baseline SBPi + 𝛽6Baseline Retinopathyi + 𝜖i(t),

where {Bn(t, 𝜆k) ∶ k = 1, 2} denotes the B-spline basis matrix for a natural cubic spline of time with one
internal knot placed at the 50th percentile for the follow-up times, 𝜖i(t) ∼ N(0,Ri) and 𝐛i ∼ N(𝟎,D), with
Ri = 𝜎2

𝜖
𝐈ni

and D an unstructured variance-covariance matrix.
In the Cox model, the weighted integral of the subject-specific linear predictor of the mixed model

𝜂i(t, bi) is included in the linear predictor of the relative risk model. Two alternative weight functions
were specified: the probability density function of the standardized normal distribution with mean zero,
which has as parameter the standard deviation, and the probability density function of the standardized
skewed normal distribution with mean zero and both the scale (v) and shape (𝜅) as parameters. We also
fit a model with an unweighted cumulative effect.

hi(t) = h0(t) exp
{
𝛼∫

t

0
𝜛(t − s)+ 𝜂i(s, bi) ds

}

with 𝜛(t − s)+ specified as in (6) and (7).
All analyses presented in this paper are carried out using the JMbayes package in R [17, 18], and

an example of the code used to fit the various models may be found in Section 5 in the Supporting
Information.

Candidate models for the best fitting model are detailed in Table S2, together with their deviance infor-
mation criterion (DIC) values. Results from the model with the current value specification and those from
the chosen weighted cumulative model are similar, although the weighted cumulative model outperforms
the current value specification (DIC values of 71,124 and 71,160 respectively).

The output in Tables I and II hereafter indicates that a 1-unit increase in the value of HbA1c results in
a 1.06-fold increase in the risk of developing STR (2.5–97.5% CI: 1.05–1.08), and that a 1-unit increase
in the area under the HbA1c profile for the relevant period of interest corresponds to a 1.07-fold increase
(2.5–97.5% CI: 1.06–1.08) for the skewed normal density function. The model with the unweighted

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 3746–3759
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cumulative effect specification indicates a 1.01-fold increase in the risk of developing STR (2.5–97.5%
CI: 1.01–1.02) for every unit increase in the area under the HbA1c profile.

Table I. Parameter estimates and 95% credibility intervals under the joint modelling analysis for
sight threatening retinopathy (DCS data).

Event process
Current value Cumulative effect

Log hazard (2.5–97.5%) p-value Log hazard (2.5–97.5%) p-value
Association parameter (𝛼) 0.06 (0.05–0.07) 0.00 0.01 (0.01–0.02) 0.00

Weighted normal Weighted skewed normal
Log hazard (2.5–97.5%) p-value Log hazard (2.5–97.5%) p-value

Association parameter (𝛼) 0.07 (0.05–0.08) 0.00 0.07 (0.06–0.08) 0.00
Weight function

Coefficient (2.5–97.5%) p-value Coefficient (2.5–97.5%) p-value
Scale parameter (𝜎∕v) 0.85 (0.48–1.67) 0.00 0.65 (0.45–0.96) 0.00
Shape parameter (𝜅) 4.84 (0.38–9.68) 0.00

Longitudinal outcome is HbA1c.

Table II. Parameter estimates and 95% credibility intervals under the joint modelling analysis for
sight threatening retinopathy (DCS data).

Longitudinal process
Current value Cumulative effect

Coefficient (2.5–97.5%) p-value Coefficient (2.5–97.5%) p-value
Intercept 55.02 (54.06–55.95) 0.00 55.18 (54.23–56.11) 0.00
ns(years, 2)1 −12.74 (−14.52 to −10.96) 0.00 −12.76 (−14.69 to −10.91) 0.00
ns(years, 2)2 1.54 (0.43–2.67) 0.01 1.53 (0.50–2.56) 0.00
Baseline age −0.24 (−0.30 to −0.19) 0.00 −0.24 (−0.29 to −0.19) 0.00
Baseline SBP 0.01 (−0.01 to 0.03) 0.47 0.01 (−0.01 to 0.03) 0.48
Baseline retinopathy 6.20 (4.37–8.00) 0.00 5.97 (4.16–7.83) 0.00
Duration of diabetes 0.49 (0.41–0.56) 0.00 0.44 (0.37–0.52) 0.00
𝜎𝜖 9.00 (8.80–9.23) 0.00 8.97 (8.76–9.20) 0.00

