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What is this Course About

e Often in follow-up studies different types of outcomes are collected

e Explicit outcomes
> multiple longitudinal responses (e.g., markers, blood values)

> time-to-event(s) of particular interest (e.g., death, relapse)

e Implicit outcomes
> missing data (e.g., dropout, intermittent missingness)

> random visit times
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What is this Course About (cont’d)

e Methods for the separate analysis of such outcomes are well established in the
literature

e Survival data:

> Cox model, accelerated failure time models, ...

e Longitudinal data

> mixed effects models, GEE, marginal models, ...
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What is this Course About (cont’d)

Purpose of this course is to present the state of the art in

Joint Modeling Techniques
for Longitudinal and Survival Data
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Learning Objectives

e Goals: After this course participants will be able to
> identify settings in which a joint modeling approach is required,
> construct and fit an appropriate joint model, and

> correctly interpret the obtained results

e The course will be explanatory rather than mathematically rigorous

> emphasis is given on sufficient detail in order for participants to obtain a clear
view on the different joint modeling approaches, and how they should be used in
practice
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Agenda
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e Part |: Introduction

> Data sets that we will use throughout the course

> Categorization of possible research questions

o Part |l: (brief) Review of Linear Mixed Models

> Features of repeated measurements data

> Linear mixed models

> Missing data in longitudinal studies
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Agenda (cont’d)

o Part IlI: (brief) Review of Relative Risk Models

> Features of survival data

> Relative risk models

> Time-dependent covariates

e Part IV: The Basic Joint Model

> Definition

> Estimation & Inference

> Connection with the missing data framework
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Agenda (cont’d)

e Part V: Extensions of the Basic Joint Model

> Parameterizations
> Latent class joint models

> Other extensions for the longitudinal and survival submodels (briefly)

e Part VI: Dynamic Predictions

> Individualized predictions for the survival and longitudinal outcomes
> Effect of the parameterization

> Accuracy measures (if we have the time)
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Structure of the Course & Material

e Lectures & short software practicals using R package JM and/or JMbayes?2

e Material (also available in http://www.drizopoulos.com/):
> Course Notes

> R code in soft format

e Within the course notes there are several examples of R code which are denoted by
the symbol ‘R> '
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Introduction
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1.1 Motivating Longitudinal Studies

e |AIDS:| 467 HIV infected patients who had failed or were intolerant to zidovudine
therapy (AZT) (Abrams et al., NEJM, 1994)

e The aim of this study was to compare the efficacy and safety of two alternative
antiretroviral drugs, didanosine (ddl) and zalcitabine (ddC)

e Qutcomes of interest:

> time to death
> randomized treatment: 230 patients ddl and 237 ddC
> CD4 cell count measurements at baseline, 2, 6, 12 and 18 months

> prevOl: previous opportunistic infections

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern



Erasmus MC

1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

Kaplan-Meier Estimate
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1.1 Motivating Longitudinal Studies (cont’d)

e | Research Questions:

> How strong is the association between CD4 cell count and the risk of death?

> Is CD4 cell count a good biomarker?

*if treatment improves CD4 cell count, does it also improve survival?
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1.1 Motivating Longitudinal Studies (cont’d)

e |PBC:| Primary Biliary Cirrhosis:
> a chronic, fatal but rare liver disease

> characterized by inflammatory destruction of the small bile ducts within the liver

e Data collected by Mayo Clinic from 1974 to 1984 (Murtaugh et al., Hepatology, 1994)

e Outcomes of interest:
> time to death and/or time to liver transplantation
> randomized treatment: 158 patients received D-penicillamine and 154 placebo

> longitudinal serum bilirubin levels
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

Kaplan-Meier Estimate
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1.1 Motivating Longitudinal Studies (cont’d)

e | Research Questions:

> How strong is the association between bilirubin and the risk of death?

> How the observed serum bilirubin levels could be utilized to provide predictions of
survival probabilities?

> Can bilirubin discriminate between patients of low and high risk?

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 9
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1.2 Research Questions

e Depending on the questions of interest, different types of statistical analysis are
required

e We will distinguish between two general types of analysis
> separate analysis per outcome

> joint analysis of outcomes

e Focus on each outcome separately
> does treatment affect survival?
> are the average longitudinal evolutions different between males and females?

