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What is this Part About

� We are interested in the Time until a prespecified event of interest occurs

◃ time until a patient dies from a serious disease

◃ time until metastasis

◃ time until a machine breaks down

◃ . . .

� Statistical analysis of time-to-event outcomes (aka Survival Analysis)

◃ Describe the distribution of the survival times

* shape of the survival distribution

* location measures, e.g., median survival time
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What is this Part About (cont’d)

◃ Inference, i.e., understand prognostic factors (strength and shape)

* is the new treatment prolonging survival time of patients?

* are non-smokers surviving longer than smokers?

* is the new machine lasting longer than the old one?

* statistical modelling
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Lexical Convention

� Throughout this part we will use several equivalent names for the Time until the
event of interest occurs, namely

◃ time-to-event data

◃ event time data

◃ event times

◃ survival times

◃ survival data

◃ failure times

◃ failure time data
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Learning Objectives

� We will learn which are the special characteristics of event time data and why they
require special treatment (from a statistical point of view)

� From this part it will become clear

◃ which statistical tools are applicable for this kind of data,

◃ which are their advantages and disadvantages, and

◃ which are the optimal inferential strategies

� What is there further in survival analysis than what we will cover in this part
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Agenda

� Part I: Introduction

◃ Data sets that we will use throughout this part

◃ Features of time-to-event data

◃ Censoring

◃ Truncation
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Agenda (cont’d)

� Part II: Basic Tools in Survival Analysis

◃ Basic tools in survival analysis

* Survival function

* Cumulative distribution function

* Density function

* Hazard function

* Cumulative hazard function

◃ Relationships between them
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Agenda (cont’d)

� Part III: Estimation & Statistical Inference

◃ Basic notation for censored event time data

◃ Estimating the survival function

* the Kaplan-Meier estimator

* the Breslow estimator

◃ Comparing survival functions

* the log-rank test

* the Peto & Peto modified Gehan-Wilcoxon test
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Agenda (cont’d)

� Part IV: Regression Models for Time-to-Event Data

◃ Accelerated failure time models

◃ Cox proportional hazards model

◃ Parametric proportional hazards models

◃ For each of the above

* Estimation

* Interpretation of parameters

* Hypothesis testing

* Effect plots

* Checking the model’s assumptions

* General statistical modeling strategies
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Agenda (cont’d)

� Part V: Extensions of the Cox Model

◃ Expected survival

◃ Stratified Cox model

◃ Time-dependent covariates

◃ Clustered Event Time Data

◃ Competing risks

◃ Discrimination

Survival Analysis xv



Structure of this Part & Material

� Lectures & Practice Sessions:

◃ theory sessions

◃ software practicals (build up approach)

� Software

◃ practice sessions will be in R

◃ we will use online tutorials that provide you with hints on how to solve the
exercises
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Structure of this Part & Material (cont’d)

� Material:

◃ Course Notes

◃ Survival Analysis in R Companion

� Within the course notes there are several examples of R code which are denoted by
the symbol ‘R> ’

◃ more examples in the Survival Analysis in R Companion & during the practicals

More than what we are going to cover
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Interaction

� Interaction will be important for the comprehension of all the material that we will
cover

� Therefore, you are welcome to interrupt and ask questions
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Part I

Introduction
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1.1 Data Sets – Stanford

� Survival of 184 patients on the waiting list for the Stanford heart transplant program

� Outcomes of interest:

◃ time to death

◃ age

◃ T5 tissue mismatch score
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1.1 Data Sets – Lung

� A study of prognostic variables in 228 lung cancer patients conducted by the North
Central Cancer Treatment Group

� Outcomes of interest:

◃ time to death

◃ age

◃ sex

◃ ECOG performance score (physician’s estimate); values: 0 – 4

◃ Karnofsky performance score (physician’s estimate); values: 20, 30, . . . , 100
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1.1 Data Sets – AIDS

� 467 HIV infected patients who had failed or were intolerant to zidovudine therapy
(AZT)

� The aim of this study was to compare the efficacy and safety of two alternative
antiretroviral drugs

� Outcomes of interest:

◃ time to death

◃ randomized treatment: 230 patients didanosine (ddI) and 237 zalcitabine (ddC)

◃ gender

◃ AZT: failure or intolerance
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1.1 Data Sets – AIDS (cont’d)

� Outcomes of interest:

◃ prevOI: previous opportunistic infections

◃ CD4 cell count measurements
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1.1 Data Sets – PBC

� Primary Biliary Cirrhosis (PBC):

◃ a chronic, fatal but rare liver disease

◃ characterized by inflammatory destruction of the small bile ducts within the liver

� Data collected by Mayo Clinic from 1974 to 1984 (Murtaugh et al, Hepatology, 1994)

� Outcomes of interest:

◃ time to death and/or time to liver transplantation

◃ randomized treatment: 158 patients received D-penicillamine and 154 placebo

◃ age at baseline

◃ longitudinal bilirubin levels

Survival Analysis 6



1.1 Data Sets – Renal Graft Failure

� 407 patients who underwent primary renal transplantation from deceased or living
donor

� Outcomes of interest:

◃ time to graft failure

◃ smoking status

◃ history of dialysis
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1.2 Features of Time-to-Event Outcomes

Stanford Data Set
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1.2 Features of Time-to-Event Outcomes

Lung Data Set
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1.2 Features of Time-to-Event Outcomes

AIDS Data Set
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1.2 Features of Time-to-Event Outcomes (cont’d)

PBC Data Set
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1.2 Features of Time-to-Event Outcomes (cont’d)

Renal Graft Failure Data Set

Time to Graft Failure (years)
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1.2 Features of Time-to-Event Outcomes (cont’d)

� Survival times are non-negative

◃ in many cases the time to failure can have unusual distribution, i.e., does not look
like a Normal

◃ skewed to the right or to the left

� Naive analysis of untransformed times may produce invalid results
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1.3 Calendar Time vs Survival Time

� Some patients enter the study at some point later than its start – that is, at different
calendar times

� In the analysis of failure time data we are only interested in the survival time – that
is, how long did the patient survive, i.e., how long was she at risk of the event

� Crucial Assumption: the distribution of survival times of those who enter early is
the same as the distribution of the ones who enter late

◃ this is violated if patients who enter later are expected to live longer (or shorter)

Survival Analysis 14



1.3 Calendar Time vs Survival Time (cont’d)

Years (Calendar Time)
2000 2001 2002 2003 2004 2005

Start End

Patient 4

Patient 3

Patient 2

Patient 1
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1.3 Calendar Time vs Survival Time (cont’d)

Years (Follow−up Time)
0 1 2 3 4 5

Start End

Patient 4

Patient 3

Patient 2

Patient 1
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1.4 Censoring

� The time-to-event is only partially known for some patients in the study

� Types of censoring

◃ right censoring

◃ left censoring

◃ interval censoring

� Caution: failure to take censoring into account can produce serious bias in estimates
of the distribution of event times and related quantities
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1.4 Censoring (cont’d)

Years
2000 2001 2002 2003 2004 2005

Start End

Patient 5

Patient 4

Patient 3

Patient 2

Patient 1
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1.4 Censoring (cont’d)

� Before talking in more detail about censoring . . .

� Patients who had the event within the study period

◃ Patient 1 was under observation from the start of the study until 3.5 years when
he had the event ⇒ the time-to-event equals 3.5 years

◃ Patient 4 enter the study after 1.5 years from the start (late entry), and she had
the event at 4.6 years ⇒ the time-to-event equals 4.6− 1.5 = 3.1 years

* why can’t we treat Patient 4 as observed for the full 5-year period since we
know that she has survived 1.5 years?

* had this patient died before 1.5 years, she would not have had the opportunity
to enroll the study, and the event would have never been observed ⇒ biases
survival time upwards
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1.4 Censoring (cont’d)

� Right censoring ⇒ the survival time is above a certain value

� Types of right censoring – Examples:

◃ Fixed type I: Patient 3 reached the end of the study ⇒ we know this patient had
the event after 5 years

◃ Fixed type II: a study ends when there is a prespecified number of events

◃ Random: Patient 2 moved to a new location at 2.6 years ⇒ we know this patient
had the event after 2.6 years
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1.4 Censoring (cont’d)

� Left censoring ⇒ the survival time is below a certain value

� Example:

◃ Patient 5 had the event before the start of the study
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1.4 Censoring (cont’d)

Visit 1 Visit 2 Visit 3

Start End

Patient 8

Patient 7

Patient 6
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1.4 Censoring (cont’d)

� Interval censoring: ⇒ the survival time is between two values

� Example:

◃ during the study period there are 3 planned visits at which it is checked whether
the event has occurred

◃ Patient 6 did not yet have the event at Visit 2 but she had it at Visit 3 ⇒ we
know that she had the event in between Visits 2 and 3

◃ Patient 7 did not yet have the event at Visit 1 and she left the study before Visit
2 ⇒ we know that she had the event at some point after Visit 1

◃ Patient 8 had the event before the stat of the study

Interval censoring includes left and right censoring as special cases
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1.4 Censoring (cont’d)

� Non-informative versus Informative Censoring

◃ a patient is excluded from the study because he decided to move to a new
location from which he cannot easily reach the study center

◃ a patient is excluded from the study because his condition deteriorates (e.g.,
adverse event) and his physician decides to give him a rescue medication

� What is the substantiative difference in the above two situations?
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1.4 Censoring (cont’d)

� Non-informative versus Informative Censoring

◃ a patient is excluded from the study because he decided to move to a new
location from which he cannot easily reach the study center

◃ a patient is excluded from the study because his condition deteriorates (e.g.,
adverse event) and his physician decides to give him a rescue medication

� What is the substantiative difference in the above two situations?

◃ in the second case withdrawal at time c may indicate death is likely to happen
sooner than might have been expected otherwise

Informative Censoring: lost to follow-up for reasons related to the event time
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1.4 Censoring (cont’d)

� Problems with informative censoring

◃ biased estimates

◃ inaccurate statistical inference

� Note: histograms revisited – interpretation should be done with caution in the
presence of censoring
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1.5 Truncation

� Truncation has a similar flavor to censoring (both are handled in a a similar manner
analytically) but we should distinguish between the two terms

� Censoring period:

◃ during this period the subject is no longer under observation, but she may
experience the event of interest

� Truncation period

◃ during this period the subject is no longer under observation, but she cannot
experience the event of interest
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1.5 Truncation (cont’d)

� Similarly to censoring, there are 2 types of truncation

� Left truncation: a subject enters the population at risk at some stage after the start
of the study, and we know that there is no way that the event of interest could have
occurred before this date

� Right truncation: a subject leaves the population at risk at some stage after the start
of the study, and we know that there is no way that the event of interest could have
occurred after this date
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1.6 Truncation vs Censoring

� Leukemia patients are given a drug or placebo. Survival time is the duration from
remission to relapse. The study ends at 52 weeks with some patients yet to relapse

A left censoring

B right censoring

C left truncation

D right truncation
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1.6 Truncation vs Censoring (cont’d)

� Leukemia patients are given a drug or placebo. Survival time is the duration from
remission to relapse. The study ends at 52 weeks with some patients yet to relapse

A left censoring

B right censoring

C left truncation

D right truncation
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1.6 Truncation vs Censoring (cont’d)

� College students are asked the age at which they first tried marijuana. Some answer
never, and some report using it but forget when

A left censoring

B right censoring

C left truncation

D right truncation
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1.6 Truncation vs Censoring (cont’d)

� College students are asked the age at which they first tried marijuana. Some answer
never, and some report using it but forget when

A left censoring

B right censoring

C left truncation

D right truncation
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1.6 Truncation vs Censoring (cont’d)

� The age at which children are able to count from 1–10 at school. Some children are
already able to count before joining school

A true event

B interval censoring

C left truncation

D left censoring
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1.6 Truncation vs Censoring (cont’d)

� The age at which children are able to count from 1–10 at school. Some children are
already able to count before joining school

A true event

B interval censoring

C left truncation

D left censoring
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1.6 Truncation vs Censoring (cont’d)

� For patients who have been hospitalized for a heart attack, we are interested in
testing whether a new treatment that they take after they have been discharged
prolongs survival. A patient died in the hospital

A left censoring

B left truncation

C true event

D interval censoring
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1.6 Truncation vs Censoring

� For patients who have been hospitalized for a heart attack, we are interested in
testing whether a new treatment that they take after they have been discharged
prolongs survival. A patient died in the hospital

A left censoring

B left truncation

C true event

D interval censoring
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1.6 Truncation vs Censoring (cont’d)

� We are interested in identifying prognostic factors for the survival of ovarian cancer
patients. Only patients who have survived at least 5 years after diagnosis are included
in the study

A informative left truncation

B left truncation

C left censoring

D informative left censoring
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1.6 Truncation vs Censoring (cont’d)

� We are interested in identifying prognostic factors for the survival of ovarian cancer
patients. Only patients who have survived at least 5 years after diagnosis are included
in the study

A informative left truncation

B left truncation

C left censoring

D informative left censoring
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1.6 Truncation vs Censoring (cont’d)

� For patients who start feeling better, the physicians decide to exclude them from the
study

A right truncation

B right censoring

C informative right truncation

D informative right censoring
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1.6 Truncation vs Censoring (cont’d)

� For patients who start feeling better, the physicians decide to exclude them from the
study

A right truncation

B right censoring

C informative right truncation

D informative right censoring
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1.6 Truncation vs Censoring (cont’d)

� We are interested in the years spent in retirement. However, some died before getting
retired

A left censoring

B left truncation

C right censoring

D right truncation
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1.6 Truncation vs Censoring (cont’d)

� We are interested in the years spent in retirement. However, some died before getting
retired

A left censoring

B left truncation

C right censoring

D right truncation
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1.7 Review of Key Points

� Time-to-event data exhibit special characteristics:

◃ skewed distributions

◃ censoring and/or truncation

� Standard statistical tools do not work optimally for survival data ⇒ specialized
statistical techniques are required
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Part II

Basic Tools in Survival Analysis
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2.1 The Survival Function

� We define T to be a positive random variable denoting the time-to-event

� There are many ways to represent and describe the distribution of T

� The most useful in survival analysis is the Survival Function

S(t) = Pr(T > t)

� It denotes the probability of being alive up to time t (i.e., dying after t)
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2.1 The Survival Function (cont’d)

� Properties of the survival function

◃ it is constrained between 0 and 1

◃ it is a decreasing function of time, i.e.,

* at time t = 0 all patients are alive

* at time t = ∞ all patients have died

� Note: in some settings patients can be cured and thus, it may not be reasonable to
assume that all patients would die from the disease under study

◃ a class of statistical models (aka Cure rate models) has been developed to deal
with such phenomena (outside the scope of this course)
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2.1 The Survival Function (cont’d)
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2.2 The CDF and PDF

� The survival function is related to the cumulative distribution and the probability
density function

� The Cumulative Distribution Function (CDF)

F (t) = Pr(T ≤ t) = 1− S(t)

denotes the probability of dying until time t

� Properties of the CDF

◃ it is constrained between 0 and 1

◃ it is an increasing function of time
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2.2 The CDF and PDF (cont’d)

� The Probability Density Function (pdf)

f (t) =
dF (t)

dt
or F (t) =

∫ t

0

f (s) ds

denotes how dense is the probability of dying in a specific time interval
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2.2 The CDF and PDF (cont’d)
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2.2 The CDF and PDF (cont’d)
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2.3 The Hazard Function

� Another useful notion is the risk of an event

� The Hazard Function

h(t) = lim
s→0

Pr(t ≤ T < t + s | T ≥ t)

s

is the instantaneous risk of an event at time t, given that the event has not occurred
until time t
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2.3 The Hazard Function (cont’d)

� Note: the hazard is not a probability ⇒ can be interpretable as the expected number
of events per individual per unit of time

◃ it has to be positive

◃ but it can be (much) greater than 1

Survival Analysis 44



2.3 The Hazard Function (cont’d)
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2.3 The Hazard Function (cont’d)
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2.3 The Hazard Function (cont’d)
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2.3 The Hazard Function (cont’d)
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2.3 The Hazard Function (cont’d)
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2.4 The Cumulative Hazard Function

� The Cumulative Hazard Function is the integrated hazard function:

H(t) =

∫ t

0

h(s) ds

denotes the cumulative risk up to time t, i.e., the expected number of events that
have occurred by time t

� Again this is not a (cumulative) probability

◃ has to be positive

◃ increasing function of t (as the time progresses we expect more events to have
occurred)
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2.4 The Cumulative Hazard Function (cont’d)
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2.4 The Cumulative Hazard Function (cont’d)
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2.5 All are Relatives

� All functions we have seen so far are related

◃ if you know one you know all!

f (t) =
dF (t)

dt
F (t) = 1− S(t)

h(t) =
f (t)

S(t)
H(t) =

∫ t

0

h(s) ds

H(t) = − log S(t)

S(t) = exp{−H(t)} = exp

{
−
∫ t

0

h(s) ds

}
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2.5 All are Relatives (cont’d)
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2.6 Useful Statistical Measures

� Median Life Length or Median Survival is the time by which half of the subjects will
experience the event – it is defined as

T0.5 = S−1(0.5)

= H−1(log 2)

where S−1(·) and H−1(·) are the inverse survival and cumulative hazard functions,
respectively
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2.6 Useful Statistical Measures (cont’d)

� Mean Survival or Average Survival is the expected failure time – is defined as

µ =

∫ ∞

0

tf (t) dt

=

∫ ∞

0

S(t) dt

� Expected Future Lifetime is the expected value of future lifetime given survival up to
time point t0

µ̃ =
1

S(t0)

∫ ∞

0

tf (t + t0) dt
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2.7 Survival Distributions

� In the literature there have been proposed many distributions for time-to-event
random variables

� Some of the most popular are

◃ Weibull (it has as special case the Exponential)

◃ Gamma (it has as special case the Exponential)

◃ log-Normal

◃ log-Student’s-t

◃ log-Logistic
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2.7 Survival Distributions (cont’d)
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2.7 Survival Distributions (cont’d)
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2.8 Review of Key Points

� The basic functions to describe the distribution of time-to-event data

◃ survival function

◃ cumulative distribution and probability density function

◃ hazard and cumulative hazard function

� All these functions are related
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2.8 Review of Key Points (cont’d)

� Statistical measures

◃ median survival

◃ mean survival

◃ expected future lifetime
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Part III

Estimation & Statistical Inference
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3.1 Notation

� We have a sample of failure times ⇒ What is the available information?