Weighted normal Weighted skewed normal
Coefficient (2.5–97.5%) p-value Coefficient (2.5–97.5%) p-value

Intercept 55.04 (54.09–56.01) 0.00 55.00 (54.06–55.97) 0.00
ns(years, 2)1 −12.74 (−14.62 to −10.92) 0.00 −12.68 (−14.44 to −10.86) 0.00
ns(years, 2)2 1.55 (0.52–2.67) 0.00 1.53 (0.51–2.62) 0.01
Baseline age −0.24 (−0.29 to −0.19) 0.00 −0.24 (−0.29 to −0.19) 0.00
Baseline SBP 0.01 (−0.01 to 0.03) 0.46 0.01 (−0.01 to 0.03) 0.46
Baseline retinopathy 6.11 (4.24–7.99) 0.00 6.11 (4.24–7.90) 0.00
Duration of diabetes 0.48 (0.40–0.56) 0.00 0.48 (0.41–0.55) 0.00
𝜎𝜖 8.99 (8.78–9.21) 0.00 9.00 (8.79–9.22) 0.00

Longitudinal outcome is HbA1c.

We obtain an estimated standard deviation of 0.85 (2.5–97.5% CI: 0.48–1.67) for the normal density
weight function, which suggests that measurements from within the last 2.55 years (three times the stan-
dard deviation) before t are associated with the risk of an event at t, which period is indicated for two
subjects from the DCS cohort in Figure 2(b), assuming an event at time t = 6. The estimated weight func-
tions are shown in Figure 3. Despite the similarity in the overall relevant period of interest (more clearly
demonstrated in Figure 4), the shapes of the weight functions are quite different, with the highest asso-
ciated weight (and thus the value most relevant to the estimation of the relative risk), occurring slightly
earlier in the case of the skewed normal distribution. Calculating the hazard ratio between the two sub-
jects in Figure 2 at time t = 6 and comparing the value for the various model parameterizations, we obtain
9.22, 3.37, 11.02 and 11.04 for the current value, cumulative, weighted normal and weighted skewed
normal specifications, respectively, reflecting the smaller estimated value for the association parameter
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Figure 3. Estimated weight functions under the joint model specification for the development of STR, using the
weighted cumulative association parameterization.

in the cumulative effect specification and the similarity between the two individuals in terms of the full
area under their respective estimated biomarker profiles.

4.2. PBC data

We further illustrate the capabilities and flexibility of the weighted cumulative effect specification of
the joint model using the well-known Primary Biliary Cirrhosis (PBC) data. Collected by the Mayo
Clinic from 1974 to 1984 [10], the data involve 312 patients with PBC (a rare autoimmune liver dis-
ease), randomized to two treatment groups (placebo and D-penicillamine). The survival outcome of
interest is transplantation or death, and several longitudinal biomarkers have been collected, specifically,
serum bilirubin levels, cholesterol and presence/absence of hepatomegaly (an enlarged liver condition).
Given the differential behaviour of each of these markers, the data provide us a unique opportunity to
demonstrate the adaptability of the proposed methodology. Simple descriptive plots for the survival and
various longitudinal outcomes are presented in Figures S4–S6. These plots illustrate the survival curves
for the two treatment groups and longitudinal profiles for the logged serum bilirubin and square rooted
cholesterol outcomes for patients with and without the transplantation/death endpoint.

As previously noted for the HbA1c outcome, in the DCS cohort, the subject-specific profiles over time
of the logged serum bilirubin responses appear to be non-linear in shape. We therefore again include
natural cubic splines in both the fixed and random effects parts of the longitudinal model for this response.
We thus have

𝜂i(t, bi) = (𝛽0 + bi0) + (𝛽1 + bi1)Bn(t, 𝜆1) + (𝛽2 + bi2)Bn(t, 𝜆2) + 𝜖i(t),

with {Bn(t, 𝜆k) ∶ k = 1, 2} as previously defined.
The longitudinal models for square rooted serum cholesterol and the dichotomous hepatomegaly

outcome include time as a linear effect for the fixed and random effects:

g[E{yi(t) ∣ 𝐛i}] = 𝜂i(t, bi) = 𝛽0 + bi0 + (𝛽1 + bi1) × time,

where the random effects 𝐛i follow a multivariate normal distribution with mean zero and unstructured
variance-covariance matrix D, and a standard logit link (logit(pi)) is used for hepatomegaly. Regression
splines are used for the baseline hazard in place of the penalized B-splines in the model for the square
rooted serum cholesterol outcome.