D
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1.2 Research Questions (cont’d)

e Focus on multiple outcomes

> Complex hypothesis testing: does treatment improve the average longitudinal
profiles in all markers?

> Complex effect estimation: how strong is the association between the longitudinal
evolution of CD4 cell counts and the hazard of death?

> Association structure among outcomes:
* how the association between markers evolves over time (evolution of the
association)

* how marker-specific evolutions are related to each other (association of the
evolutions)
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1.2 Research Questions (cont’d)

> Prediction: can we improve prediction for the time to death by considering all
markers simultaneously?

> Handling implicit outcomes: focus on a single longitudinal outcome but with
dropout or random visit times
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1.3 Recent Developments

e Up to now empbhasis has been
> restricted or coerced to separate analysis per outcome

> or given to naive types of joint analysis (e.g., last observation carried forward)

e Main reasons
> lack of appropriate statistical methodology

> lack of efficient computational approaches & software

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 13
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1.3 Recent Developments (cont’d)

e However, recently there has been an explosion in the statistics and biostatistics
literature of joint modeling approaches

e Many different approaches have been proposed that
> can handle different types of outcomes
> can be utilized in pragmatic computing time
> can be rather flexible

> most importantly: can answer the questions of interest

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 14



1.4 Joint Models
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e Let Y7 and Y, two outcomes of interest measured on a number of subjects for which

joint modeling is of scientific interest

> both can be measured longitudinally

> one longitudinal and one survival

e We have various possible approaches to construct a joint density p(y1, y2) of {Y1, Y5}

> Conditional models: p(y1, y2) = p(y1)p(y2 | 1)
> Copulas: p(y1,y2) = C{]:(yﬁ, f<yz)}p(y1)p(yz>

But Random Effects Models have (more or less) prevailed

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern
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1.4 Joint Models (cont’d)

e Random Effects Models specify

p(y1,y2) = / p(y1,y2 | b) p(b) db

_ / p(y1 | ) plys | b) p(b) db

> Unobserved random effects b explain the association between Y] and Y5

> Conditional Independence assumption

Vi L Ys | b
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1.4 Joint Models (cont’d)
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e Features:

> Y7 and Y5 can be of different type

* one continuous and one categorical

* one continuous and one survival
*

> Extensions to more than two outcomes straightforward
> Specific association structure between Y7 and Y5 is assumed

> Computationally intensive (especially in high dimensions)
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Part 11
Linear Mixed-Effects Models
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2.1 Features of Longitudinal Data

e Repeated evaluations of the same outcome in each subject over time
> CD4 cell count in HIV-infected patients

> serum bilirubin in PBC patients

e Longitudinal studies allow to investigate
1. how treatment means differ at specific time points, e.g., at the end of the study
(cross-sectional effect)

2. how treatment means or differences between means of treatments change over
time (longitudinal effect)
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2.1 Features of Longitudinal Data (cont’d)

Measurements on the same subject are expected to
be (positively) correlated

e This implies that standard statistical tools, such as the ¢-test and simple linear
regression that assume independent observations, are not optimal for longitudinal
data analysis.

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern
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2.2 The Linear Mixed Model

e The direct approach to model correlated data = multivariate regression

yi = XiB+ei, & ~N(0,V),

where
> 1; the vector of responses for the ith subject
> X, design matrix describing structural component

> V; covariance matrix describing the correlation structure

e There are several options for modeling V;, e.g., compound symmetry, autoregressive
process, exponential spatial correlation, Gaussian spatial correlation, ...
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2.2 The Linear Mixed Model (cont’d)

e Alternative intuitive approach: Each subject in the population has her own
subject-specific mean response profile over time
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2.2 The Linear Mixed Model (cont’d)
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2.2 The Linear Mixed Model (cont’d)

e The evolution of each subject over time can be described by a linear model

yii = Bio+ Butij +eij,  eij ~ N(0,07),

where
> y;; the jth response of the ¢th subject

> @0 is the intercept and 5’2-1 the slope for subject ¢

e Assumption: Subjects are randomly sampled from a population = subject-specific
regression coefficients are also sampled from a population of regression coefficients