� Notation (i denotes the patient)

◃ T ∗
i ‘true’ time-to-event

◃ because of censoring we do not always observe T ∗
i

◃ Ci the censoring time (e.g., the end of the study or a random censoring time)

� Available data for each patient

◃ observed event time: Ti = min(T ∗
i , Ci)

◃ event indicator: δi = 1 if event; δi = 0 if censored
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3.1 Notation (cont’d)

Patient T ∗
i Ci Ti δi

1 3.5 — 3.5 1

2 3.4 2.2 2.2 0

3 5.7 5 5 0

... ... ... ... ...

The end of the study is at 5 years
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3.1 Notation (cont’d)

� Based on the available information {Ti, δi} we wish to estimate various quantities of
interest, e.g.,

◃ the Survival function

◃ mean survival time

◃ median survival time

◃ specific quantiles

* by which follow-up time 25% of the patients is still alive

◃ . . .
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3.2.1 The Kaplan-Meier Estimator

� Aim: estimate the Survival Function S(t) based on a sample of failure times
T1, . . . , Tn

◃ Remember: S(t) is the probability of being alive at time t (see Section 2.1)

� If there was no censoring, we could simply

Ŝ(t) =
number of patients alive at time t

n
=

1

n

n∑
i=1

I(Ti > t)

where I(Ti > t) equals 1 if Ti > t, and 0 otherwise

� However, we do have censored observations
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3.2.1 The Kaplan-Meier Estimator (cont’d)

� To take into account censoring in the estimation of S(t) we will use the law of total
probability

� For instance, the probability of surviving 2 years can be computed as:

S(2) = Pr(Ti > 2)

= Pr(Ti > 1)× Pr(Ti > 2 | Ti > 1)

� In words, the probability of surviving year 2 is the product of

◃ the probability of surviving year 1 and

◃ the conditional probability of surviving up to year 2 given still being alive at year 1
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3.2.1 The Kaplan-Meier Estimator (cont’d)

� So S(2) can be estimated by

Ŝ(2) =
# patients alive at year 1

# patients at risk up to year 1
× # patients alive at year 2

# patients at risk up to year 2

� If we apply this idea repeatedly, we can obtain survival probabilities for every time
point t
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3.2.1 The Kaplan-Meier Estimator (cont’d)

� Let t1, t2, . . . , tk denote the unique event times in the sample at hand

� We account for censoring by suitably adjusting the risk set ⇒
the Kaplan-Meier Estimator

ŜKM(t) =
∏
i: ti≤t

ri − di
ri

where di is the number of events at time ti, and ri the number of patients still at risk
at time ti

◃ still at risk means alive and not censored

Survival Analysis 64



3.2.1 The Kaplan-Meier Estimator (cont’d)

� A small example

1 5+ 6 6 8 8+ 9 11+

+ denotes a censored time

i ti ri di (ri − di)/ri

1 1 8 1 7/8

2 6 6 2 4/6

3 8 4 1 3/4

4 9 2 1 1/2
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3.2.1 The Kaplan-Meier Estimator (cont’d)

ŜKM(t) = 1, 0 ≤ t < 1

= 7/8 = 0.875, 1 ≤ t < 6

= (7/8)(4/6) = 0.583, 6 ≤ t < 8

= (7/8)(4/6)(3/4) = 0.438, 8 ≤ t < 9

= (7/8)(4/6)(3/4)(1/2) = 0.219, 9 ≤ t < 11

Note: the estimate of S(t) is undefined for t > 11 since not all subjects have died by
t = 11
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3.2.1 The Kaplan-Meier Estimator (cont’d)
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3.2.2 The Kaplan-Meier Estimator (cont’d)

� The variance of ŜKM(t) can be estimated using Greenwood’s formula

� Using the formula and asymptotic normality of ŜKM(t), we can derive a 95%
confidence interval

� Problem: this can exceed 1 or fall below 0!

� A better asymmetric 95% confidence interval for ŜKM(t) that respects the
boundaries is derived from a symmetric 95% confidence interval for either

ĤKM(t) = − log ŜKM(t) or log ĤKM(t) = log{− log ŜKM(t)}
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3.2.2 The Kaplan-Meier Estimator (cont’d)

� An estimate for the variance of log ĤKM(t) is obtained by

vâr{log ĤKM(t)} =

∑
i: ti≤t di/{ri(ri − di)}[∑

i: ti≤t log{(ri − di)/ri}
]2

� Based on the estimated variance for log ĤKM(t) we calculate the confidence interval

[a, b] = log ĤKM(t)∓ 1.96×
√

vâr
{
log ĤKM(t)

}
the confidence intervals for ŜKM(t) is then obtained as

[
exp{− exp(b)}, exp{− exp(a)}

]
Survival Analysis 69



3.2.2 The Kaplan-Meier Estimator (cont’d)
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3.2.2 The Kaplan-Meier Estimator (cont’d)

R> Survival analysis in R

◃ the basic package for survival analysis in R is the survival package

◃ this is a recommended package, i.e., you do not have to separately install it; you
automatically install it whenever you install R

◃ however, in order to use it, you will need to load it using the command

library("survival")

R> We will also need data from the JM package

◃ you either need to install this package using install.packages("JM")

◃ or directly load the R workspace from CANVAS
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3.2.2 The Kaplan-Meier Estimator (cont’d)

R> A key function in R that is used to specify the available event time information in a
sample at hand is Surv()

R> For right censored failure times (i.e., what we will see in this course) we need to
provide the observed event times time, and the event indicator status, which
equals 1 for true failure times and 0 for right censored times

Surv(time, status)
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3.2.2 The Kaplan-Meier Estimator (cont’d)

R> The function that is used to produce the Kaplan-Meier estimate of a survival
function is survfit() – for the Stanford data we have

KM <- survfit(Surv(time, status) ~ 1, data = stanford2)

plot(KM)
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3.2.2 The Kaplan-Meier Estimator (cont’d)

� The estimated survival function can be used to extract estimates of specific
percentiles of interest, such as the median survival time (see Section 2.6)

� The following procedure is followed:

◃ draw a horizontal line at the specific probability level of interest (e.g., 0.5 for the
median survival time, 0.25 for the 1st quantile, etc.)

◃ the time point at which this horizontal line intersects with the survival curve is the
estimated survival time of interest

◃ a 95% confidence interval for this survival time is obtained by extracting the times
at which the horizontal line intersects with the 95% confidence interval of the
survival function
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3.2.2 The Kaplan-Meier Estimator (cont’d)

� If the horizontal line does not cross either the survival curve or its confidence interval,
then the desired percentile and/or its confidence limits cannot be specified from the
nonparametric estimate of S(t)

� Example: for the Stanford data and based on the Kaplan-Meier estimate of the
survival function we compute

◃ the median survival time (i.e., the time at which 50% of the patients is still alive)

◃ 1st quantile survival time (i.e., the time at which 25% of the patients is still alive)
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3.2.2 The Kaplan-Meier Estimator (cont’d)
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3.2.2 The Kaplan-Meier Estimator (cont’d)
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3.2.2 The Kaplan-Meier Estimator (cont’d)

� We obtain

% Alive Time 95% Lower 95% Upper

days Limit (days) Limit (days)

50 631 328 1232

25 2127 1534 NA
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3.2.2 The Kaplan-Meier Estimator (cont’d)

R> We use the build-in function quantile(); for example,

KM <- survfit(Surv(time, status) ~ 1, data = stanford2)

quantile(KM, 1 - c(0.25, 0.50))
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3.3 The Breslow Estimator

� Using a similar approach to the Kaplan-Meier, we can also estimate the cumulative
hazard function H(t)

� Remember: H(t) denotes the expected number of events up to and including time
point t (see Section 2.4)

� So a natural estimator of H(t) is

ĤNA(t) =
∑
i: ti≤t

di
ri

which is called the Nelson-Aalen estimator
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3.3 The Breslow Estimator

� Remember: the cumulative hazard function is related to the survival function (see

Section 2.5)

� Therefore, an estimator for the survival function based on the Nelson-Aalen estimator
is

ŜB(t) = exp{−ĤNA(t)} =
∏
i: ti≤t

exp(−di/ri)

which has been suggested by Breslow and therefore it is known as the Breslow
Estimator
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3.3 The Breslow Estimator (cont’d)

� Using the same example

1 5+ 6 6 8 8+ 9 11+

+ denotes a censored time

i ti ri di
ri−di
ri

di/ri ŜB(t)

1 1 8 1 7/8 1/8 exp(−1/8) = 0.882

2 6 6 2 4/6 2/6 exp{−(1/8 + 2/6)} = 0.632

3 8 4 1 3/4 1/4 exp{−(1/8 + 2/6 + 1/4)} = 0.492

4 9 2 1 1/2 1/2 exp{−(1/8 + 2/6 + 1/4 + 1/2)} = 0.297
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3.3 The Breslow Estimator (cont’d)
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3.3 The Breslow Estimator (cont’d)

� The difference between the Kaplan-Meier and the Breslow estimators is always very
small

◃ as n → ∞ the two estimates are equivalent

� The Breslow estimator is biased upwards, especially close to zero, but it has lower
variance

◃ if the largest observed time T in the data set is an event, then ŜKM(t) = 0
whereas ŜB(t) is positive
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3.3 The Breslow Estimator (cont’d)

R> The Breslow estimator of the survival function is again computed using function
survfit(), however now the type argument needs to be specified – for the
Stanford data we have

Brs <- survfit(Surv(time, status) ~ 1, data = stanford2,

type = "fleming-harrington")

plot(Brs)
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3.3 The Breslow Estimator (cont’d)

� The variance for the Breslow estimator is based on a similar approach as for the
Kaplan-Meier estimator

� The same also holds for the calculation of the 95% confidence intervals

◃ that is, confidence intervals are computed for logH(t) and then back-transformed
using the relation

exp
[
− exp

{
95% CI for logH(t)

}]
to obtain confidence intervals for S(t)
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3.3 The Breslow Estimator (cont’d)
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3.3 The Breslow Estimator (cont’d)

� As before, we observe that the two estimators are indistinguishable

� The Kaplan-Meier is more popular

� However, a lot of theoretical developments in statistics have been based on the
Breslow estimator
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3.4 Comparing Survival Functions

� We have 2 groups of patients

◃ treatment vs placebo

◃ females vs males

◃ history of diabetes, Yes vs No

◃ . . .

� Question of Interest: how can we compare these groups with respect to survival

� We can estimate separate survival curves for the 2 groups,
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3.4 Comparing Survival Functions (cont’d)
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3.4 Comparing Survival Functions (cont’d)

� but how to compare these survival curves?

� We could compare at a specific time point

� At which time point?

◃ start of follow-up

◃ end of follow-up

◃ intermediate points

◃ . . .
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3.4 Comparing Survival Functions (cont’d)
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3.4 Comparing Survival Functions (cont’d)

� Not very informative because the difference between the survival curves can be
greater at some time points than others

� Alternatively, it seems more appropriate to compare the 2 survival curves over the
whole follow-up period

� Formally, we are interested in testing the following set of hypotheses

∣∣∣∣∣∣ H0 : the distribution of survival times is the same for the 2 groups

Ha : it is not the same

∣∣∣∣∣∣
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3.4 Comparing Survival Functions (cont’d)

� The most famous statistical test to test this hypothesis is the Mantel-Haenszel Test
(aka Log-Rank Test)

� This is a nonparametric test

◃ no distributional assumption is made for the survival times of the 2 groups

� The philosophy behind it is to construct 2× 2 contingency tables for each unique
event time, and compare observed with expected numbers of events.
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3.4 Comparing Survival Functions (cont’d)

� In particular, let t(i) denote the ith ordered event time in the 2 groups combined

Group 1 Group 2 Total

Event d1i d2i di

No Event r1i − d1i r2i − d2i ri − di

At risk r1i r2i ri

◃ dji is the number of subjects experiencing the event at time t(i) in group j

◃ rji is the number of subjects at risk at time t(i) in group j

◃ di is the total number of subjects experiencing the event

◃ ri is the total number of subjects at risk
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3.4 Comparing Survival Functions (cont’d)

� In the case of no ties, one of d1i and d2i will be 1 and the other 0

� Under the null hypothesis (i.e., the population survival curves are the same in the 2
groups), we can estimate the expected number of subjects experiencing the event at
time t(i)

Êji =
dirji
ri

� The variance of Êji can be estimated by

var(Êji) =
r1ir2idi(ri − di)

r2i (ri − 1)
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3.4 Comparing Survival Functions (cont’d)

� We construct this 2× 2 contingency table for every observed event time t(1), . . . , t(m)

� Then, the log-rank test has the form of a standard X2 statistic, i.e.,

X2 =

(
m∑
i=1

d1i − Ê1i

)2

m∑
i=1

var(Ê1i)

� Under the null hypothesis, this statistic is asymptotically distributed as χ2
1
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3.4 Comparing Survival Functions (cont’d)

� Example: for the Renal Graft failure data we are interested in testing whether the
survival curve of males is different from the one of females
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3.4 Comparing Survival Functions (cont’d)
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3.4 Comparing Survival Functions (cont’d)

R> The Log-Rank test is computed using function survdiff() – for the Renal data we
used

survdiff(Surv(Time, failure) ~ gender, data = rgf)
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3.4 Comparing Survival Functions (cont’d)

� The performance of the Log-Rank Test is compromised when

◃ censoring is informative

◃ the hazard of an event in the one group is not proportional to the hazard of an
event in the other group (proportional hazards assumption)

� Feature: it places the same weight on all follow-up times
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3.4 Comparing Survival Functions (cont’d)
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3.4 Comparing Survival Functions (cont’d)

� An alternative test to compare the survival curves, is the modified by Peto and Peto
Gehan-Wilcoxon test

� Compared to the log-rank test, this test

◃ is more powerful when the hazard functions of the 2 groups are not proportional

◃ puts more emphasis on earlier event times
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3.4 Comparing Survival Functions (cont’d)

� The Peto-Wilcoxon statistic has a similar form as the X2 statistic of the log-rank test

W =

{
m∑
i=1

ri(d1i − Ê1i)

}2

m∑
i=1

r2i var(Ê1i)

which weighs the differences between observed and expected deaths in group 1 by the
factor ri – asymptotically (i.e., in large samples) W has a χ2

1 distribution

� Example: to illustrate the difference between the two tests, we compare with both
the survival curves of males versus females for the Lung data set
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3.4 Comparing Survival Functions (cont’d)
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3.4 Comparing Survival Functions (cont’d)
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3.4 Comparing Survival Functions (cont’d)

� Log-rank test

◃ X2 = 10.3, df = 1, p = 0.00131

� Peto & Peto modification of the Gehan-Wilcoxon test

◃ X2 = 12.7, df = 1, p = 0.00036

� In both cases the result is significant, but the p-value from the Log-rank test is
almost 4 times the p-value of the Peto & Peto modified Gehan-Wilcoxon test

◃ the survival curves are much closer at the end of the follow-up than in the
beginning
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3.4 Comparing Survival Functions (cont’d)

R> The Peto & Peto modified Gehan-Wilcoxon test is again computed using function
survdiff(); however, we need to set argument rho to 1 – for the Lung data we
used

survdiff(Surv(time, status == 2) ~ sex, data = lung, rho = 1)
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3.4 Comparing Survival Functions (cont’d)

� Which of the 2 tests should be preferred?