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 3746–3759

3755



K. MAUFF ET AL.

Figure 4. Relative AUC for estimated normal and skewed normal density weight functions using DCS data.

In the Cox model, we control for the effects of treatment and age, allowing for their interaction in the
models for the logged serum bilirubin and hepatomegaly. As before, the weighted integral of the subject-
specific linear predictor of the mixed model, 𝜂i(t, bi), is included in the linear predictor of the relative risk
model, with weight functions as specified in (6) and (7).

hi(t) = h0(t) exp

{
𝛾1Dpenicili + 𝛾2Agei + 𝛾3(Dpenicili × Agei) + 𝛼∫

t

0
𝜛(t − s)+ 𝜂i(s, bi) ds

}
.

The results of the models are presented in Tables S3–S8. The weighted cumulative effects specifica-
tion using the normal density function is the best fitting of the two weighted models for logged serum
bilirubin. This model and that using the standard current value specification both suggest similar, strong
associations with the risk of transplantation/death, whereby a 1-unit increase in the value of log serum
bilirubin corresponds to a 4.1-fold increase of the risk of transplantation/death (2.5–97.5% CI: 3.42–
4.95), and a 1-unit increase in the area under the logged serum bilirubin profile for the relevant period of
interest corresponds to a 3.94-fold increase of the risk (2.5–97.5% CI: 3.22–4.89). For the model with the
cumulative effect parameterization, a 1-unit increase in the area under the logged serum bilirubin profile
corresponds to a 1.2-fold increase of the risk (2.5–97.5% CI: 1.2–1.3). The estimated scale parameter for
the normal density weight function is 0.1 (95% CI: 0.04–0.19). This implies that only the serum bilirubin
measurements within the last 0.3 years (3.6 months) before t are associated with the risk of an event at
the same time t, which suggests that measurements beyond the current value are not relevant in the risk
estimation at time t. This is illustrated in Figure S7 for two randomly selected subjects, where the periods
in which the weights from the normal density function are non-zero are indicated by vertical lines.

Calculating the hazard ratio for time t = 9.68 between the two subjects shown in Figure S7 from each
of the models for logged serum bilirubin, we obtain similar values of 4.34, 3.95 and 4.05 from the models
with the current value, normal and skewed normal weighted cumulative specifications, respectively. These
ratios reflect an increased risk of transplantation/death for the patient represented in grey, who is 11 years
older than the patient shown in black and has higher values of serum bilirubin at time t = 9.68. The
hazard ratio calculated from the cumulative effects specification however is 0.75. As demonstrated in
Figure S8, this parameterization takes into account the full ‘signed area’ under the longitudinal trajectory,
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as previously defined, and since a portion of the curve for the subject depicted in grey is below the x-
axis, and as such must be subtracted, the resulting cumulative effect for this subject is smaller than for
the subject for whom we have only positive serum bilirubin values.

There does not appear to be any association with risk as estimated by the model with the current value
parameterization for square rooted serum cholesterol. The cumulative parameterization indicates that a
1-unit increase in the area under the profile corresponds to a 1.01-fold increase of the risk (2.5–97.5% CI:
1.0–1.02), which is slightly smaller than the 1.16-fold increase of the risk estimated for the (best fitting)
normal density function in the weighted cumulative parameterizations, with (2.5–97.5% CI: 1.07–1.27).
The estimated scale parameter for the normal density weight function is 3.13 (95% CI: 1.62–4.42), which
implies that the serum cholesterol measurements within the last 9.39 years before t are associated with
the risk of an event at the same time t, which is almost the entire period (since maximum follow-up is
14.03 years).

The estimated association parameters from the current value specification and best fitting skewed nor-
mal weighted cumulative effect model for hepatomegaly are again similar, although the value from the
weighted model is slightly larger. The weighted model suggests an increase of 0.41 (2.5–97.5% CI: 0.29–
0.58), in the log hazard ratio value for every unit increase in the relevant area under the logit probability
of having hepatomegaly. The estimated scale parameters for the two weight functions are 2.11 (95% CI:
0.49–4.02) and 1.82 (95% CI: 0.02–3.54) for the normal and skewed normal models, respectively, which
indicates (from the normal density model) that hepatomegaly measurements within the last 6.33 years
before t are associated with the risk of an event at t, again a much larger time interval than that seen with
serum bilirubin. The model with the (unweighted) cumulative effect specification indicates an increase
of 0.78 (2.5–97.5% CI: 0.05–0.10) in the log hazard ratio value for every unit increase in the area under
the logit probability of having hepatomegaly. Visual representations of the weight functions for each of
the logged serum bilirubin, square rooted serum cholesterol and hepatomegaly responses are shown in
Figures S9–S13, demonstrating the degree of flexibility in the estimated weight function, with differing
rates of decline and thus different periods of relevance for the different biomarkers. For hepatomegaly,
as previously seen in the case of the HbA1c marker for the DCS data, the best fitting model indicates a
maximal weight for values slightly earlier than the current time.