~

Bi ~ N (B, D)
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2.2 The Linear Mixed Model (cont’d)

e We can reformulate the model as

Yii = (Bo + bio) + (B1 + bir)tij + €45,

where
> (s are known as the fixed effects

> b;s are known as the random effects

e In accordance for the random effects we assume

by — ~ N0, D)
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2.2 The Linear Mixed Model (cont’d)

e Put in a general form

(

yi = Xib+ Zibi + ¢,

\ bZ ~ N(():D)? i NN(O702|ni>7

with
> X design matrix for the fixed effects (3

> Z design matrix for the random effects b;

Dbiﬂ_é‘z‘

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 26
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2.2 The Linear Mixed Model (cont’d)

e Interpretation:
> (3, denotes the change in the average y; when z; is increased by one unit

> b; are interpreted in terms of how a subset of the regression parameters for the ith
subject deviates from those in the population

e Advantageous feature: population + subject-specific predictions
> (3 describes mean response changes in the population

> [ 4 b; describes individual response trajectories

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 27
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2.2 The Linear Mixed Model (cont’d)

e How do the random effects capture correlation:

> Given the random effects, the measurements of each subject are independent
(conditional independence assumption)

p(yi | bi) = l_Z[p@m | b;)

j=1

> Marginally (integrating out the random effects), the measurements of each subject
are correlated

p(yi) = /p(yz b)) p(by) db;, = yi ~ N(XiB8, Z,DZ' +°l,,)

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 28
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2.2 The Linear Mixed Model (cont’d)

e Estimation

> Fixed effects: For known marginal covariance matrix V; = ZZ-DZZ-T -+ JZIW the
fixed effects are estimated using generalized least squares

n —1 n
B = ZXZ-TVlez' ZXZTVi_lyz'
i=1

1=1

> Variance Components: The unique parameters in V; are estimated based on either
maximum likelihood (ML) or restricted maximum likelihood (REML)

* REML provides unbiased estimates for the variance components in small
samples

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 29
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2.2 The Linear Mixed Model (cont’d)

e Example:

We fit a linear mixed model for the AIDS dataset assuming

> different average longitudinal evolutions per treatment group (fixed part)

> random intercepts & random slopes (random part)

y

Yij = Bo + Bitij + Bo{ddI; X Lij} + bio + bintij + €5,

\ bZNN<O,D), €ijNN<O,O'2>

e Note: We did not include a main effect for treatment due to randomization

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern
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2.2 The Linear Mixed Model (cont’d)

Value Std.Err. t-value p-value
By T7.189  0.222 32.359 < 0.001
By —0.163  0.021 —7.855 < 0.001
By 0.028  0.030 0.952  0.342

e No evidence of differences in the average longitudinal evolutions between the two
treatments
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e We have seen two classes of models for longitudinal data, namely

> Marginal Models

yi = XiB+¢e;, & ~N(@0,V;), and

> Conditional Models

(

yi = Xip + Zbi +¢i,

\ b ~ N<07D)7 &i ™ N(0,0’ani)

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern
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2.3 Mixed Models with Correlated Errors (cont’d)

e It is also possible to combine the two approaches and obtain a linear mixed model
with correlated error terms

(

y; = XiB+ Zib; + <,

\ bi ~ N(0,D), & ~N(0,%),

where, as in marginal models, we can consider different forms for

e The corresponding marginal model is of the form

yi ~ N(X;8, Z;DZ + %)

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 33
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2.3 Mixed Models with Correlated Errors (cont’d)

e Features
> both b; and >, try to capture the correlation in the observed responses y;

> this model does not assume conditional independence

e Choice between the two approaches is to a large extent philosophical

> Random Effects: trajectory of a subject dictated by time-independent random
effects = the shape of the trajectory is an inherent characteristic of this subject

> Serial Correlation: attempts to more precisely capture features of the trajectory by
allowing subject-specific trends to vary over time

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 34



Erasmus MC

2.3 Mixed Models with Correlated Errors (cont’d)

e It is evident that there is a contest for information between the two approaches

> often in practice it is not possible to include both many random effects and a
serial correlation term because of numerical problems