◃ if the survival curves cross, then both tests are not optimal

◃ check if the proportional hazards assumption is (seriously) violated using the
cumulative Hazards plot

◃ the log-rank test will be more powerful if the proportional hazards assumption is
valid

◃ otherwise use the Peto-Wilcoxon test

� However, it would not be fair to decide which test to use based on where the survival
curves are further apart, i.e.,

◃ differences in earlier vs later survival times
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3.5 Review of Key Points

� We need special notation to take into account censored data

◃ Ti observed event time

◃ δi equals 1 if Ti is a true event, and 0 if it is a censoring time

� Estimators of the survival function

◃ Kaplan-Meier

◃ Breslow
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3.5 Review of Key Points (cont’d)

� Statistical tests to compare survival functions

◃ log-rank test

◃ Gehan-Wilcoxon test
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Part IV

Regression Models for Time-to-Event Data
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4.1 More Complex Research Questions

� We have seen how we can compare the survival curves of groups of patients

◃ log-rank test

◃ Peto & Peto modified Gehan-Wilcoxon test

� However, in many cases we may have more complex research questions – for example,

◃ what is the effect of weight on survival (continuous covariate which we do not
want to categorize)

◃ what is the effect of treatment if we control for other variables (e.g., age at
baseline, history of other diseases, etc.)
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4.1 More Complex Research Questions (cont’d)

� To handle such type of questions we will use statistical models

� Statistical models are usually developed for one of the following reasons

◃ effect estimation

◃ hypothesis testing

◃ prediction

� Different modelling strategies apply depending on the reason for which we develop a
statistical model
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4.2 Accelerated Failure Time Models

� In standard statistics we have the Simple Linear Regression Model :

Yi = β0 + β1Xi1 + β2Xi2 + . . . + βpXip + εi

where

◃ Yi denotes the value of the response variable for the ith subject

◃ Xi1, . . . , Xip denote the value of the p explanatory variables (aka covariates)

◃ β0, . . . , βp regression coefficients

◃ εi random error terms – usually

εi ∼ N (0, σ2)
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4.2 Accelerated Failure Time Models (cont’d)

� For survival data we have two complications:

◃ the response variable is Time, which is always positive

◃ censoring

� The solution to the first problem is simple, namely

Use log T ∗
i instead of T ∗

i as a response variable

� Therefore, we obtain the model

log T ∗
i = β0 + β1Xi1 + β2Xi2 + . . . + βpXip + εi
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4.2 Accelerated Failure Time Models (cont’d)

� This model is known as the:

Accelerated Failure Time Model
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4.2.1 AFT Models – Estimation

� The implications of censoring are twofold

◃ estimation is more difficult from a theoretical point of view (but nowadays
straightforward with modern computer software)

◃ sensitivity to distributional assumptions for the error terms

* contrary to the linear regression model which is relatively robust against
misspecification of the errors’ distribution
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4.2.1 AFT Models – Estimation (cont’d)

� Therefore, AFT models are not only based on the normal distribution but other
distributions as well

◃ Student’s-t distribution – heavier tails than the normal

◃ Logistic distribution

◃ Extreme value distribution – this corresponds to the Weibull distribution for Ti,
and it also has as a special case the Exponential distribution

◃ . . .
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4.2.1 AFT Models – Estimation (cont’d)

� The estimation of the parameters in the AFT model is typically based on the
Maximum Likelihood (ML) method

� A (brief) review of ML: we want to find the values of the parameters that are more
‘likely’ in the light of the data

� As measure of likelihood we use the density function but we treat it as a function of
the parameters given the sample at hand

L(θ) =

n∏
i=1

f (yi; θ)

where yi are the data, and θ the parameters

Survival Analysis 119



4.2.1 AFT Models – Estimation (cont’d)

� The most ‘likely’ parameter values in the light of the data are the values that
maximize the likelihood function

� For numerical reasons, it is more convenient to work with the log-likelihood function

ℓ(θ) =

n∑
i=1

log f (yi; θ)

� The value of θ that maximizes L(θ) also maximizes ℓ(θ) ⇒ sufficient to maximize
ℓ(θ)
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4.2.1 AFT Models – Estimation (cont’d)

� ML for censored data requires special treatment because not all subject provide the
same kind of information

� Remember: the observed event time Ti is the true failure times T
∗
i if subject i had

the event or the last time point at which we know this subject was still alive (i.e., in
this case T ∗

i > Ti) – (see Section 3.1)

� Therefore, we have two sources of information in the log-likelihood function

◃ subjects who experience the event ⇒ we use f (Ti; θ), the density function of the
assumed distribution for Ti

◃ subjects who did not experience the event ⇒ we use Pr(T ∗
i > Ti) = S(Ti; θ), the

survival function of the assumed distribution for Ti
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4.2.1 AFT Models – Estimation (cont’d)

� Thus, the likelihood and log-likelihood functions take the form

L(θ) =

n∏
i=1

f (Ti; θ)
δi × S(Ti; θ)

1−δi ⇒

ℓ(θ) =

n∑
i=1

δi log f (Ti; θ) + (1− δi) log S(Ti; θ)

where

◃ Ti denotes the observed event times, and δi is the event indicator

◃ θ denotes all model parameters, i.e., the β’s and the variance parameter of the
error terms σ2
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4.2.1 AFT Models – Estimation (cont’d)

� An alternative formulation of the log-likelihood (especially useful for proportional
hazards models that we will see later) is in terms of the hazard function

ℓ(θ) =

n∑
i=1

δi log h(Ti; θ)−H(Ti; θ)

where we use the relations (see Section 2.5)

h(t) =
f (t)

S(t)

S(t) = exp{−H(t)}
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4.2.1 AFT Models – Estimation (cont’d)

� The Maximum Likelihood Estimates (MLEs) cannot be obtained analytically

� Therefore, to find the MLEs we use optimization algorithms that maximize the
log-likelihood with respect to θ numerically

◃ Newton-Raphson algorithm

◃ quasi-Newton algorithm

� These algorithms are implemented in standard software, such as R and SAS
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4.2.1 AFT Models – Estimation (cont’d)

� The obtained MLEs, which are usually denoted as θ̂, are asymptotically (i.e., when
the sample size is large) normally distributed

θ̂ ∼ N
(
θ0, {I(θ0)}−1

)
where

◃ θ0 denotes the true parameter values

◃ I(θ0) Fisher Information matrix
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4.2.2 AFT Models – Interpretation of Parameters

� The model is

log T ∗
i = β0 + β1Xi1 + β2Xi2 + . . . + βpXip + εi

� One-unit change in variable X1 corresponds to

log T ∗
i = β0 + β1x + β2Xi2 + . . . + βpXip

log T ∗
i = β0 + β1(x + 1) + β2Xi2 + . . . + βpXip

� Therefore,

β1 = log T ∗
i − log T ∗

i
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4.2.2 AFT Models – Interpretation of Parameters

� In general, one-unit change in variable Xj, (j = 1, . . . , p) corresponds to

◃ a βj change in the average log T ∗
i

◃ multiplies average T ∗
i by a factor of exp(βj)

� Now it is more clear where the name Accelerated Failure Time models stems from

◃ the regression coefficients β directly quantify whether the survival time accelerates
or decelerates for a one-unit change in the covariate values
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4.2.2 AFT Models – Interpretation of Parameters

� Example: for the PBC data, we are interested in the treatment effect on survival
times after correcting for the effects of Gender and Age at baseline

� To put it in a regression model notation

log T ∗
i = β0 + β1Treati + β2Sexi + β3Agei + εi

we are interested in β1

� We fit the model assuming normal error terms
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4.2.2 AFT Models – Interpretation of Parameters

� The results are

est. (s.e.)

β0 – Intercept 4.42 (0.60)

β1 – D-penicil 0.21 (0.19)

β2 – Female 0.30 (0.28)

β3 – Age −0.05 (0.06)
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4.2.2 AFT Models – Interpretation of Parameters

� The coefficient for the active treatment is β1 = 0.21

� This means that for patients of the same gender and of the same age at baseline,

◃ the log survival time is 0.21 larger on average for patients receiving D-penicil
compared to patients receiving placebo

◃ the average survival time for the D-penicil patients is exp(0.21) = 1.23 times the
average survival time of the placebo patients
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4.2.2 AFT Models – Interpretation of Parameters

R> AFT models are fitted using function survreg(). The dist argument specifies the
assumed distribution for T ∗

i (not the error terms εi) – for the PBC data the following
code produces the fit under the Weibull and log-normal distributions:

survreg(Surv(years, status2) ~ drug + sex + age, data = pbc2.id,

dist = "weibull")

survreg(Surv(years, status2) ~ drug + sex + age, data = pbc2.id,

dist = "lognormal")
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4.2.2 AFT Models – Interpretation of Parameters

R> The available distributions for T ∗
i in R are:

T ∗
i log T ∗

i

Weibull / Exponential Extreme Value

log-Normal Normal

log-Logistic Logistic

Normal —

Logistic —
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4.2.2 AFT Models – Interpretation of Parameters
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4.2.2 AFT Models – Interpretation of Parameters
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4.2.3 AFT Models – Sensitivity Analysis

� Sensitivity analysis under different error distributions

Expontl Weibull log-Normal log-Logistic

est. (s.e.) est. (s.e.) est. (s.e.) est. (s.e.)

Intercept 4.33 (0.52) 4.14 (0.48) 4.42 (0.60) 4.00 (0.55)

D-penicil 0.14 (0.17) 0.13 (0.16) 0.21 (0.19) 0.15 (0.17)

Female 0.48 (0.22) 0.44 (0.20) 0.30 (0.28) 0.38 (0.24)

Age −0.04 (0.01) −0.04 (0.07) −0.05 (0.06) −0.04 (0.01)
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4.2.3 AFT Models – Sensitivity Analysis (cont’d)

� We observe that the distributional assumptions for the error terms have an effect on
the derived parameter estimates and standard errors

� For instance, the gender effect ranges

◃ from 0.30 (s.e. = 0.28) for the log-normal model

◃ to 0.48 (s.e. = 0.22) for the exponential model

� We will come back to this later!
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4.2.4 AFT Models – Displaying Effects

� Regression models often contain several explanatory variables, possibly interacting
with each other ⇒ it is difficult to understand how the relationships between these
explanatory variables and the response variable interplay

� Solution: communicate the results of a statistical model using Effect Plots

◃ a picture is worth a 1000 words

� What are Effect Plots

◃ choose a specific effect, i.e., a specific combination of the levels of the covariates

* for categorical covariates, specific categories

* for continuous covariates, specific quantiles or range of values

◃ calculate the fitted average, including also the standard error of the fit
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4.2.4 AFT Models – Displaying Effects (cont’d)

◃ display this fitted average with the associated 95% pointwise Confidence Intervals,
preferably using trellis plots

� Example: for the AFT model fitted to the PBC data, we display how the average
survival time of female patients changes with respect to the age at baseline,
separately for the 2 treatment groups

� In model terms

◃ Treat: both groups are considered, i.e., ‘placebo’ and ‘D-penicil’

◃ Sex: set to ‘female’

◃ Age: varies from the minimum observed age to the maximum
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4.2.4 AFT Models – Displaying Effects (cont’d)

� Based on the AFT model on p.128 and the results on p.129, we can calculate the
average log failure time as estimated by the model

Placebo, Age = 30 ⇒ log T̂ ∗
i = 4.42 + 0.30− 0.05× 30 = 3.27

D-penicil, Age = 30 ⇒ log T̂ ∗
i = 4.42 + 0.21 + 0.30− 0.05× 30 = 3.48

Placebo, Age = 40 ⇒ log T̂ ∗
i = 4.42 + 0.30− 0.05× 40 = 2.78

D-penicil, Age = 40 ⇒ log T̂ ∗
i = 4.42 + 0.21 + 0.30− 0.05× 40 = 2.99

Placebo, Age = 50 ⇒ log T̂ ∗
i = 4.42 + 0.30− 0.05× 50 = 2.30

D-penicil, Age = 50 ⇒ log T̂ ∗
i = 4.42 + 0.21 + 0.30− 0.05× 50 = 2.51
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4.2.4 AFT Models – Displaying Effects (cont’d)

� And then we can transform back to the original time scale using exp(), i.e.,

Placebo, Age = 30 ⇒ T̂ ∗
i = exp(4.42 + 0.30− 0.05× 30) = 26.19

D-penicil, Age = 30 ⇒ T̂ ∗
i = exp(4.42 + 0.21 + 0.30− 0.05× 30) = 32.38

Placebo, Age = 40 ⇒ T̂ ∗
i = exp(4.42 + 0.30− 0.05× 40) = 16.14

D-penicil, Age = 40 ⇒ T̂ ∗
i = exp(4.42 + 0.21 + 0.30− 0.05× 40) = 19.95

Placebo, Age = 50 ⇒ T̂ ∗
i = exp(4.42 + 0.30− 0.05× 50) = 9.95

D-penicil, Age = 50 ⇒ T̂ ∗
i = exp(4.42 + 0.21 + 0.30− 0.05× 50) = 12.30
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4.2.4 AFT Models – Displaying Effects (cont’d)

� In addition, for the estimated log T̂ ∗
i we also obtain a standard error – using this

standard error we can calculate 95% pointwise confidence intervals

log T̂ ∗
i ∓ 1.96× s.e.(log T̂ ∗

i )

which can also be transformed to the original scale

exp
{
log T̂ ∗

i ∓ 1.96× s.e.(log T̂ ∗
i )
}
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4.2.4 AFT Models – Displaying Effects (cont’d)
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4.2.4 AFT Models – Displaying Effects (cont’d)

R> To produce effects, first you fit the desired AFT model using survreg()

fit <- survreg(Surv(years, status2) ~ drug + sex + age,

data = pbc2.id, dist = "lognormal")
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4.2.4 AFT Models – Displaying Effects (cont’d)

R> At the second stage you need to construct a data frame that contains the
combination of covariates for which you would like to compute effects

ND <- expand.grid(

age = seq(27, 78, length.out = 20),

sex = factor("female", levels = c("male", "female")),

drug = c("placebo", "D-penicil")

)
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4.2.4 AFT Models – Displaying Effects (cont’d)

R> This data frame is then used in the predict(), which provides estimates for the
desired effects and their standard errors

prs <- predict(fit, ND, se.fit = TRUE, type = "lp")

ND$pred <- prs[[1]]

ND$se <- prs[[2]]

ND$lo <- exp(ND$pred - 1.96 * ND$se)

ND$up <- exp(ND$pred + 1.96 * ND$se)

ND$pred <- exp(ND$pred)
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4.2.4 AFT Models – Displaying Effects (cont’d)

R> Finally we plot the result

library("lattice")

xyplot(pred + lo + up ~ age | drug, data = ND, type = "l",

lty = c(1, 2, 2), col = "black", lwd = 2, xlab = "Age",

ylab = "Survival Time")
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4.2.5 AFT Models – Hypothesis Testing

� As we have seen, one of the purposes of modelling is to test complex hypothesis of
scientific interest – in general, we may be interested in

H0 : θ = θ0
Ha : θ ̸= θ0

� Since we have fitted the AFT model under maximum likelihood, the standard
statistical tests are available

� That is we can choose from

◃ Wald test ◃ Likelihood Ratio test

◃ Score test
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� The Wald test is defined as

(θ̂a − θ0)
⊤{vâr(θ̂a)}−1(θ̂a − θ0) ∼ χ2

p

where

◃ θ̂a the maximum likelihood estimate under the alternative hypothesis

◃ vâr(θ̂a) =
{
−∂2ℓ(θ)/∂θ⊤∂θ

∣∣
θ=θ̂a

}−1
denotes the covariance matrix of the MLEs

◃ p denotes the number of parameters being tested

� The Wald test requires fitting the model only under the alternative hypothesis
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� The Score test is defined as

S(θ̂0)⊤vâr(θ̂0)S(θ̂0) ∼ χ2
p

where

◃ θ̂0 the maximum likelihood estimate under the null hypothesis

◃ S(θ) = ∂ℓ(θ)/∂θ denotes the score vector

◃ vâr(θ̂0) denotes the covariance matrix of the MLEs

◃ p denotes the number of parameters being tested

� The Score test requires fitting the model only under the null hypothesis
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� The likelihood ratio test (LRT) is defined as

−2× {ℓ(θ̂0)− ℓ(θ̂a)} ∼ χ2
p

where

◃ ℓ(·) the value of the log-likelihood function

◃ θ̂0 the maximum likelihood estimate under the null hypothesis

◃ θ̂a the maximum likelihood estimate under the alternative hypothesis

◃ p denotes the number of parameters being tested

� The LRT requires fitting the model under both the null & alternative hypotheses
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� Asymptotically (i.e., for large samples) these three tests are equivalent