Calculating the relative AUC for each of the estimated weight functions, we then obtain Figures S14–
S16, which show the relative importance of each of the biomarkers over several specific intervals of the
follow-up period. We see here that the interval from 0 to 1.5 accounts for 100% (cumulatively) of the
relative weight for logged serum bilirubin, where the same interval accounts for only 52% and 36.6% for
hepatomegaly and square rooted serum cholesterol, respectively, and that the weights for hepatomegaly
and serum cholesterol are far more equally distributed across the entire time period.

4.3. Simulation study

In order to better assess the performance of the proposed methodology, we ran a small scale simulation
study. Given the complexity of the models and the associated computational time, we constrained the
simulation to 100 data sets of 500 participants each.

We assumed a continuous longitudinal outcome of the following form:

yi(t) = 𝜂i(t, bi) + 𝜖i(t) = (𝛽0 + bi0) + (𝛽1 + bi1)Bn(t, 𝜆1) + (𝛽2 + bi2)Bn(t, 𝜆2) + (𝛽3 + bi3)Bn(t, 𝜆3) + 𝜖i(t),

assuming natural cubic splines for both the fixed and random parts of the model, with 𝜖i(t) ∼ N(0, 𝜎2),
and b = (b0i, b1i, b2i, b3i) ∼ MVN(𝟎,Ddiag) and {Bn(t, 𝜆k) ∶ k = 1, 2, 3} as previously defined. Time was
simulated from a uniform distribution between 0 and 14.3. For the survival outcome, adjusting only for
treatment group (drug) for simplicity, we used

hi(t) = h0(t) exp
{
𝛾1Drugi + 𝛼∫

t

0
𝜛(t − s)+ 𝜂i(s, bi) ds

}
,

with 𝜛(t − s)+ specified as a standard normal distribution. Baseline risk was simulated from a Weibull
distribution h0(t) = 𝜙t𝜙−1, with 𝜙 = 0.8223. A uniform censoring distribution with mean 𝜇c = 2.6
was chosen for the censoring times, such that the censoring rate was approximately 80%. Full details
of the input parameters and results of this simulation study are presented in Section 4 of the Supporting
Information, in Tables S9 and S10. Overall performance of the methodology appears to be good, with
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small bias and root mean square error (RMSE) error values, with the exception of parameter D4, the
variance-covariance parameter for the random effects corresponding to the third and final interval of the
natural cubic spline. This is most likely due to an insufficient number of repeated measurements in this
interval.

5. Discussion

Motivated by the clinical question regarding the association between HbA1c and the risk of developing
STR, we proposed an extended joint modelling framework, whereby we use a recency-weighted cumu-
lative effect specification, with parametric weight functions. Two alternative but similar weight functions
were explored, specifically, the normal and skewed normal density functions, for which the scale and
shape parameters were estimated directly from the data. We further illustrated the use and behaviour of
the proposed weight functions using the more well-known PBC data and using a small scale simulation
study. The use of the recency-weighted cumulative effect specification allows us to more accurately deter-
mine the nature of the relationship between an endogenous time-varying covariate and the relative risk
of an event of interest, allowing the calculation of the hazard function at time t to depend on a cumulative
effect for the most relevant period in the history of the biomarker and for the estimation of that period of
interest. Both the current value and cumulative effect specification may be seen as special cases of the
weighted cumulative effect specification.

The proposed weight functions were selected based on a clinically plausible assumption regarding the
functional behaviour of many biomarkers, where more recent values are expected to be more relevant in
determining any associated effects.

Possible extensions would be the development of a more general family of weight functions and an
increase in the number of parameters we are able to estimate. From a clinical perspective, it would be
interesting to adapt and extend the methodology to allow for recurrent events or progression and also to
incorporate competing events, as persons with (the same) elevated risk factors might have died before
they were able to develop STR, leading to underestimation of the effect size. The estimated period of
interest of approximately 2.55 years in the DCS cohort is of great interest, as it speaks to the assumed
duration of glycaemic memory. This will require further research.
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