We will follow here the Random Effects paradigm

e For two reasons

1. We can capture more complex correlation by considering more elaborate random
effects structures

2. It makes more sense for the joint models we will consider

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 35
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2.4 Mixed-Effects Models in R

R> There are two primary packages in R for mixed models analysis:

> Package nlme
* fits linear & nonlinear mixed effects models, and marginal models for normal
data
* allows for both random effects & correlated error terms
* several options for covariances matrices and variance functions

> Package Ime4

* fits linear, nonlinear & generalized mixed effects models

* uses only random effects

* allows for nested and crossed random-effects designs

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 36
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2.4 Mixed-Effects Models in R (cont’d)

R> We will only use package nlme because package JM accepts as an argument a
linear mixed model fitted by nlme

R> The basic function to fit linear mixed models is 1me () and has three basic arguments
> fixed: a formula specifying the response vector and the fixed-effects structure
> random: a formula specifying the random-effects structure

> data: a data frame containing all the variables

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 37



2.4 Mixed-Effects Models in R (cont’d)
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R> The data frame that contains all variables should be in the long format

Subject y time gender age
1 51 0.0 male 45
1 6.3 1.1 male 45
2 59 0.1 female 38
2 6.9 09 female 38
2 7.1 1.2 female 38
2 female

7.3

1.5

38
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2.4 Mixed-Effects Models in R (cont’d)

R> Using formulas in R

> CD4 = Time + Gender
— |cd4 ~ time + gender

> CD4 = Time + Gender + Time*Gender
— |cd4 ~ time + gender + time:gender
= |cd4 ~ timexgender| (the same)

> CD4 = Time + Time?
= |cd4 ~ time + I(time"2)

R> Note: the intercept term is included by default

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 39
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2.4 Mixed-Effects Models in R (cont’d)

R> The code used to fit the linear mixed model for the AIDS dataset (p. 30) is as
follows

lmeFit <- 1lme(CD4 ~ obstime + obstime:drug, data = aids,
random = ~ obstime | patient)

summary (lmeFit)
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2.4 Mixed-Effects Models in R (cont’d)

R> The same fixed-effects structure but only random intercepts

lme (CD4 ~ obstime + obstime:drug, data = aids,
random = ~ 1 | patient)

R> The same fixed-effects structure, random intercepts & random slopes, with a
diagonal covariance matrix (using the pdDiag() function)

lme(CD4 ~ obstime + obstime:drug, data = aids,
random = list(patient = pdDiag(form = ~ obstime)))
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2.5 Missing Data in Longitudinal Studies

e A major challenge for the analysis of longitudinal data is the problem of missing data
> studies are designed to collect data on every subject at a set of prespecified

follow-up times

> often subjects miss some of their planned measurements for a variety of reasons

e We can have different patterns of missing data
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2.5 Missing Data in Longitudinal Studies (cont’d)

Subject Visits
1 2 3 4 5
1 X X X X
2 X X x 1 7
3 7 X X X X
4 7o x 7?7 x 7

> Subject 1: Completer
> Subject 2: dropout
> Subject 3: late entry

> Subject 4: intermittent
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2.5 Missing Data in Longitudinal Studies (cont’d)

e Implications of missingness:
> we collect less data than originally planned =- loss of efficiency
> not all subjects have the same number of measurements = wunbalanced datasets

> missingness may depend on outcome = potential bias

e For the handling of missing data, we introduce the missing data indicator

1 if y;; is observed

0 otherwise
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2.5 Missing Data in Longitudinal Studies (cont’d)

e We obtain a partition of the complete response vector y;
> observed data y, containing those y;; for which r;; =1

> missing data y;", containing those y;; for which r;; =0

e For the remaining we will focus on dropout = notation can be simplified
1
> Discrete dropout time: 7! =1+ >_ r;; (ordinal variable)
j=1

> Continuous time: 7" denotes the time to dropout
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2.6 Missing Data Mechanisms

e To describe the probabilistic relation between the measurement and missingness
processes Rubin (1976, Biometrika) has introduced three mechanisms

e Missing Completely At Random (MCAR): The probability that responses are missing
is unrelated to both y7 and "

p(ﬁ' | yz'oayzm> :p(Ti)

e Examples

> subjects go out of the study after providing a pre-determined number of
measurements