� Advice: prefer to use the likelihood ratio test over the other two

� Why:

◃ it has better theoretical properties

◃ it makes you carefully think about the hypotheses being tested

� Caveat: if you have missing data in the variable(s) being tested then you have to
work with complete cases ⇒ decreased efficiency
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� Example: in the AIDS data set we assume that the average failure time may be
different

◃ for males and females (main effect of Sex), and

◃ for patients with AZT intolerance (main effect of AZT), but also that

◃ the effect of AZT intolerance on the average failure time is not expected to be the
same in males and females (interaction effect)

� We are interested in testing whether AZT intolerance has any effect at all in the
average failure time (overall effect of AZT)
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� The full model (i.e., the model under the alternative hypothesis)

log T ∗
i = β0 + β1Sexi + β2AZTi + β3Sex:AZTi + εi

we fit the model assuming the extreme value distribution for the error terms (Weibull
distribution for T ∗

i )

� The reduced model (i.e., the model under the null hypothesis) must be a special
case of the full model

log T ∗
i = β0 + β1Sexi + εi
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� The models are

H0 : log T ∗
i = β0 + β1Sexi + εi

Ha : log T ∗
i = β0 + β1Sexi + β2AZTi + β3Sex:AZTi + εi

� Therefore, the hypothesis that we are interested in is

H0 : β2 = β3 = 0

Ha : at least one of β2 and β3 is different from 0
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� Understanding the models:

◃ reference levels: for Sex is ‘female’ and for AZT is ‘failure’

Female, AZT Fail ⇒ log T ∗
i = β0 + εi

Male, AZT Fail ⇒ log T ∗
i = β0 + β1 + εi

Female, AZT Intol ⇒ log T ∗
i = β0 + β2 + εi

Male, AZT Intol ⇒ log T ∗
i = β0 + β1 + β2 + β3 + εi
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� Understanding the models:

◃ reference level for Sex is ‘female’

Female ⇒ log T ∗
i = β0 + εi

Male ⇒ log T ∗
i = β0 + β1 + εi
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

� Likelihood ratio test

◃ log-likelihood under the reduced model ℓ(θ̂0) = −826.18

◃ log-likelihood under the alternative model ℓ(θ̂a) = −813.02

◃ parameters being tested p = 2

◃ LRT = −2× {−826.18− (−813.02)} = 26.32, df = 2, p-value < 0.001
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4.2.5 AFT Models – Hypothesis Testing (cont’d)

R> The LRT and the associated p-value is computed by the anova() method. This
function calculates the LRT based on two fitted AFT models – the user is responsible
to supply nested models for the LRT to be valid

fit.null <- survreg(Surv(Time, death) ~ gender,

data = aids.id)

fit.alt <- survreg(Surv(Time, death) ~ gender * AZT,

data = aids.id)

anova(fit.null, fit.alt)

Survival Analysis 158



4.2.6 AFT Models – Checking Assumptions

� All statistical models are based on assumptions

� In order the derived results from a model to be valid, these assumptions need to hold
or at least not to be severely violated

� For the AFT model the assumptions are

◃ linearity (to be discussed later – see Section 4.5.1)

◃ additivity (to be discussed later – see Section 4.5.2)

◃ error terms distribution
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4.2.6 AFT Models – Checking Assumptions (cont’d)

� We rewrite the AFT model

log T ∗
i = β0 + β1Xi1 + β2Xi2 + . . . + βpXip + σεi ⇒

εi = {log T ∗
i − (β0 + β1Xi1 + β2Xi2 + . . . + βpXip)}/σ

� Thus, under the AFT model we can check the assumptions for the error terms using
the residuals

ri = {log Ti − (β̂0 + β̂1Xi1 + β̂2Xi2 + . . . + β̂pXip)}/σ̂
where

◃ β̂ denotes the estimated regression coefficients

◃ σ̂ the estimated scale parameter of the error terms
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4.2.6 AFT Models – Checking Assumptions (cont’d)

� The error terms are defined with respect to the true failure times T ∗
i . However, the

residuals are defined based on the observed failure times Ti

� Thus, when Ti is censored ri will be censored as well

� Censoring must be taken into account when using the residuals to check the AFT
model assumptions

� For instance, we can use the Kaplan-Meier estimate of ri and compare it with the
assumed survival function for the error terms
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4.2.6 AFT Models – Checking Assumptions (cont’d)

� Example: we display the AFT residuals for the Weibull model fitted to

◃ the AIDS data set using as only covariate the randomized treatment

◃ the Stanford data set with only an intercept term

� In particular, we compare

◃ the Kaplan-Meier estimate of the survival function of ri, with

◃ the survival function of the Extreme Value distribution (this is the distribution
which we have assumed for the error terms)

� If the model fits the data well, the two survival functions should be close to each other
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4.2.6 AFT Models – Checking Assumptions (cont’d)
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4.2.6 AFT Models – Checking Assumptions (cont’d)
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4.2.6 AFT Models – Checking Assumptions (cont’d)

� We observe that the Weibull model provides a much better fit to the AIDS data set
than to the Stanford data set

� Therefore, conclusions extracted from the fit of the Weibull model to the Stanford
data set should be treated with some caution!
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4.2.6 AFT Models – Checking Assumptions (cont’d)

R> The AFT residuals can be easily calculated using their definition

# fit the model

fit.weib <- survreg(Surv(Time, death) ~ drug, data = aids.id,

dist = "weibull")

# extract fitted values

fits <- fit.weib$linear.predictors

# compute the AFT residuals

resids <- (log(fit.weib$y[, 1]) - fits) / fit.weib$scale
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4.2.6 AFT Models – Checking Assumptions (cont’d)

R> Following we need to compute the Kaplan-Meier estimate of the survival function of
these residuals and compare it with the survival function of the distribution of the
error terms

resKM <- survfit(Surv(resids, death) ~ drug, data = aids.id)

# plot the KM estimate

plot(resKM, mark.time = FALSE)

# superimpose the survival function of the assumed

# extreme value distribution

xx <- seq(min(resids), max(resids), length.out = 35)

yy <- exp(- exp(xx))

lines(xx, yy, col = "red", lwd = 2)
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4.3 Cox Model

� So far we have seen that parametric models (i.e., models which make specific
distributional assumptions (e.g., log-Normal, Weibull, log-Logistic, etc.) for the event
time data) are sensitive, mainly due to censoring

� That is, changing the distribution of the error terms in the AFT model can have a
profound effect on parameter estimates and standard errors, and as a result on
inference

� This problem has lead to the development of Semiparametric Regression Models

◃ i.e., regression models (parametric component) that make no assumptions for the
distribution of the failure times (nonparametric component)
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4.3 Cox Model (cont’d)

� The most well known semiparametric regression model for survival data is the

Cox Proportional Hazards Model

proposed by sir D.R. Cox in 1972 (Journal of the Royal Statistical Society, Series B)
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4.3.1 Cox Model – Common Ratios in Statistics

� Before going into more details about the Cox model,

� Let’s review some common ratios in statistics

◃ odds ratio

◃ risk ratio (aka relative risk)

◃ hazards ratio
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4.3.1 Cox Model – Common Ratios in Statistics

� Odds ratio

OR =
pA/(1− pA)

pB/(1− pB)
=

pA(1− pB)

pB(1− pA)

is the ratio of odds of the event occurring in group A to the odds of it occurring in
group B

◃ pA the probability of event in group A

◃ pB the probability of event in group B
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4.3.1 Cox Model – Common Ratios in Statistics

� Risk ratio (Relative Risk)

RR =
pA
pB

is the ratio of the probability of event in group A to the probability of event in group
B
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4.3.1 Cox Model – Common Ratios in Statistics

� Hazards ratio

HR =
hA(t)

hB(t)

is the ratio of the hazard of an event at time t for group A to the hazard of an event
at t for group B

� The Hazard Ratio is related to the Relative Risk but they are not exactly equivalent

� The difference between the two can be illustrated in the following hypothetical
example
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4.3.1 Cox Model – Common Ratios in Statistics

� Say that we have 3 patients with increasingly worse prognostic factors

◃ e.g., higher age corresponds to higher risk, and Patient 1 is 20 years old, Patient 2
is 40 years old and Patient 3 is 60 years old

� We assume proportional hazards, that is

hA(t) = 0.5hB(t)

where hA(t) is the hazard of the treated group, and hB(t) the hazard of the control

� Remember: the survival and hazard functions are related (see Section 2.5)

S(t) = exp

(
−
∫ t

0

h(s) ds

)
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4.3.1 Cox Model – Common Ratios in Statistics

� Therefore we have

SA(t) = exp
(
−
∫ t

0

hA(s) ds
)

= exp
(
−
∫ t

0

0.5hB(s) ds
)

=

{
exp

(
−
∫ t

0

hB(s) ds
)}0.5

= {SB(t)}0.5
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4.3.1 Cox Model – Common Ratios in Statistics

Patient 5 Y. Survival Risk Ratio

B A (A/B)

1 0.90 0.95 0.05/0.10 = 0.50

2 0.50 0.71 0.29/0.50 = 0.58

3 0.20 0.45 0.55/0.80 = 0.69

� The risk ratio depends on the survival rate of the B patients
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4.3.2 Cox Model – Formulation

� The Cox model assumes that the effect of covariates is multiplicative in the hazard
scale, i.e.,

hi(t) = h0(t) exp(β1Xi1 + β2Xi2 + . . . + βpXip) ⇒

log hi(t) = log h0(t) + β1Xi1 + β2Xi2 + . . . + βpXip

where

◃ Xi1, . . . , Xip denote p explanatory variables (aka covariates) – note: there is no
intercept term!

◃ hi(t) denotes the hazard of an event for patient i at time t

◃ h0(t) denotes the baseline hazard
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4.3.2 Cox Model – Formulation (cont’d)

� The baseline hazard h0(t) represents the hazard of an event when all the covariates
or all the βs are 0

� That is, h0(t) represents the instantaneous risk of experiencing the event at time t,
without the influence of any covariate

� Therefore

◃ if a covariate has a beneficial effect, it will decrease this baseline risk

◃ if, on the other hand, it has a harmful effect, it will increase h0(t)
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4.3.3 Cox Model – Estimation

� The Cox model makes no assumptions for the baseline hazard function
(nonparametric component)

� The model parameters β1, . . . , βp are estimated using a Semi-Parametric Maximum
Likelihood (SPML) estimation approach

� In particular, β1, . . . , βp are obtained as the values that maximize the log partial
likelihood function

pℓ(β) =

n∑
i=1

δi

[
(X⊤

i β)− log
{∑
Tj≥Ti

exp(X⊤
j β)

}]
where X⊤

i β = β1Xi1 + β2Xi2 + . . . + βpXip
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4.3.3 Cox Model – Estimation (cont’d)

� The obtained Maximum Partial Likelihood Estimates, which are usually denoted as β̂,
are asymptotically (i.e., when the number of events is large) normally distributed

β̂ ∼ N
(
β0, {Ip(β0)}−1

)
where

◃ β0 denotes the true values of parameters β

◃ {Ip(β0)} expected information matrix based on the partial likelihood
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4.3.3 Cox Model – Estimation (cont’d)

� Partial likelihood can be considered as measure of how well the model can order the
patients with respect to their survival time.

� Problem: some times the hazard ratio for one covariate can be 0 – for example,
consider the following data set

Alive Dead

Treatment 40 0

Control 30 10

Because the treatment group has no deaths its hazard rate is 0
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4.3.3 Cox Model – Estimation (cont’d)

� If a Cox model is fitted to such data, then the estimated regression coefficient for
treatment is ∞

� Software packages of course cannot detect this problematic case and will usually
produce a large in magnitude estimate for β

� Therefore, if in the software output you observe a relatively large value for a β, be
alarmed and check your data to see why is this happening (e.g., make tables)
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4.3.4 Cox Model – Interpretation of Parameters

� The model is

log hi(t) = log h0(t) + β1Xi1 + β2Xi2 + . . . + βpXip

� One-unit change in variable X1, (j = 1, . . . , p) corresponds to

log hi(t) = log h0(t) + β1x + β2Xi2 + . . . + βpXip

log hi(t) = log h0(t) + β1(x + 1) + β2Xi2 + . . . + βpXip

� Therefore,

β1 = log hi(t)− log hi(t) ⇒ exp(β1) = hi(t)/hi(t)
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4.3.4 Cox Model – Interpretation of Parameters

� In general, one-unit change in variable Xj, (j = 1, . . . , p) corresponds to

◃ a βj change of log{hi(t)/h0(t)}

◃ increases hi(t)/h0(t) by a factor of exp(βj) (if βj < 0, then exp(βj) < 1 and
therefore the risk is decreased)

� Note: the interpretation of βj (j = 1, . . . , p) is different from the one in the AFT
model
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4.3.4 Cox Model – Interpretation of Parameters

� Example: for the PBC data, we are interested in the treatment effect on the hazard
of an event after correcting for the effects of Gender and Age at baseline

� To put in a regression model notation

log hi(t) = log h0(t) + β1Treati + β2Sexi + β3Agei

hi(t) = h0(t) exp
(
β1Treati + β2Sexi + β3Agei

)
which means that we are interested in β1
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4.3.4 Cox Model – Interpretation of Parameters

� The results are

est. exp(est.) (s.e.)

β1 – D-penicil −0.15 0.86 (0.17)

β2 – Female −0.47 0.62 (0.22)

β3 – Age 0.42 1.04 (0.01)
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4.3.4 Cox Model – Interpretation of Parameters

� The estimate for the treatment effect is β1 = −0.15

� This means that for patients of the same gender and of the same age at baseline,

◃ the log hazard of the D-penicillamine group is at any fixed point in time 0.15
lower than the log hazard of the placebo group

◃ the hazard ratio of the D-penicillamine group to the placebo group is
exp(−0.15) = 0.86
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4.3.4 Cox Model – Interpretation of Parameters

� For quantitative covariates β quantifies the effect of one-unit change in the hazard

� For instance, for age β3 = 0.42. Therefore, for patients of the same sex and who
receive the same treatment,

◃ the log hazard is increased by 0.42 for each one year increase in the baseline age

◃ the hazard of a patient at d+ 1 years old to the hazard of a patient at d years old
is exp(0.42) = 1.04
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4.3.4 Cox Model – Interpretation of Parameters

R> Cox models are fitted using function coxph(). This has the same syntax as
survreg() – for instance, for the PBC data the following code fits the Cox model
that contains the main effects of ‘drug’, ‘sex’ and ‘age’:

coxph(Surv(years, status2) ~ drug + sex + age, data = pbc2.id)
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4.3.5 Cox Model – Displaying Effects

� As also mentioned in the case of AFT models, Effect Plots are the optimal way for
communicating the information in a model

� Example: we fit a Cox model for the Lung data that contains

◃ main effect of gender

◃ main effect of age at baseline

◃ main effect of Karnofsky performance score

◃ interaction effect of gender with age
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4.3.5 Cox Model – Displaying Effects (cont’d)

� In model notation we have

hi(t) = h0(t) exp
(
β1Sexi + β2Agei + β3Karnoi + β4Sex:Agei

)
� We are interested in seeing how the risk of death (at any time point) changes with
increasing age at baseline and separately for males and females

� Since in the Cox model we also corrected for the effect of the Karnofsky performance
score, we need to specify a value for it

◃ a reasonable choice is the median Karnofsky score, which in our sample equals 80
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4.3.5 Cox Model – Displaying Effects (cont’d)

� The results are

est. exp(est.) (s.e.)

Female 0.26 1.30 (1.22)

Age 0.02 1.02 (0.01)

Karn Score −0.01 0.99 (0.01)

Age:Female −0.01 0.99 (0.02)
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4.3.5 Cox Model – Displaying Effects (cont’d)

� Based on these results, we can calculate the average log hazard rate as estimated by
the model (‘M’ denotes males and ‘F’ females)

M, Age = 45 ⇒ log{hi(t)/h0(t)} = 0.02× 45− 0.01× 80 = −0.35

F, Age = 45 ⇒ log{hi(t)/h0(t)} = 0.26 + (0.02− 0.01)× 45− 0.01× 80 = −0.63

M, Age = 55 ⇒ log{hi(t)/h0(t)} = 0.02× 55− 0.01× 80 = −0.18

F, Age = 55 ⇒ log{hi(t)/h0(t)} = 0.26 + (0.02− 0.01)× 55− 0.01× 80 = −0.58

M, Age = 65 ⇒ log{hi(t)/h0(t)} = 0.02× 65− 0.01× 80 = −0.02

F, Age = 65 ⇒ log{hi(t)/h0(t)} = 0.26 + (0.02− 0.01)× 65− 0.01× 80 = −0.54

Survival Analysis 193



4.3.5 Cox Model – Displaying Effects (cont’d)

� In addition, for the estimated log ĤR = log{hi(t)/h0(t)} we also obtain a standard
error – using this standard error we can calculate 95% pointwise confidence intervals

log ĤR∓ 1.96× s.e.(log ĤR)

which can also be transformed to the hazard scale by

exp
{
log ĤR∓ 1.96× s.e.(log ĤR)

}
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4.3.5 Cox Model – Displaying Effects (cont’d)
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4.3.5 Cox Model – Displaying Effects (cont’d)

R> The construction of effect plots for Cox models proceeds in the same manner as for
AFT models – we start by fitting the desired Cox model

fit <- coxph(Surv(time, status) ~ age * sex + ph.karno, data = lung)
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4.3.5 Cox Model – Displaying Effects (cont’d)

R> Following we construct a data frame that contains the combination of covariates for
which we would like to compute effects

ND <- expand.grid(

age = seq(39, 82, length.out = 20),

sex = c("male", "female"),

ph.karno = 80

)
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4.3.5 Cox Model – Displaying Effects (cont’d)

R> This data frame is then used in the predict(), which provides estimates for the
desired effects and their standard errors

prs <- predict(fit, newdata = ND, type = "lp", se.fit = TRUE)

ND$pred <- prs[[1]]

ND$se <- prs[[2]]

ND$lo <- ND$pred - 1.96 * ND$se

ND$up <- ND$pred + 1.96 * ND$se
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4.3.5 Cox Model – Displaying Effects (cont’d)

R> Finally, we plot the result

library("lattice")

xyplot(pred + lo + up ~ age | sex, data = ND,

type = "l", lty = c(1, 2, 2), lwd = 2, col = "black",

abline = list(h = 0, lty = 2),

xlab = "Age", ylab = "log Hazard Ratio")
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4.3.5 Cox Model – Displaying Effects (cont’d)

� Note that effect plots can be even more flexible

� For example, we may be interested in how the risk of death changes

◃ as baseline age increases

◃ separately for males and females

◃ as the Karnofsky score increases from its 1st quantile value (75), to the median
value (80) to the 3rd quantile (90)
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4.3.5 Cox Model – Displaying Effects (cont’d)
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4.3.5 Cox Model – Displaying Effects (cont’d)

� A peculiarity in the Cox model arises when we compute the log hazard ratio for the
reference level of continuous covariate

◃ the standard error for the predicted by the Cox model value is effectively 0

� Example: for the Lung data we fit a Cox model in which we correct for centered age
(i.e., age−mean(age)), and we produce the corresponding effect plot
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4.3.5 Cox Model – Displaying Effects (cont’d)
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4.3.6 Cox Model – Hypothesis Testing

� Hypothesis testing for the Cox model follows the same principles as in AFT models

� Namely for testing the general hypothesis,

H0 : β = β0
Ha : β ̸= β0

� Remember: β have the interpretation of log hazard ratio (see Section 4.3.4)
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4.3.6 Cox Model – Hypothesis Testing (cont’d)

� We can use

◃ Wald test ◃ Likelihood Ratio test (LRT)

◃ Score test

� Important (technical) difference: the Score and LRT statistics are now based on the
partial likelihood and not on the full likelihood, as in AFT models

� Special Case: when we are interested in testing whether the hazard ratio for a
categorical covariate (e.g., treatment) is 1, then

◃ Score test of the Cox model exactly equivalent to the log-rank test
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4.3.6 Cox Model – Hypothesis Testing (cont’d)

� Asymptotically (i.e., when the number of events is large) the three test statistics are
equivalent and converge to the same value (and therefore p-value)

� In some cases we may observe differences

� Example: in the PBC data set we are interested to know whether gender has a
significant impact on survival
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4.3.6 Cox Model – Hypothesis Testing (cont’d)

Statistic df p-value

Wald 8.87 1 0.0029

Score (log-rank) 9.18 1 0.0024

LRT 7.73 1 0.0054

� In all cases the result is significant; however, we observe some differences in the value
of the statistics and therefore in the level of the p-value

� Advice: (as in AFT models) prefer to use the likelihood ratio test over the other two
because it has better statistical properties
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4.3.6 Cox Model – Hypothesis Testing (cont’d)

� Example: in the PBC data set we account for

◃ main effect of treatment

◃ main effect of age at baseline

◃ interaction effect between treatment and age

and we are interested in the overall treatment effect

� In model terms

H0 : hi(t) = h0(t) exp
(
β2Agei

)
Ha : hi(t) = h0(t) exp

(
β1Treati + β2Agei + β3Treat:Agei

)
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4.3.6 Cox Model – Hypothesis Testing (cont’d)

� Understanding the models (reference level for Treat is ‘placebo’):

◃ Under H0

hi(t) = h0(t) exp
(
β2Agei

)
◃ Under Ha

placebo ⇒ hi(t) = h0(t) exp
(
β2Agei

)
D-penicillamine ⇒ hi(t) = h0(t) exp

(
β1 + (β2 + β3)Agei

)
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4.3.6 Cox Model – Hypothesis Testing (cont’d)

� In this example

H0 : β1 = β3 = 0

Ha : at least one is different from 0

� Likelihood ratio test

◃ log partial-likelihood under the reduced model pℓ(β1 = 0, β̂2, β3 = 0) = −712.41

◃ log partial-likelihood under the alternative model pℓ(β̂1, β̂2, β̂3) = −711.29

◃ parameters being tested p = 2

◃ LRT = −2× {−712.41− (−711.29)} = 2.24, df = 2, p-value = 0.326
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4.3.6 Cox Model – Hypothesis Testing (cont’d)

R> As for AFT models, the LRT and the associated p-value for Cox models is computed
by the anova() method. Again, this function accepts two arguments, namely the
fitted Cox models under the null and alternative hypothesis

fit.null <- coxph(Surv(years, status2) ~ age, data = pbc2.id)

fit.alt <- coxph(Surv(years, status2) ~ drug*age, data = pbc2.id)

anova(fit.null, fit.alt)
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4.3.7 Cox Model – Sample Size

� Usually, before starting a study we need to know how many subjects we should enroll
such that we have a high chance to find a statistical significant difference ⇒
Sample size determination

� For instance, say we have two groups A and B and we want to detect a hazard ratio
of magnitude exp(β) for a prespecified power level

hA(t) = hB(t) exp(β)

� Remember: power is the probability that we will find a statistically significant
difference between the two groups, given that this difference truly exists
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4.3.7 Cox Model – Sample Size (cont’d)

� Under the Score test for the Cox model (which is equivalent to the log-rank test) we
have the formula

# events =
(cα + zpower)

2

p(1− p)β2

where

◃ β is the log hazard ratio

◃ p is the proportion of patients in the active treatment group

◃ α is the Type I error, and cα the critical value for the test

◃ zν is the upper ν quantile of the standard normal distribution

� Note: the power depends on the number of events and not on the sample size
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4.3.7 Cox Model – Sample Size (cont’d)

� Number of events required under equal allocation in the two groups, with two-sided
α = 0.05

exp(β)

Power 1.10 1.20 1.40 1.60 1.80 2

50% 1692 462 136 70 44 32

70% 2718 743 218 112 71 51

80% 3456 944 277 142 91 65

90% 4627 1264 371 190 190 87
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4.3.7 Cox Model – Sample Size (cont’d)

R> The following function computes the number of deaths based on the formula
presented in p.213

deaths <- function (beta, p, power, alpha = 0.05) {

# ’beta’ the log hazard ratio

# ’p’ the proportion of subjects in the treatment group

# ’power’ the desired level of power

# ’alpha’ the Type I error

q <- 1 - p

z.power <- qnorm(power)

ca <- abs(qnorm(alpha / 2))

round((ca + z.power)^2 / (p * q * beta^2))

}
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4.3.7 Cox Model – Sample Size (cont’d)

R> For instance, to compute the number of events required for a hazard ratio of 1.15,
for two groups with the same number of patients on average and power of 90% we
use:

deaths(log(1.15), 0.5, 0.9)
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4.3.7 Cox Model – Sample Size (cont’d)

� Challenge: how many patients to enroll in order to obtain the required number of
events

◃ enrollment period & enrollment rate

◃ study closer

◃ survival probabilities for the control group

� How can we have a rough idea about the log hazard ratio β, in advance

◃ for rare events we have exp(β) ≈ FA(t)/FB(t) (F (t) denotes the CDF; check
Section 2.2)

◃ that is, a treatment that halves the hazard ratio will approximately halve the
proportion of events
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4.3.8 Cox Model – Checking Assumptions

� The main motivation to introduce the semiparametric Cox model was to avoid the
impact of a possibly wrong assumption for the distribution of the event times

� However, all statistical models make assumptions – in the Cox model we make no
assumption for the distribution of T ∗

i but we do make other assumptions:

◃ linearity (to be discussed later – see Section 4.5.1)

◃ additivity (to be discussed later – see Section 4.5.2)

◃ proportional hazards (PH)

� If one or more of these assumptions are seriously violated, then the results we obtain
from the Cox model may not be trustworthy!
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� In practice, PH means that the effect of a covariate in the risk of an event is
constant over time

� Some times the PH assumption may not be reasonable, e.g.,

◃ the new treatment requires a time period to start working ⇒ at the beginning of
follow-up the risk of the treatment group is the same as in the control group,
however we expect that later the risk of the treatment group will decrease

◃ . . .
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� How can we test for PH? We distinguish between

◃ categorical covariates with a small number of levels (e.g., treatment, gender, etc.)

◃ continuous covariates (e.g., age, weight, etc.)

� For categorical covariates we can compare appropriately transformed Kaplan-Meier
estimates of the survival functions of the different groups
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� In particular, under the PH assumption we have (see pp. 173–175)

SA(t) =
{
SB(t)

}exp(βXi) ⇒

log SA(t) = exp(βXi) log SB(t) ⇒

− log SA(t) = exp(βXi){− log SB(t)} ⇒

log{− log SA(t)} = βXi + log{− log SB(t)}

� Therefore, if PH holds and we plot the Kaplan-Meier estimates of log{− log SA(t)}
and log{− log SB(t)}, we expect two approximately parallel lines
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� Example: for the PBC data set we want to test for a impact of cholesterol on the
hazard of event – we fit the Cox model

hi(t) = h0(t) exp(βXi)

where Xi = 1 for patients who had serum cholesterol greater that 280, and Xi = 0
otherwise

� We obtain HR = 1.226, p-value = 0.267

� We test whether the assumption holds graphically by comparing the Kaplan-Meier
estimates of log{− log S(t)} for the two groups
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4.3.8 Cox Model – Checking Assumptions (cont’d)
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� We observe that the PH assumption seems questionable

� Note: PH may not hold even if the survival curves do not cross over

� Example: for the AIDS data set we want to test for differences in the risk of death
between the different AZT groups

◃ AZT intolerance

◃ AZT failure

Survival Analysis 224



4.3.8 Cox Model – Checking Assumptions (cont’d)
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� The survival curves do not cross but the log{− log S(t)} lines are not parallel
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4.3.8 Cox Model – Checking Assumptions (cont’d)

R> To transform the Kaplan-Meier estimate of S(t) to − log{− log S(t)} we use the
fun argument of the plot() method

fit <- survfit(Surv(years, status2) ~ factor(serChol > 280),

data = pbc2.id)

par(mfrow = c(1, 2))

plot(fit, mark.time = FALSE, xlab = "Years", ylab = "Survival",

col = 1:2)

plot(fit, mark.time = FALSE, fun = function (s) -log(-log(s)),

xlab = "Years", ylab = "-log(- log(Survival))", col = 1:2)
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� When the covariate has a few levels, the Kaplan-Meier can be easily used to test the
PH assumption

� However, when the covariate has many levels or is continuous, the Kaplan-Meier plot
is not useful for discerning either the fact or the pattern of non-proportional hazards

◃ we could collapse some levels of the categorical covariate or discritize the
continuous covariate but there is no objective way to do this

� To deal with this we will (hypothetically for now) consider an extension of the Cox
model
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� Cox model with a time-dependent coefficient

hi(t) = h0(t) exp{Xiβ(t)}

� The impact of covariate X on the hazard varies with time

� Grambsch and Therneau (Biometrika, 1994) have shown that, if β̂ is the estimated
coefficient from the ordinary (time-independent) Cox model, then

β(t) ≈ β̂ + E{s∗(t)}

where s∗(t) is the scaled Schoenfeld residual
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� The formula and rationale behind the scaled Schoenfeld residuals is rather technical

◃ we will not give them here (see Therneau & Grambsch (2000) for more info)

� Plotting scaled Schoenfeld residuals against time or suitable transformation of time,
reveals violations of the PH assumption

� An additional advantage of the scaled Schoenfeld residuals is that they can be used
to test PH both graphically and via a formal statistical test
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� Example: for the Lung data we are interested in the relationship between the
Karnofsky performance score and the risk of death

� The ordinary Cox model gives a significant result:

◃ HR = 0.984, p-value = 0.005

� We check the PH assumption using the scaled Schoenfeld residuals

◃ we plot the approximated β(t) for Karnofsky score against time
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4.3.8 Cox Model – Checking Assumptions (cont’d)
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� We have some indications that the effect is not constant in time

� We can formally test for non-proportionality

◃ correlation between scaled Schoenfeld residuals and time

H0 : ρ = 0 (correlation 0 means PH holds)

Ha : ρ ̸= 0

◃ for the Karnofsky score: ρ̂ = 0.234, χ2 = 8.08, df = 1, p-value = 0.0045
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� So far we have used β(t) vs t, but we can also try other time transformations

◃ β(t) vs log(t)

◃ β(t) vs Kaplan-Meier transform of t

� The last option is more difficult to interpret in practice,

◃ (it is calculated as the inverse CDF, with CDF(t) = 1− ŜKM(t))

◃ and it aims to spread the residuals evenly in time, avoiding problems with outliers

� We illustrate for the previous example
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4.3.8 Cox Model – Checking Assumptions (cont’d)
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� The spread of the residuals is not the same for all time scales

◃ for t more residuals to the left – for log(t) more to the right – for KM(t) more
evenly spaced

� This can have a (substantial) effect on the resulting inferences for non-proportionality

ρ Statistic p-value

t 0.234 8.08 0.0045

log(t) 0.139 2.85 0.0913

KM(t) 0.232 7.95 0.0048

Survival Analysis 236



4.3.8 Cox Model – Checking Assumptions (cont’d)

� The optimal transformation depends on the specific data set at hand

� General guideline: a transformation that spreads the residuals evenly over time such
that the plot and the test are not affected by outliers
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4.3.8 Cox Model – Checking Assumptions (cont’d)

R> The test for non-proportional hazards based on the scaled Schoenfeld residuals is
calculated by function cox.zph() – argument transform specifies the time scale

fit.ph <- coxph(Surv(time, status) ~ ph.karno, data = lung)

zph1 <- cox.zph(fit.ph, transform = "identity")

zph2 <- cox.zph(fit.ph, transform = "log")

zph3 <- cox.zph(fit.ph, transform = "km")

zph1

zph2

zph3
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4.3.8 Cox Model – Checking Assumptions (cont’d)

R> The plot() method is used to produce the plots of β(t) versus the selected time
scales

par(mfrow = c(2, 2))

plot(zph1)

abline(h = 0, lty = 2, lwd = 2, col = "red")

plot(zph2)

abline(h = 0, lty = 2, lwd = 2, col = "red")

plot(zph3)

abline(h = 0, lty = 2, lwd = 2, col = "red")
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� What if the Proportional Hazards assumption is violated?