> laboratory measurements are lost due to equipment malfunction
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2.6 Missing Data Mechanisms (cont’d)

e Features of MCAR:
> The observed data y; can be considered a random sample of the complete data y;

> We can use any statistical procedure that is valid for complete data

* sample averages per time point
* linear regression, ignoring the correlation (consistent, but not efficient)

* t-test at the last time point
*
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2.6 Missing Data Mechanisms (cont’d)

e Missing At Random (MAR): The probability that responses are missing is related to
y7, but is unrelated to v;"

p(ri |y y") = p(ri | 7))

e Examples

> study protocol requires patients whose response value exceeds a threshold to be
removed from the study

> physicians give rescue medication to patients who do not respond to treatment
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2.6 Missing Data Mechanisms (cont’d)

e Features of MAR:

> The observed data cannot be considered a random sample from the target

population

> Not all statistical procedures provide valid results

Not valid under MAR

Valid under MAR

sample marginal evolutions

methods based on moments,

such as GEE

mixed models with misspecified
correlation structure

marginal residuals

sample subject-specific evolutions
likelihood based inference

mixed models with correctly specified
correlation structure

subject-specific residuals

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern
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2.6 Missing Data Mechanisms (cont’d)

MAR Missingness
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2.6 Missing Data Mechanisms (cont’d)
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2.6 Missing Data Mechanisms (cont’d)

e Missing Not At Random (MNAR): The probability that responses are missing is
related to ¥, and possibly also to ¥/

p(ﬁ' \ ?/zm> or p(r; \ yfay;n)

e Examples

> in studies on drug addicts, people who return to drugs are less likely than others
to report their status

> in longitudinal studies for quality-of-life, patients may fail to complete the
questionnaire at occasions when their quality-of-life is compromised
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2.6 Missing Data Mechanisms (cont’d)

e Features of MNAR

> The observed data cannot be considered a random sample from the target
population

> Only procedures that explicitly model the joint distribution {y?, v r;} provide
valid inferences = analyses which are valid under MAR will not be valid
under MNAR
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2.6 Missing Data Mechanisms (cont’d)
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We cannot tell from the data at hand whether the
missing data mechanism is MAR or MNAR

Note: We can distinguish between MCAR and MAR
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Relative Risk Models
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3.1 Features of Survival Data

e The most important characteristic that distinguishes the analysis of time-to-event
outcomes from other areas in statistics is Censoring

> the event time of interest is not fully observed for all subjects under study

e Implications of censoring:

> standard tools, such as the sample average, the ¢-test, and linear regression
cannot be used

> inferences may be sensitive to misspecification of the distribution of the event
times
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3.1 Features of Survival Data (cont’d)

e Several types of censoring:
> Location of the true event time wrt the censoring time: right, left & interval

> Probabilistic relation between the true event time & the censoring time:
informative & non-informative (similar to MNAR and MAR)

Here we focus on non-informative right censoring

e Note: Survival times may often be truncated; analysis of truncated samples requires
similar calculations as censoring
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3.1 Features of Survival Data (cont’d)

e Notation (¢ denotes the subject)
> 17" “true’ time-to-event

> C; the censoring time (e.g., the end of the study or a random censoring time)

e Available data for each subject
> observed event time: T; = min(T;, C;)

> event indicator: 9, = 1 if event; 0; = O if censored

Our aim is to make valid inferences for 7] but using
only {7 0}
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3.2 Basic functions in Survival Analysis

e Hazard function: The instantaneous risk of an event at time ¢, given that the event
has not occurred until ¢

Prt <Tr <t+dt | T* >t
B(t) = fim DU ST <iHd | T721)

t >0
dt—0 dt ’

> it is not a probability, i.e., h(t) € (0, 0)

> can be interpreted as the expected number of events per individual per unit of time
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3.2 Basic functions in Survival Analysis (cont’d)
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e Survival function: The probability of being alive up to time ¢
S(t) = Pr(T" > t)