◃ does it really matter? How serious is the non-proportionality (see p. 232)

� If proportionality is not seriously affected, then what we will obtain is the average
Hazard Ratio, averaged over the event times
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4.3.8 Cox Model – Checking Assumptions (cont’d)

� If non-proportionality is large, then

◃ incorporate covariates with nonproportional effects as stratification factors into
the model (see Section 5.2)

◃ partition the time axis: the PH assumption may hold over short time periods

* caveat: less efficient

◃ model non-proportionality using time-dependent covariates (see Section 5.3)

◃ use nonproportional hazards models, such as AFT models (see Section 4.2)

* caveat: if PH does hold for some covariates, the AFT model will assume that it
does not
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4.4 Parametric PH Models

� The Cox model is a semiparametric proportional hazards model

◃ we have made no assumptions for the baseline hazard

� However, we also have parametric proportional hazard models

◃ we assume that baseline hazard has a specific parametric form

� If we assume that time-to-event T ∗
i follows a Weibull distribution then we obtain the

model
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4.4 Parametric PH Models (cont’d)

hi(t) = h0(t) exp
(
β1Xi1 + β2Xi2 + . . . + βpXip

)
where

h0(t) = ϕξtξ−1

� The interpretation of the β parameters is exactly the same as in the Cox model

� The other parameters control the shape and scale of the distribution of T ∗
i
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4.4 Parametric PH Models (cont’d)
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4.4 Parametric PH Models (cont’d)

� Example: we compare the Cox and Weibull models for the Stanford data where we
control for the effects of age and t5 mismatch score

Cox Weibull

value (std. err.) value (std. err.)

age 0.0296 (0.0114) 0.0315 (0.0117)

t5 0.1704 (0.1833) 0.1738 (0.1823)

� We observe small differences between the two models

◃ for this data set the Weibull assumption seems reasonable – this however is not
always the case
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4.4 Parametric PH Models (cont’d)

� The Weibull model (and its special case the Exponential model) is the only model
that has both an AFT and PH formulation

log T ∗
i = β0 + βaft

1 Xi + σεi ⇔

hi(t) = ϕξtξ−1 exp(βph
1 Xi)

with the following correspondence

ϕ = exp(−β0/σ), βph
1 = −βaft

1 /σ, ξ = 1/σ
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4.4 Parametric PH Models (cont’d)

R> Using the previously defined relations we can transform the AFT estimated
regression coefficients to PH coefficients for the Weibull model

fit.weib <- survreg(Surv(time, status) ~ age + t5,

data = stanford2)

betasPH <- - coef(fit.weib) / fit.weib$scale
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4.4 Parametric PH Models (cont’d)

R> For the calculation of standard errors of the PH estimated coefficients, we need to
apply the Delta method

# we obtain covariances for the logarithm of the scale parameter

v.betas <- vcov(fit.weib)

transf <- list(~ -x1/exp(x4), ~ -x2/exp(x4), ~ -x3/exp(x4))

library(msm) # load package ’msm’

ses <- deltamethod(transf, c(coef(fit.weib), log(fit.weib$scale)),

v.betas)

# We compare with the Cox model

fit.cph <- coxph(Surv(time, status) ~ age + t5, data = stanford2)

summary(fit.cph)

cbind("coef" = betasPH, "se(coef)" = ses)
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4.5.1 Modelling Strategies – Linearity

� When modelling continuous covariates it is customary to assume that such covariates
affect linearly the log hazard ratio (in PH models) or the average log failure time (in
AFT models)

� However, this assumption is very restrictive and in many real applications it may not
hold

◃ increasing age from 20y to 25y does not increase the risk in the same amount as
increasing age from 60y to 65y

� Wrongly assuming linearity may affect the resulting inference for such covariates as
well as the predictive ability of the model
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4.5.1 Modelling Strategies – Linearity (cont’d)

� Therefore, it is highly advisable not to restrict a priori the effects of continuous
predictors to be linear and let the data tell you the true story

� The easiest way to relax linearity is to assume polynomial effects

β0 + β1Xi + β2X
2
i + β3X

3
i + . . .

� However, polynomials have some disadvantages

◃ they are not local ⇒ changing one data point will affect the overall fit

◃ numerically ill-conditioned (however, not too worrisome with modern software)
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4.5.1 Modelling Strategies – Linearity (cont’d)
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4.5.1 Modelling Strategies – Linearity (cont’d)
−

1
0

1
2

3

Polynomial

Age
20 25 30 35 40 45 50

4th degree polynomial fit

Survival Analysis 251



4.5.1 Modelling Strategies – Linearity (cont’d)
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4.5.1 Modelling Strategies – Linearity (cont’d)

� An alternative approach to relax the linearity assumption of continuous predictors is
to use regression splines

� Idea behind regression splines: use polynomials but locally

◃ split the range of values of the continuous predictor into subintervals using a series
of knots

◃ within each subinterval assume that the effect of the predictor is nonlinear and
can be approximated by a cubic polynomial

◃ put extra smoothness assumptions, i.e., the cubic polynomial fits between
neighboring subintervals must be connected
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4.5.1 Modelling Strategies – Linearity (cont’d)
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4.5.1 Modelling Strategies – Linearity (cont’d)

� There are several types of regression splines available

◃ advisable to use natural cubic splines, which assume linearity outside the boundary
knots – better statistical properties

� Other approaches (we are not going to discuss them here)

◃ penalized splines

◃ local regression

◃ wavelets

◃ . . .
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4.5.1 Modelling Strategies – Linearity (cont’d)
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4.5.1 Modelling Strategies – Linearity (cont’d)
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4.5.1 Modelling Strategies – Linearity (cont’d)

� As also in the case of the polynomials, we can tune the degree of nonlinearity by
specifying the degrees of freedom for the spline

◃ increasing the degrees of freedom results in more flexible modelling

◃ bias-variance tradeoff
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4.5.1 Modelling Strategies – Linearity (cont’d)
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4.5.1 Modelling Strategies – Linearity (cont’d)

� Example: for the PBC data we are interested in the effect of serum Bilirubin levels in
the hazard of death

◃ we will fit two Cox models,

◃ one where the effect of serum Bilirubin is restricted to be linear, and

◃ one where the effect of serum Bilirubin is allowed to be nonlinear

� Note: these are still PH models – relaxing linearity it does not mean that we allow the
effect to change in time
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4.5.1 Modelling Strategies – Linearity (cont’d)
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4.5.1 Modelling Strategies – Linearity (cont’d)

R> Polynomial and spline nonlinear effects can be easily specified in both AFT and Cox
models, within the formula argument

R> Orthogonal polynomials are defined using function poly()

# 3rd degree polynomial for serum Bilirubin

coxph(Surv(years, status2) ~ poly(serBilir, 3), data = pbc2.id)

(Orthogonal polynomials provide the same fit as the standard polynomials but with
better numerical properties)
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4.5.1 Modelling Strategies – Linearity (cont’d)

R> Natural cubic splines are defined using function ns() of package splines

# natural cubic splines for serum Bilirubin with 3 df

coxph(Surv(years, status2) ~ ns(serBilir, 3), data = pbc2.id)
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4.5.2 Modelling Strategies – Additivity

� The additivity assumption can be relaxed by considering meaningful interaction effects

Model I hi(t) = h0(t) exp
(
β1Agei + β2Sexi

)
Model II hi(t) = h0(t) exp

(
β1Agei + β2Sexi + β3Sex:Agei

)
� Model I contains only additive effects whereas Model II contains also the interaction
of age with gender

◃ Model I assumes that the age effect is the same for males and females

◃ Model II relaxes this assumption
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4.5.2 Modelling Strategies – Additivity (cont’d)
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4.5.2 Modelling Strategies – Additivity (cont’d)
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4.5.2 Modelling Strategies – Additivity (cont’d)

� More care is required in extracting conclusions from models with interaction terms

� For instance, in Model II let the reference level for gender being ‘Male’, then

◃ β1 is the effect of Age for males

◃ β2 is the effect of females but for 0 years old!

◃ (we could center Age, in which case β2 is the effect of females for the mean age)

� However, it is clear that it is difficult to interpret β1 and β2 in isolation
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4.5.2 Modelling Strategies – Additivity (cont’d)

� For Hypothesis testing:

Null or Alternative Hypothesis In terms of Parameters

Effect of age is independent of sex H0 : β3 = 0

Age effects are parallel

Age and sex are additive

Age interacts with sex Ha : β3 ̸= 0

Sex modifies effect of age

Age and sex are nonadditive
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4.5.2 Modelling Strategies – Additivity (cont’d)

Null or Alternative Hypothesis In terms of Parameters

Age is not associated with risk of an event H0 : β1 = β3 = 0

Age is associated with risk of an event Ha : β1 ̸= 0 or β3 ̸= 0

Sex is not associated with risk of an event H0 : β2 = β3 = 0

Sex is associated with risk of an event Ha : β2 ̸= 0 or β3 ̸= 0

Neither Age nor Sex are associated H0 : β1 = β2 = β3 = 0

with risk of an event

Either Age or Sex are associated Ha : β1 ̸= 0 or β2 ̸= 0 or β3 ̸= 0

with risk of an event
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4.5.2 Modelling Strategies – Additivity (cont’d)

� Interactions can be easily combined with splines

� Example: for the PBC data set we want to investigate the effects of serum Bilirubin
and presence of ascites in the risk of death – we relax

◃ the linearity assumption using splines for serum Bilirubin, and

◃ the additivity assumption by taking the interaction of the nonlinear terms with
ascites
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4.5.2 Modelling Strategies – Additivity (cont’d)
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4.5.3 Modelling Strategies – Overfitting

� Fitting too complex models (i.e., models with too many parameters) may result in
Overfitting

� Overfitting has two important consequences for the fitted models

◃ estimated effects have increased variance ⇒ influences confidence intervals and
p-values

◃ predicted values from the model do not agree with observed values from future
data sets (from the same population) ⇒ the model does not validate well
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4.5.3 Modelling Strategies – Overfitting (cont’d)

� To avoid overfitting and depending on the amount of information we have available in
the data, there is only a limited number of parameters that we can reliably estimate

� Note: the number of parameters is not, in general, equal to the number of covariates

◃ categorical covariates with k levels are represented by k − 1 dummy variables ⇒
they require k − 1 parameters

◃ allowing for nonlinearity with splines ⇒ number of parameters equals the number
of degrees of freedom
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4.5.3 Modelling Strategies – Overfitting (cont’d)

� For survival data the number of parameters we can reliably estimate is (rule of thumb)

# number of events

10
or

# number of events

15

� This number can be boosted a bit by censored observations in the case of
non-proportional hazards models
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4.5.4 Modelling Strategies – General

� General regression modelling strategies

� How to develop statistical models, with aim to

◃ effect estimation

◃ hypothesis testing

◃ prediction

� Most of these guidelines are not only applicable to regression models for time-to-event
data but also to other types of models (e.g., linear regression, logistic regression, etc.)
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4.5.4 Modelling Strategies – General (cont’d)

� How to spend your available number of parameters

◃ decide how important each one of the predictors is

* using prior subject-matter expert knowledge

* not using plots of each predictor with the outcome (this will lead to
overoptimistic p-values)

◃ if some levels of categorical predictors have very low frequencies consider
collapsing these levels with other levels

◃ for important continuous predictors relax the linearity assumption using splines

◃ consider meaningful interactions
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4.5.4 Modelling Strategies – General (cont’d)

◃ fit the model and check assumptions using residuals plots

◃ test the hypothesis of interest

◃ present the model using effect plots

◃ calculate predictions

� Test for complex terms

◃ try to simplify the model using global tests, i.e.,

◃ test all interaction terms simultaneously; if p > 0.15 all interaction terms can be
omitted

◃ apply an analogue global test for the nonlinear terms
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4.5.4 Modelling Strategies – General (cont’d)

� If the model is built with purpose to estimate a specific effect of interest and to test
a specific hypothesis, then

◃ do not conserve degrees of freedom for the predictor(s) of interest

◃ do not try to simplify the model by excluding insignificant predictors – in fact
p-values obtained by the full model fit will be more accurate
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4.6 Review of Key Points

� When we want to measure the effect of more than one predictors we use statistical
models for time-to-event data

� We have two main options

◃ Accelerated Failure Time (AFT) models

◃ Proportional Hazards (PH) models

� AFT models measure the effect of predictors on the average failure time

◃ they are the analogue of linear regression for event time data
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4.6 Review of Key Points (cont’d)

� PH models measure the effect of predictors on the risk of an event

� AFT models are mainly parametric

◃ they make specific assumptions for the distribution of the event times

◃ due to censoring they are sensitive to misspecification of this distribution

� This lead to the development of the semiparametric Cox PH model

◃ we make the PH assumption, i.e., the effect of covariate is multiplicative in the
hazard scale

◃ no assumption for the distribution of the event times
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4.6 Review of Key Points (cont’d)

� For both modelling frameworks we have seen

◃ how to estimate the model parameters

◃ interpretation of model parameters

◃ communicating the results of the model using effect plots

◃ hypothesis testing

◃ how to check the model assumptions

� In addition for the Cox model

◃ sample size calculations based on the score test
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4.6 Review of Key Points (cont’d)

� Regression modelling strategies

◃ develop models for effect estimation, hypotheses testing or prediction

◃ relax linearity of continuous predictors using splines

◃ decide how many parameters to include depending on the number of events

◃ decide how many degrees of freedom to spend for each covariate in advance
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Part V

Extensions of the Cox Model
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5.1 Expected Survival

� The Cox model describes the relationship between the survival curves of the different
levels of a covariate using a single number ⇒ the Hazard Ratio

� However, unfortunately, the interpretation of the HR is not that straightforward

◃ in many cases it is desirable to compare differences between groups in a more
easily interpretable scale

� What is often medically relevant is to compare survival probabilities

◃ e.g., how much greater is the probability of surviving at least 5 years in the
treatment group than the probability of surviving at least 5 years in the placebo
group
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5.1 Expected Survival (cont’d)

� Our aim is to obtain survival probabilities based on the output of the Cox model

� Remember:

◃ in the Cox model we do not need to estimate the baseline hazard – we leave it
completely unspecified; (see Section 4.3.2)

◃ however, the hazard is directly related to the survival function; (see Section 2.5)

◃ therefore in order to estimate survival probabilities we first need an estimator for
the baseline hazard function
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5.1 Expected Survival (cont’d)

� A semiparametric estimator of the survival function based on the output of the Cox
model is given by

ŜB(t) = exp
{
−Ĥ0(t) exp(β̂1Xi1 + β̂2Xi2 + . . . + β̂pXip)

}
where the baseline cumulative hazard is estimated by

Ĥ0(t) =

n∑
i=1

I(Ti ≤ t)δi∑
j∈Ri

exp(β̂1Xj1 + β̂2Xj2 + . . . + β̂pXjp)

with Ri = {j for which Tj ≥ Ti} denoting the risk set, i.e., the subjects which did
not have the event yet and are not censored
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5.1 Expected Survival (cont’d)

� This is, in fact, an extension of the Breslow estimator we have used for the
estimation of the survival function when we had no covariates (see Section 3.3)

� Its variance can be computed using similar arguments as in the no-covariates case

� Example: for the renal graft failure data we are interested in the 5 and 10 year
survival rates separately for male and female patients, controlling also for age and
weight
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5.1 Expected Survival (cont’d)

� The Cox model has the form

hi(t) = h0(t) exp
(
β1Sexi + β2Agei + β3Weighti

)
◃ HR Sex = 1.01, p = 0.130

◃ HR Age = 0.98, p = 0.011

◃ HR Weight = 1.25, p = 0.290

� The following figure depicts estimated survival curves separately for

◃ the median male (41y old, 68.3Kgr)

◃ the median female (43y old, 57.5Kgr)
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5.1 Expected Survival (cont’d)
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5.1 Expected Survival (cont’d)

� The next two figures illustrate, estimates of

◃ 5y and 10y survival for the median male, and median female

◃ 5y and 10y survival, for males of 68.3Kgr and

* 30.75 years old (Q1)

* 41 years old (Q2 - median)

* 51 years old (Q3)
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5.1 Expected Survival (cont’d)

Expected Survival

Males

Females

0.70 0.75 0.80 0.85 0.90

5 year Survival

0.70 0.75 0.80 0.85 0.90

10 year Survival
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5.1 Expected Survival (cont’d)

Expected Survival

Age Q1

Age Q2

Age Q3

0.65 0.70 0.75 0.80 0.85 0.90

5 year Survival

0.65 0.70 0.75 0.80 0.85 0.90

10 year Survival
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5.1 Expected Survival (cont’d)

� A strange result:

◃ the HR for Age is statistically significant different than 1 (HR Age = 0.98,
p = 0.011);

◃ however, the confidence intervals for 5y and 10y survival overlap for increasing Age

◃ how is this possible?

� Remember: we compare survival curves over the whole follow-up period (see Section 3.4)

◃ a significant HR does not mean that the survival curves differ everywhere

◃ for instance, the 95% confidence intervals at t = 0 will almost certainly always
overlap
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5.1 Expected Survival (cont’d)

R> Estimates of survival probabilities from Cox models are produced in a similar manner
as effect plots – we start with a fitted Cox model and a data frame that contains the
specific combinations of covariate values for which we wish to estimate survival

fit <- coxph(Surv(Time, failure) ~ weight + age + gender,

data = rgf)

ND <- with(rgf, data.frame(

weight = c(median(weight[gender == "male"]),

median(weight[gender == "female"])),

age = c(median(age[gender == "male"]),

median(age[gender == "female"])),

gender = c("male", "female")

))
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5.1 Expected Survival (cont’d)

R> The baseline survival function is estimated by survfit() – note that now the first
argument is not a formula (as when we used this function compute the
Kaplan-Meier estimate) but a fitted Cox model

R> The data frame that contains the specific combinations of covariate values is
supplied in argument newdata – the summary() method can be used to provide
survival probabilities estimates for specific follow-up times

sfit <- survfit(fit, newdata = ND)

sum.sfit <- summary(sfit, times = c(5, 10))

Survival Analysis 291



5.1 Expected Survival (cont’d)

R> The survival estimates with the associated 95% confidence intervals can be
extracted using

out <- rbind(ND, ND)

out$times <- gl(2, 2, labels = c("5 year", "10 year"))

out$surv <- c(t(sum.sfit$surv))

out$lower <- c(t(sum.sfit$lower))

out$upper <- c(t(sum.sfit$upper))

out
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5.2 Stratified Cox Model

� In many cases it may be unreasonable to assume that the baseline hazard is the same
for groups of patients

◃ multi-center clinical trials ⇒ varying patient populations are likely to have
different baseline survival curves

◃ . . .

� Violation of the proportional hazards assumption

◃ for categorical covariates ⇒ the log hazard functions of the different levels are not
parallel
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5.2 Stratified Cox Model (cont’d)

� The Stratified Cox Model allows for multiple strata that divide subject into disjoint
groups

hi(t) = h0k(t) exp(β1Xi1 + β2Xi2 + . . . + βpXip)

where

◃ each of the k = 1, . . . , K strata has a distinct baseline hazard h0k(t)

◃ the effect of covariates is the same for all strata (i.e., the coefficients β do not
depend on k)
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5.2 Stratified Cox Model (cont’d)

� Example: for the PBC data set we are interested in the main effects of age and
logarithm of serum Bilirubin – we present three analyses:

◃ with no stratification

◃ stratify for the different edema categories (3 categories)

◃ stratify for the different edema and gender categories (3× 2 = 6 categories)
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5.2 Stratified Cox Model (cont’d)

No Strata Edema Edema × Sex

Value Std. Err Value Std. Err Value Std. Err

Age 0.045 0.007 0.045 0.008 0.044 0.009

log ser Bilir 1.091 0.092 0.982 0.097 1.066 0.105

� We observe some differences, especially for the effect of log serum Bilirubin
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5.2 Stratified Cox Model (cont’d)

R> To fit the stratified Cox model we need to specify the stratification variables – in
coxph() we use function strata() within the formula argument

coxph(Surv(years, status2) ~ age + log(serBilir) + strata(edema),

data = pbc2.id)

R> More than one stratification variables are specified as multiple arguments in
strata()

coxph(Surv(years, status2) ~ age + log(serBilir) +

strata(edema, sex), data = pbc2.id)
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5.2 Stratified Cox Model (cont’d)

� The standard stratified Cox model assumes that the covariate effects are equal across
strata

◃ not always a reasonable assumption

� Interactions between strata and covariates can be easily included

◃ if all of the covariate by strata interaction terms are added, then the results are
identical to doing separate fits per stratum

� Example: in the stratified Cox model fitted in the PBC data set we are interested in
testing whether the effect of serum Bilirubin is equal among the different edema
categories
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5.2 Stratified Cox Model (cont’d)

Value Std. Err p-value

Age 0.043 0.008 < 0.001

log ser Bilir 1.082 0.118 < 0.001

log ser Bilir – edema no diuretics −0.022 0.241 0.926

log ser Bilir – edema despite diuretics −0.753 0.259 0.004

� The omnibus p-value for the interaction parameters is 0.024 ⇒ the effect of the log
serum Bilirubin is not equal among the edema categories
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5.2 Stratified Cox Model (cont’d)

R> Covariate by strata interactions are inlcuded in the standard way

coxph(Surv(years, status2) ~ age + log(serBilir) * strata(edema),

data = pbc2.id)
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5.2 Stratified Cox Model (cont’d)

� Estimating survival probabilities in stratified Cox models,

◃ a separate baseline hazard for each stratum, thus

◃ we obtain a different survival curve for each stratum

� Example: for the stratified Cox model fitted in the PBC data set we are interested to
estimate the survival function of 40 year old patient with serum Bilirubin equal to 2
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5.2 Stratified Cox Model (cont’d)
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5.2 Stratified Cox Model (cont’d)

� Advantages of stratification

◃ it gives the more general adjustment for a confounding variable

◃ available in standard software

� Disadvantages of stratification

◃ no direct estimate of the importance of the stratification factor is produced (no
p-value)

◃ large number of strata may result in decreased efficiency
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5.3 Time-Dependent Covariates

� In many cases, we are interested in the effect of covariates whose value changes in
time

◃ treatment (e.g., dose) changes with time

◃ time-dependent exposure (e.g., smoking)

◃ longitudinal measurements on the patient level (e.g., blood values)

◃ . . .

� Example: in the AIDS data set we have repeated measurements of the CD4 cell
count, which is a marker for the condition of the immune system
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5.3 Time-Dependent Covariates (cont’d)
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5.3 Time-Dependent Covariates (cont’d)
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5.3 Time-Dependent Covariates (cont’d)
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5.3 Time-Dependent Covariates (cont’d)

� There are two types of time-dependent covariates
(Kalbfleisch & Prentice, The Stat. Anal. of Failure Time Data, 2002)

◃ External (aka exogenous): the value of the covariate at time point t is not
affected by the occurrence of an event at time point u, with t > u

◃ Internal (aka endogenous): not External

� This is a difficult concept and we will try to explain it with an example. . .
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5.3 Time-Dependent Covariates (cont’d)

� Example: Consider a study on asthma, in particular on the time until an asthma
attack for a group of patients

� We have two time-varying covariates: Pollution levels & a biomarker for asthma

� Say a patient had an asthma attack at a particular time point u

◃ Pollution levels

* will the pollution levels at time t > u be affected by the fact that the patient
had an attack at u? ⇒ No

◃ Biomarker

* will the biomarker level at time t > u be affected by the fact that the patient
had an attack at u? ⇒ Yes
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5.3 Time-Dependent Covariates (cont’d)

� It is very important to distinguish between these two types of time-dependent
covariates, because it determines the type of analysis that it should be followed

� If we treat internal covariates as external, we may produce spurious results
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5.3 Time-Dependent Covariates (cont’d)

� The Cox model can be extended to handle external time-dependent covariates

hi(t) = h0(t) exp{β⊤Xi + α mi(t)}

where

◃ β⊤Xi = β1Xi1 + β2Xi2 + . . . + βpXip denotes the baseline covariates as we had
so far

◃ mi(t) denotes the value of the time-dependent covariate at time t

◃ α quantifies the effect of this covariate at time t to the hazard of an event at the
same time point
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5.3 Time-Dependent Covariates (cont’d)

� When we want to fit the Cox model taking into account the effect of external
time-dependent covariates we need to use the counting process formulation

◃ this is a rather technical subject which we will not describe in detail here
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5.3 Time-Dependent Covariates (cont’d)

� To use this formulation the data must be organized in a long format

Patient Start Stop Event mi(t) Age

1 0 135 1 5.5 45

2 0 65 0 2.2 38

2 65 120 0 3.1 38

2 120 155 1 4.1 38

3 0 115 0 2.5 29

3 115 202 0 2.9 29

... ... ... ... ...
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5.3 Time-Dependent Covariates (cont’d)

� Example: in the Stanford data

◃ we measure the time until patients die

◃ some patients received a heart transplantation

◃ the dichotomous covariate yes/no transplantation can be considered as an
external time-dependent covariate

◃ we are interested in testing whether transplantation has a beneficial effect in
survival
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5.3 Time-Dependent Covariates (cont’d)

� The model that we fit has the form

hi(t) = h0(t) exp{αmi(t) + βAgei}

where

◃ mi(t) = 1 if patient i had a transplantation at some time u ≤ t

◃ mi(t) = 0 if patient i did not have a transplantation by time t

� We obtain the results

◃ exp(α̂) = 0.995, p = 0.989

◃ transplantation does not improve survival
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5.3 Time-Dependent Covariates (cont’d)

R> Cox models with external time-dependent covariates are fitted using the counting
process notation – the data need to be arranged in the long format as in p.311

coxph(Surv(start, stop, event) ~ transplant, data = heart)
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5.3 Time-Dependent Covariates (cont’d)

� Note: even though time-dependent covariates may produce better insights for the
phenomenon under study, some times you may encounter surprising results

� Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to
test the effect of cigarette smoking on survival of patients who underwent coronary
artery surgery

◃ the estimated effect of current cigarette smoking was positive on survival although
not significant (i.e., patient who smoked had higher probability of survival)

◃ most of those who had died were smokers but many stopped smoking at the last
follow-up before their death
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5.3 Time-Dependent Covariates (cont’d)

� The approaches these authors used to take this feature into account were

◃ instead of the last they used the pre-last assessment as time-dependent covariate
(lagged covariates)

◃ to use the percentage of the follow-up period that the patient smoked

◃ both resulted in a statistically significant increased risk from cigarette smoking

� The choice of the functional form of a time-dependent covariate can have a
substantial impact on the derived results
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5.3 Time-Dependent Covariates (cont’d)

� Let’s turn our attention to internal covariates

◃ what are the challenges with such covariates and why the time-dependent Cox
model is inappropriate for them

� They have a stochastic nature

◃ they contain measurement error

◃ we do not have the complete history available
(by ‘history’ we mean the values at any time point)
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5.3 Time-Dependent Covariates (cont’d)
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5.3 Time-Dependent Covariates (cont’d)

� To solve this problem, a new class of statistical models has been developed that
jointly models the time-to-event outcome with the longitudinal responses

� Intuitively, these models reconstruct the history of the time-dependent covariate and
then this estimated history is included as a covariate in the survival model
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5.3 Time-Dependent Covariates (cont’d)

� To illustrate the virtues of joint modelling, we compare with the standard
time-dependent Cox model

◃ i.e., we ignore the measurement error in the CD4 cell count

Joint Model Naive TD Cox

value (std.err) value (std.err)

Treat 0.35 (0.15) 0.33 (0.15)

CD4 −1.10 (0.12) −0.72 (0.08)

� Clearly, there is a considerable effect of ignoring the measurement error, especially for
the effect of CD4!
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5.3 Time-Dependent Covariates (cont’d)
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5.3 Time-Dependent Covariates (cont’d)

R> Such joint models are fitted using functions from JM package

R> They require fitting separately a linear mixed effects model and a Cox models

R> A detailed example can be found in the Survival Analysis in R Companion
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5.4 Clustered Event Time Data

� In many case studies sample units are clustered

◃ patients are clustered within hospitals

◃ children are clustered with schools or families

◃ recurrent asthma attacks (cluster is the patient)

◃ . . .

� Subjects from the same cluster are expected to be (positively) correlated

◃ if a farmer treats his herd better than an other one, then his cows are expected to
live longer
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5.4 Clustered Event Time Data (cont’d)

� So far we have assumed that the time-to-event for one subject is completely
independent from the time-to-event of another subject

� However, subjects from the same cluster cannot be considered as independent

� Therefore, clustering must be taken into account in our analysis
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5.4 Clustered Event Time Data (cont’d)

� What are the implications of clustering

◃ it does not affect consistency

◃ it does affect efficiency

� In practice, this implies that

◃ the estimated effects (i.e., parameter estimates) from the Cox model are valid

◃ the estimated standard errors are not ⇒ we need to adjust them
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5.4 Clustered Event Time Data (cont’d)

� To estimate the standard errors taking into account clustering the grouped
Jackknife method works satisfactorily

vâr(β̂) =

(
C − p

C

) C∑
c=1

(β̂−c − β̂)(β̂−c − β̂)⊤

where

◃ C is the number of clusters

◃ p the number of parameters

◃ β̂ the parameter estimates using all the clusters

◃ β̂−c the parameter estimates excluding cluster c
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5.4 Clustered Event Time Data (cont’d)

� Example: the patients in the Lung data set are clustered in institution (we have
ignored this feature in the previous analyses of this data set)

◃ we fit a Cox model in which we correct for age, gender, and the Karnofsky
performance score
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5.4 Clustered Event Time Data (cont’d)

Value Std. Err. Std. Err. Ratio Std. Err.

Naive Jackknife Naive / Jackknife

Age 0.012 0.0094 0.0062 1.52 (52% ↑)

Sex −0.497 0.1679 0.1252 1.34 (34% ↑)

Karno −0.013 0.0059 0.0086 0.69 (31% ↓)

� We observe some considerable differences between the naive and jackknife standard
errors
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5.4 Clustered Event Time Data (cont’d)

R> To fit a marginal Cox model for clustered data we need to specify which
observations belong to the same cluster – this is achieved using function cluster()

within the formula argument of coxph()

R> By default both the naive and Jackknife (termed ‘robust’) standard errors are
included in the output

coxph(Surv(time, status) ~ age + cluster(inst), data = lung)
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5.4 Clustered Event Time Data (cont’d)

� An alternative approach to handle correlated event time data is to use frailty terms

hij(t) = h0(t) ωi exp(β1Xij1 + β2Xij2 + . . . + βpXijp)

where

◃ hij(t) is the hazard for subject j in cluster i

◃ ωi is the frailty term, which is an unobserved random variable that

* is shared in all subjects in the same cluster ⇒ induces positive correlation
between the subjects of each cluster

* explains heterogeneity between clusters
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5.4 Clustered Event Time Data (cont’d)

� Basic Assumption: given the frailty term subjects from the same cluster have
independent hazard functions – the log-likelihood can be written as (see p.123)

ℓ(θ) =

n∑
i=1

log

[∫ ni∏
i=1

{
h0(Tij)ωi exp(β

⊤Xij)
}δij

exp
{
−H0(Tij)ωi exp(β

⊤Xij)
}

f (ωi; σ) dωi

]
where

◃ we assume that ωi follows a distribution (e.g., Gamma, log-Normal, etc.), with
density f (ωi; σ)

◃ σ is a scale parameter that quantifies correlation within cluster ⇒ heterogeneity
between clusters
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5.4 Clustered Event Time Data (cont’d)

◃ maximizing the log-likelihood is a bit more difficult than for the Cox model, but it
is available in current software

� Important: the interpretation of parameters is different between

◃ Cox model with grouped jackknife variance estimator (marginal model)

◃ frailty models (conditional model)
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5.4 Clustered Event Time Data (cont’d)

� Example: for the Lung data set we fit a marginal Cox model and a frailty Cox model,
where in both we correct for the age effect

Marginal Frailty

Value Std. Err. Value Std. Err.

Age 0.0186 0.0071 0.0194 0.0093

σ — — 0.19

◃ exp(0.0194) = 1.020 is the hazard ratio for 1 year increase in age for patients in the
same institution

◃ exp(0.0186) = 1.018 is the hazard ratio for 1 year increase in age independently from
the institution (pooled effect)
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5.4 Clustered Event Time Data (cont’d)

R> Cox models with frailty terms are fitted similarly to marginal models – now function
frailty() is used within the formula argument of coxph() to identify subjects
belonging to the same cluster

coxph(Surv(time, status) ~ age + frailty(inst, df = 4), data = lung)
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5.4 Clustered Event Time Data (cont’d)

� Features of frailty models

◃ they directly provide a measure of the correlation between clusters

◃ they can be more efficient

◃ sensitivity in the assumed distribution for the frailty terms

◃ limited availability of model checking tools

� The choice between marginal and frailty models should be dictated by the focus of
inference, i.e., conditional versus marginal
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5.5 Competing Risks

� Often in clinical studies we are faced with multiple endpoints, e.g.,

◃ cancer studies: recurrence of the disease and death

◃ cancer studies: death from cancer and death due to other causes

◃ cardiovascular studies: nonfatal myocardial infraction and death

� In some cases it makes sense to combine the endpoints

◃ e.g., time until either recurrence of the disease or death (aka Disease Free
Survival)

� We end up with a single composite event of interest and therefore, all tools that we
have seen so far for the analysis of survival times can be used
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5.5 Competing Risks (cont’d)

� However, in some cases we may be interested in one of the possible events

◃ e.g., we are interested specifically in the time until recurrence of cancer but not in
the time until death

◃ or we are interested separately in the time until recurrence and the time until death

� Problem: occurrence of another event prevents occurrence of the event of main
interest

◃ e.g., for patients who died we can never observe the recurrence of cancer

� The simultaneous consideration of more than one events, which are exclusive with
each other is known as a Competing Risks problem
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5.5 Competing Risks (cont’d)

� Crucial distinction: are the competing risks independent?