> decreasing function of time

> connected to the hazard via

t
H(t) = / h(s)ds is known as the cumulative hazard function
0

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern

60



: L : : Erasmus MC
3.2 Basic functions in Survival Analysis (cont’d)

e Consistent estimates for the survival and cumulative hazard functions that account
for censoring are provided by the

> Kaplan-Meier estimator

§KM(75) _ H ri —d;

/r'.
it <t !
> Nelson-Aalen estimator
HNA<t) — R
T
it <t

with r; # subjects still at risk at ¢;, and d; # events at {;
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3.3 Relative Risk Models

e Relative Risk Models assume a multiplicative effect of covariates on the hazard
scale, i.e.,

hi(t) = ho(t) exp(yiwin + Yowiz + . .. + Ypwip) =

log hi(t) = log ho(t) + y1wir + Yowp + . .. + Ypwip,

where
> h;(t) denotes the hazard of an event for patient ¢ at time ¢
> ho(t) denotes the baseline hazard

> W;q, . .., W;p a set of covariates
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3.3 Relative Risk Models (cont’d)

e The baseline hazard hy(t) represents the hazard of an event when all the covariates
or all the s are 0

e That is, ho(t) represents the instantaneous risk of experiencing the event at time ¢,
without the influence of any covariate

e [ herefore,

> if a covariate has a beneficial effect, decreases hy(t) — |y < 0

> if it has a harmful effect, increases hy(t) — |v > 0
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3.3 Relative Risk Models (cont’d)
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e Standard MLE can be applied based on the log-likelihood function

00) = 6ilogp(Ty;0) + (1 — 6;) log S;(T5; 6),
1=1

which also can be re-expressed in terms of the hazard function

n T
00) =Y &;loghi(T;;6) — /O hi(s;0) ds
1=1

Sensitivity to distributional assumptions due to
censoring

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern
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3.3 Relative Risk Models (cont’d)

e Cox Model: We make no assumptions for the baseline hazard function

e Parameter estimates and standard errors are based on the log partial likelihood
function

pl(y) = i@- [Wwi —1og{ > exp(vaj)H,

71215

where only patients who had an event contribute
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3.3 Relative Risk Models (cont’d)

e |[Example:| For the PBC dataset were interested in the treatment effect while
correcting for sex and age effects

hi(t) = ho(t) exp(y1D-penic; + y,Female; + y3Age;)

Value HR Std.Err. 2z-value p-value

v —0.138 0.871  0.156 —0.882  0.378
v —0.493 0.611  0.207 —2.379  0.017
vs  0.021 1.022  0.008  2.784  0.005
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3.4 Relative Risk Models in R

R> The primary package in R for the analysis of survival data is the survival package

R> A key function in this package that is used to specify the available event time
information in a sample at hand is Surv()

R> For right censored failure times (i.e., what we will see in this course) we need to
provide the observed event times time, and the event indicator status, which
equals 1 for true failure times and 0 for right censored times

Surv(time, status)
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3.4 Relative Risk Models in R (cont’d)

R> Cox models are fitted using function coxph(). For instance, for the PBC data the
following code fits the Cox model that contains the main effects of ‘drug’, ‘sex’ and
age':

coxFit <- coxph(Surv(years, status2) ~ drug + sex + age,
data = pbc2.id)

summary (coxFit)

R> The two main arguments are a formula specifying the design matrix of the model
and a data frame containing all the variables
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3.5 Time Dependent Covariates

e Often interest in the association between a time-dependent covariate and the risk of

an event

> treatment changes with time (e.g., dose)

> time-dependent exposure (e.g., smoking, diet)

> markers of disease or patient condition (e.g., blood pressure, PSA levels)

> ...

e Example:

In the PBC study, are the longitudinal bilirubin measurements associated

with the hazard of death?