◃ if yes, then treating all events from all other causes (except from the one of
interest) as censored will produce valid results

◃ if not, then treating all other events as censored will produce biased results

� Examples:

◃ in a study on the survival of cancer patients a patient dies in a car accident ⇒
independent endpoints

◃ in a study on the survival of cancer patients a patient dies from a heart attack ⇒
probably dependent endpoints

◃ in a study on patients with osteoporosis were are interested in the time-to-fracture;
however, some patients die ⇒ dependent or independent endpoints?
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5.5 Competing Risks (cont’d)

� Caveat: you cannot test for independence

◃ unless unverifiable assumptions are made

� Thus, if you are not sure if the independence assumption is satisfied, you should
always do an analysis that allows for dependent competing risks
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5.5 Competing Risks (cont’d)

� Notation for competing risks

◃ T ∗
1 , T

∗
2 , . . . , T

∗
K time-to-failure from each one of the K causes

◃ C censoring time (censoring independent of all T ∗
k , k = 1, . . . , K)

what we observe is

◃ T = min(T ∗
1 , T

∗
2 , . . . , T

∗
K, C)

◃ D = 0, 1, . . . , K with 0 denoting censored time, and D = k failure from cause k
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5.5 Competing Risks (cont’d)

� What is estimable from the available data is the cause-specific hazard function

hk(t) = lim
s→0

Pr(t ≤ T < t + s,D = k | T ≥ t)

s

which is the hazard of failing from cause k at time t

� Anything that can be derived (uniquely) from the cause-specific hazard is also
estimable
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5.5 Competing Risks (cont’d)

� Remember: based on the hazard function we can derive the survival function using
the relation (see Section 2.5)

Sk(t) = exp

{
−
∫ t

0

hk(u) du

}
which denotes the probability of failure from cause k after time t if

hj(t) = 0, for j = 1, . . . , K excluding k,

that is, in the absence of competing risks
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5.5 Competing Risks (cont’d)

� Therefore, Sk(t) denotes the survival function for cause k in a hypothetical
population where failure from other causes has been eliminated

◃ not very relevant for practical use (even though frequently used in medical papers)

� Note: if we use the Kaplan-Meier estimator to estimate the survival function treating
events from other causes as censored, then we actually estimate Sk(t)

◃ bias ⇒ the probability of failing is overestimated

� Need for more easily interpretable functions
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5.5 Competing Risks (cont’d)

� The Overall survival function

S(t) = exp

{
−

K∑
k=1

∫ t

0

hk(u) du

}

describes the probability of not having failed from any cause by time t

� The Cumulative incidence function of cause k

Fk(t) =

∫ t

0

hk(u)S(u) du

describes the probability of failing from cause k before time t
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5.5 Competing Risks (cont’d)

� The cumulative incidence function can be estimated in a similar manner as the
Kaplan-Meier estimate of the survival function

� Remember: the Kaplan-Meier estimator was based on the law of total probability (see

Section 3.2)

� We follow the notation of Section 3.2

◃ t1, t2, . . . , tm denote the unique event times in the sample at hand

◃ di is the number of events at time ti, from all causes

◃ dki is the number of events at time ti, from cause k

◃ ri the number of patients still at risk at time ti
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5.5 Competing Risks (cont’d)

� The overall survival function S(t) can be estimated using the Kaplan-Meier
estimator, without considering the cause of failure (see Section 3.2)

Ŝ(t) =
∏
i:ti≤t

ri − di
ri

� The cause-specific hazard function can be estimated by

ĥk(t) = Prob failing from cause k at time ti given survival up to time ti−1

=
dki
ri
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5.5 Competing Risks (cont’d)

� Using the definition of the cumulative incidence function

Fk(t) =

∫ t

0

hk(u)S(u) du

we obtain the estimator

F̂k(t) =
∑
i:ti≤t

ĥk(ti) Ŝ(ti−1)
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5.5 Competing Risks (cont’d)

� Example: in the PBC data and when interest is in the time until transplantation,
death is a competing risk (i.e., if a patient dies he can never have a transplantation)

� We compare the estimates of the cumulative incidence function for both events
(death and transplantation) using

◃ the naive Kaplan-Meier estimator (that treats events from other causes as
censored), and

◃ the estimator we derived previously
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5.5 Competing Risks (cont’d)
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5.5 Competing Risks (cont’d)

� As expected, we observe that the naive Kaplan-Meier overestimates the cumulative
incidence function
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5.5 Competing Risks (cont’d)

R> The competing risks estimate of the cumulative incidence function is produced by
the survfit() function

R> Two differences: (i) the event indicator status3 is 1 whenever either of the two
events occurred; (ii) argument etype is used to distinguish between the events of
interest

survfit(Surv(years, status3) ~ 1, data = pbc2.id, etype = status)
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5.5 Competing Risks (cont’d)

� Inclusion of covariates: two different approaches

◃ Cox model for the cause-specific hazards

* straightforward to implement in standard software (R, SAS)

* more difficult to get estimates of the cumulative incidence function

* proportional hazards assumption for the cause-specific hazards

◃ Fine & Gray model (JASA, 1999)

* hazard ratios interpretable on the cumulative incidence scale

* only available in R (package cmprsk)
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5.5 Competing Risks (cont’d)

� We will only illustrate the Cox model for the cause-specific hazards

hki(t) = hk0(t) exp(βk1Xki1 + βk2Xki2 + . . . + βkpXkip)

where

◃ hki(t) the hazard for patient i for cause k

◃ hk0(t) the baseline hazard for cause k

◃ βk1, . . . , βkp log hazard ratios for the covariates Xk1, . . . , Xkp for cause k

� For its estimation it is correct to treat each failure from other causes as censored
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5.5 Competing Risks (cont’d)

� Example: in the PBC data we are interested in the effects of treatment and age in
the hazards for transplantation and death

� We fit the cause-specific hazard models

h1i(t) = h10(t) exp
(
β11Treati + β12Agei

)
h2i(t) = h20(t) exp

(
β21Treati + β22Agei

)
where

◃ k = 1 for transplantation, and

◃ k = 2 for death
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5.5 Competing Risks (cont’d)

Transplantation est. exp(est.) s.e. p-value

D-penicil – β11 −0.24 0.79 0.38 0.530

Age – β12 −0.10 0.91 0.02 < 0.001

Death est. exp(est.) s.e. p-value

D-penicil – β21 −0.16 0.85 0.17 0.347

Age – β22 0.05 1.05 0.01 < 0.001
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5.5 Competing Risks (cont’d)

� We observe that after correcting for treatment

◃ younger patients will receive a transplant sooner, whereas

◃ older patient have greater risk of dying

� These risk estimates cannot be converted to relative survival probabilities using the
known formula (see pp. 173–175)

S(t) =
{
S0(t)

}exp(β⊤X)

due to the competition between the different causes
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5.5 Competing Risks (cont’d)

� Moreover, the obtained parameter estimates from the cause-specific hazards models
do not satisfy the relation

Fk(t) =
{
Fk0(t)

}exp(β⊤k Xk)

that is, the cumulative incidence functions of different groups (e.g., treated vs
untreated) are allowed to cross over

◃ this may or may not be reasonable
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5.5 Competing Risks (cont’d)

� The Fine & Gray model was developed to provide parameters, which satisfy this
relation for the cumulative incidence function, i.e.,

Fk(t) =
{
Fk0(t)

}exp(β⊤k Xk)

� We will not cover this model further here

◃ more information can be found in Putter et al. (Stat. in Med., 2007)
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5.5 Competing Risks (cont’d)

R> Cox regression for the cause-specific hazards is straightforward to implement using
coxph() – for the PBC data set we used

coxph(Surv(years, status == "transplanted") ~ drug + age,

data = pbc2.id)

coxph(Surv(years, status == "dead") ~ drug + age,

data = pbc2.id)
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5.6 Discrimination

� Often we are interested in assessing the discriminative capability of a covariate

◃ can we use LDL cholesterol levels to discriminate between patients with low and
high risk of heart disease

◃ can we use PSA levels to discriminate between patients with low and high risk of
prostate cancer

◃ . . .

� Example: in the AIDS data set we have seen that the baseline CD4 cell count is
highly associated with the risk of the death

◃ but how good is CD4 cell count in discriminating between patients?
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5.6 Discrimination (cont’d)

� We denote the marker (e.g., CD4 cell count) by Mi ⇒ for any threshold c we can
define a prediction rule

◃ if Mi > c, we classify patient i as a case (she had the event)

◃ if Mi ≤ c, we classify patient i as a non-case (she didn’t have the event)

� We borrow ideas from standard ROC analysis – let Di the case indicator, then

◃ Sensitivity (true positive rate): Pr(Mi > c | Di = 1)

◃ Specificity (true negative rate): Pr(Mi ≤ c | Di = 0)
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5.6 Discrimination (cont’d)

� To depict the discriminative capability of the marker for all possible threshold values
c, we construct the Receiver Operating Characteristic (ROC) curve

TP (c) = Pr(M > c | D = 1)

FP (c) = Pr(M > c | D = 0)

ROC : {FP (c), TP (c)}, for every c
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5.6 Discrimination (cont’d)

� To summarize the discriminative capability of the marker, we use the area under the
ROC curve (AUC)

AUC =

∫ 1

0

ROC(p) dp

� Intuitive interpretation:

◃ for a randomly chosen pair of patients {i, j} where i is a case and j a control, the
AUC is the probability that the marker value for the case is greater than the
marker value for the control:

AUC = Pr(Mi > Mj | Di = 1, Dj = 0)
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5.6 Discrimination (cont’d)

� In survival analysis we have to account for time

◃ the status of some patients changes at some time point

� Possible solution: consider the status of the patients at the end of the study

� Problems:

◃ random right censoring, e.g., if a patient is lost to follow-up before the end of the
study, her status is unknown at the end of the study

◃ we lose the dynamic nature, e.g., considering discrimination at early stages may be
more informative than at the end of the study
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5.6 Discrimination (cont’d)

� Due to the time dimension, we can have more than one definitions for Cases and
Controls

� For any time t, we can define Cases as

◃ event (disease, death) before time t

◃ event (disease, death) at time t

� For any time t, we can define Controls as

◃ event-free through time t

◃ event-free through a fixed follow-up time t∗
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5.6 Discrimination (cont’d)

� In the following we follow the work of Heagerty, Lumley & Pepe (Biometrics, 2000)

� At time t, we define

◃ Case: if a patient had the event at any time before t ⇒ T ∗
i ≤ t

◃ Control: if a patient did not have the event by time t ⇒ T ∗
i > t

� Features

◃ at any time t, the entire population is classified as either case or a control

◃ a patient plays the role of a control for all t < T ∗
i , but she then contributes as a

case for t ≥ T ∗
i
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5.6 Discrimination (cont’d)

� We can now define the True Positive (sensitivity) and False Positive (1 – specificity)
rates

TP (c, t) = Pr(Mi > c | T ∗
i ≤ t)

FP (c, t) = Pr(M > c | T ∗
i > t)

� The corresponding ROC and AUC are calculated in exactly the same way as in p.362
and p.363, respectively

� Note: now we have time-dependent sensitivity, specificity, ROCs and AUCs
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5.6 Discrimination (cont’d)

� We have defined the accuracy measures in the survival context using T ∗
i , i.e., the true

event time

� However, due to censoring we actually only observe {Ti, δi}

� Therefore, in estimating TP (c, t) and FP (c, t) we need to account for censoring
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5.6 Discrimination (cont’d)

� To estimate both TP (c, t) and FP (c, t) we only require an estimate of the bivariate
survival function

S(c, t) = Pr(M > c, T ∗ > t) =

∫ ∞

0

S(t | M = m) dFM(m)

where FM(m) is the cdf for the marker M

� We will use the Nearest Neighbor Estimation method

Ŝλ(c, t) =
1

n

∑
i

Ŝλ(t | M = mi) I(mi > c)

where Ŝλ(t | M = mi) is a smooth estimator of the conditional survival function
λ controls the degree of smoothness
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5.6 Discrimination (cont’d)

� Example: in the AIDS data set we have seen that the baseline CD4 cell count is
highly associated with the risk of the death

◃ but how good is CD4 cell count in discriminating between patients?

� Which follow-up time is most important?

◃ medical importance

◃ we illustrate time-dependent ROCs and AUCs at 3, 5, 7 and 11 months of
follow-up

◃ we also include an estimate of the ‘optimal’ cutoff point using the Youden index
(Sens + Spec− 1)
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5.6 Discrimination (cont’d)
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5.6 Discrimination (cont’d)

R> To calculate time-dependent ROC curves in we need to make use of function
survivalROC() from package survivalROC

# ROC curve at 11 months

sroc <- with(aids.id,

survivalROC(Time, death, -CD4, predict.time = 11,

span = 0.55*length(Time)^(-0.20))

)

sroc$AUC # area under ROC curve

plot(sroc$FP, sroc$TP, type = "l", lwd = 2, ylab = "Sensitivity",

xlab = "1 - Specificity")

abline(a = 0, b = 1, col = "grey", lwd = 1.7)
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5.7 Review of Key Points

� Obtaining survival probabilities from a Cox model

◃ the Cox model makes no assumption for the baseline survival function

◃ in order to estimate survival probabilities this baseline survival function needs to
be estimated

◃ Breslow estimator (extension from the univariate case)

� Stratified Cox models

◃ the baseline hazard of an event could be different between strata (e.g., hospitals)

◃ categorical covariate do not satisfy the PH assumption

◃ a simple extension of the Cox model is to consider a different baseline hazard per
stratum

◃ disadvantage: we obtain no p-value for the stratification factor
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5.7 Review of Key Points (cont’d)

� Time-dependent covariates

◃ in many cases we are interested in the effect of covariates whose values changes
with time (e.g., time-dependent treatment dose, blood values, etc.)

◃ important distinction: external vs internal time-dependent covariates

◃ external time-dependent covariates can be easily handled within the framework of
the extended Cox model

◃ internal covariates are more difficult and require specialized statistical models →
joint modelling of longitudinal and time-to-event data

◃ if internal covariates are treated as external (using the extended Cox model) we
may encounter spurious results
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5.7 Review of Key Points (cont’d)

� Clustered event data

◃ clustered event times occur frequently (e.g., patients within hospitals)

◃ subjects in the same cluster are expected to be correlated

◃ these correlations must be taken into account in the analysis

* marginal models (adjusted variance using jackknife)

* frailty models (latent variables)
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5.7 Review of Key Points (cont’d)

� Competing risks

◃ often in clinical studies we are interested in multiple endpoints

◃ if the distributions of failure times from different causes are independent, then
proceed as usual

◃ if not, then more care is required: work with

* cause-specific hazards

* cumulative incidence function

* Cox model on cause-specific hazards (be careful of the derived interpretations)
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5.7 Review of Key Points (cont’d)

� Discrimination

◃ we aim at discriminating between patients of high and low risk of having the event

◃ ROC methodology, estimating the True Positive and False Positive rates

◃ we require special definitions in the survival setting due to censoring and time
dimension

◃ in the estimation of the accuracy measures we need to account for censoring
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Part VI

Closing: Review of Key Points in Survival Analysis
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6.1 Learning Objectives – Revisited

� We will learn which are the special characteristics of event time data and why they
require special treatment (from a statistical point of view)

� From the course it will become clear

◃ which statistical tools are applicable for this kind of data

◃ which are their advantages and disadvantages

◃ which are the optimal inferential strategies

� What is there further in survival analysis than what we will cover in this course
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6.1 Learning Objectives – Revisited (cont’d)

� Time-to-event data exhibit

◃ skewed distributions

◃ censoring and/or truncation

� Statistical tools applicable to survival data

◃ Kaplan-Meier estimate of the survival function

◃ Log-rank and Peto & Peto modified Gehan-Wilcoxon tests can be used to test
whether the survival functions of 2 groups differ statistically significantly

◃ AFT and Cox models can be used to account for effect of more than one
explanatory variables in the time-to-event
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6.1 Learning Objectives – Revisited (cont’d)

� Modelling strategies

◃ think carefully about the purpose of modelling (i.e., prediction, effect estimation
or hypothesis testing)

◃ consider which explanatory variables you want to include in the model

◃ relax the linearity assumption of quantitative predictors (splines)

◃ include meaningful interaction terms

◃ use residuals to check model assumptions

◃ use likelihood ratio tests for hypothesis testing

◃ use effect plots to communicate the results of the model

Survival Analysis 381



6.1 Learning Objectives – Revisited (cont’d)

� Extending the Cox model

◃ expected survival

◃ stratification

◃ time-dependent covariates (external & internal)

◃ clustered event times (marginal & frailty models)

◃ competing risks (dependent & independent)
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6.1 Learning Objectives – Revisited (cont’d)

� The last three i.e.,

◃ time-dependent covariates,

◃ clustered event times, and

◃ competing risks

have been briefly covered

� Their full treatment requires more advanced of theoretical statistics and therefore it
falls outside the scope of this course
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6.2 Closing

� By now you should have a clear view on the different survival analysis approaches,
and how they should be used in practice.

� However, as we have seen throughout this course, statistical analysis is based on
assumptions – if these assumptions are seriously violated, we may obtain spurious
results

� This is especially the case when we deal with more complex models such as the one
required for time-dependent covariates, clustered event times and competing risks
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6.2 Closing (cont’d)

� Therefore, whenever you do not feel sure about the correct type of analysis for a
specific research question at hand, consult a local statistician
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The End!
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