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 69



Erasmus MC

3.5 Time Dependent Covariates (cont’d)

e To answer our questions of interest we need to postulate a model that relates
> the serum bilirubin with

> the time-to-death

e [ he association between baseline marker levels and the risk of death can be
estimated with standard statistical tools (e.g., Cox regression)

e WWhen we move to the time-dependent setting, a more careful consideration is
required
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3.5 Time Dependent Covariates (cont’d)

e There are two types of time-dependent covariates
(Kalbfleisch and Prentice, 2002, Section 6.3)

> Exogenous (aka external): the future path of the covariate up to any time ¢ > s is
not affected by the occurrence of an event at time point s, i.e.,

PL{YI(t) | Wis). T7 > s} = Pr{Di(t) | Yi(s). T = s},

where 0 < s <t and V;(t) = {yi(s),0 < s < t}

> Endogenous (aka internal): not Exogenous
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3.5 Time Dependent Covariates (cont’d)

e |t is very important to distinguish between these two types of time-dependent
covariates, because the type of covariate dictates the appropriate type of analysis

e In our motivating examples all time-varying covariates are Biomarkers = These are
always endogenous covariates

> measured with error (i.e., biological variation)
> the complete history is not available

> existence directly related to failure status
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3.5 Time Dependent Covariates (cont’d)

Erasmus MC
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3.6 Extended Cox Model

e The Cox model presented earlier can be extended to handle time-dependent
covariates using the counting process formulation

h2<t | yl(t>, ’UJZ') = h()(f)R@(t) eXp{WT'wi -+ Oéyz<t>},

where

> V;(t) is a counting process which counts the number of events for subject i by
time ¢,

> h;(t) denotes the intensity process for N;(t),
> R;(t) denotes the at risk process (‘1" if subject i still at risk at ¢), and

> y;(t) denotes the value of the time-varying covariate at ¢
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3.6 Extended Cox Model (cont’d)

e Interpretation:

hi(t | Vit), wi) = ho(t) Ri(t) exp{y "wi + ayi(t)}

exp(«ar) denotes the relative increase in the risk of an event at time ¢ that results from
one unit increase in y;(t) at the same time point

e Parameters are estimated based on the log-partial likelihood function

-3 [{ R et s ant)
_log [Z R;(t) exp{y w, + ayj@)}} } dN;(t)
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3.6 Extended Cox Model (cont’d)
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e Typically, data must be organized in the long format

Patient Start Stop Event y;(f) Age

1

W w N NN

0
0
65
120

115

135
65
120
155
115
202

1

O O =, O O

5.

N N P WN

© O = = N O

45
38
38
38
29
29
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3.6 Extended Cox Model (cont’d)
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e How does the extended Cox model handle time-varying covariates?
> assumes no measurement error
> step-function path

> existence of the covariate is not related to failure status
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3.6 Extended Cox Model (cont’d)
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|
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3.6 Extended Cox Model (cont’d)

e Therefore, the extended Cox model is only valid for exogenous time-dependent
covariates

Treating endogenous covariates as exogenous may
produce spurious results!
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79



Part IV
The Basic Joint Model
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4.1 Joint Modeling Framework

e To account for the special features of endogenous covariates a new class of models
has been developed

Joint Models for Longitudinal and Time-to-Event Data

e Intuitive idea behind these models

1. use an appropriate model to describe the evolution of the marker over time for
each patient

2. the estimated evolutions are then used in a Cox model

e Feature: Marker level's are not assumed constant between visits
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4.1 Joint Modeling Framework (cont’d)
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4.1 Joint Modeling Framework (cont’d)
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e Some notation
> 17" True event time for patient ¢
> T;: Observed event time for patient ¢
> 0,: Event indicator, i.e., equals 1 for true events

> 1;: Longitudinal responses

e We will formulate the joint model in 3 steps — in particular, ...
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4.1 Joint Modeling Framework (cont’d)

e |Step 1:| Let's assume that we know (%), i.e., the true & unobserved value of the
marker at time ¢

e Then, we can define a standard relative risk model
hz(t | Mz(t» = ho(t) exp{’yTwi + ozm@(t)},

where
> M;(t) = {m;(s),0 < s < t} longitudinal history

> v quantifies the strength of the association between the marker and the risk of an
event

> w; baseline covariates

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 34
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4.1 Joint Modeling Framework (cont’d)

o |Step 2:

From the observed longitudinal response y;(t) reconstruct the covariate

history for each subject

e Mixed effects model (we focus, for now, on continuous markers)

where

yi(t) = m;(t) +¢ei(t)

x:(t)ﬁ + Z;(t)bl + 82'(?5), 8@(?5) ~ N(O, 0'2),

> x;(t) and 3: Fixed-effects part
> z;(t) and b;: Random-effects part, b; ~ N (0, D)
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4.1 Joint Modeling Framework (cont’d)

e Step 3:

The two processes are associated = define a model for their joint

distribution

e Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

where

p(yi, T3, 0;) = /p<yz | b;) {R(T; | b;)" S(T; | b;)} p(b;) db;,

> b; a vector of random effects that explains the interdependencies

> p(-) density function; S(-) survival function

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern
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4.1 Joint Modeling Framework (cont’d)

e Key assumption: Full Conditional Independence = random effects explain all
interdependencies

> the longitudinal outcome is independent of the time-to-event outcome

> the repeated measurements in the longitudinal outcome are independent of each
other

p(yi, Ti, 0i | b)) = plyi | bi) p(Li, 0 | b;)

pyi | b)) = Hp(ym | b;)

Caveat: Cl is difficult to be tested
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4.1 Joint Modeling Framework (cont’d)

e The censoring and visiting™ processes are assumed non-informative:

e Decision to withdraw from the study or appear for the next visit

> may depend on observed past history (baseline covariates + observed
longitudinal responses)

> no additional dependence on underlying, latent subject characteristics
associated with prognosis

*The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which

longitudinal measurements are collected.

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 38
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4.1 Joint Modeling Framework (cont’d)

e The survival function, which is a part of the likelihood of the model, depends on the
whole longitudinal history

s(018) = e | ho(s) exp{y s + ami(s)} is)

e Therefore, care in the definition of the design matrices of the mixed model
> when subjects have nonlinear profiles =

> use splines or polynomials to model them flexibly
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Erasmus MC

4.1 Joint Modeling Framework (cont’d)

e Random-effects distribution

> in mixed models it is customary to assume normality (see p. 85);

> however, in joint models this distribution plays a more prominent role because the
random effects explain all associations (see p. 87);

> nevertheless, robustness, especially as n; increases (see Rizopoulos et al., 2008, Biometrika)
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4.1 Joint Modeling Framework (cont’d)
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e Assumptions for the baseline hazard function hg(t)
> parametric = possibly restrictive

> unspecified = within JM framework underestimates standard errors

e It is advisable to use parametric but flexible models for hy(?)

> splines

@
1Og hO(t> — Vho,0 + Z ’Yh(),qu<t7 U))
q=1

where

* B,(t,v) denotes the ¢-th basis function of a B-spline with knots vy, .

* v, @ vector of spline coefficients

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern
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4.1 Joint Modeling Framework (cont’d)

e It is advisable to use parametric but flexible models for h(t)

> step-functions: piecewise-constant baseline hazard often works satisfactorily

Q
ho(t) = & (vg-1 <t < vy),
q=1

where 0 = vy < v; < -+ < v denotes a split of the time scale
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4.2 Estimation

e Mainly maximum likelihood but also Bayesian approaches

e The log-likelihood contribution for subject i:

;(0 1og/{Hp vii | bi;0) }{h(T@ | b;;0)% Si(T; | bi;e)}ﬂbz‘;@) db;,

where

Si(t]b;0) = exp (— /Ot ho(s; 0) exp{y " w; + am;(s)} ds)

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 03
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4.2 Estimation (cont’d)

e Both integrals do not have, in general, a closed-form solution = need to be
approximated numerically

e Standard numerical integration algorithms
> Gaussian quadrature
> Monte Carlo

> ...

e More difficult is the integral with respect to b; because it can be of high dimension
> Laplace approximations

> pseudo-adaptive Gaussian quadrature rules
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4.2 Estimation (cont’d)

e To maximize the approximated log-likelihood

() = Zlog/p(yi | 0:;6) {h(T; | b:;;0)% Si(T; | b;;0)} p(bs; 6) db;,

we need to employ an optimization algorithm

e Standard choices
> EM (treating b; as missing data)
> Newton-type

> hybrids (start with EM and continue with quasi-Newton)
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4.2 Estimation (cont’d)
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e Standard errors: Standard asymptotic MLE

r — 9% log p(yi, T, 6;; 0
(§) = - 30 e L 0i0)

. 0000
1=1
e Standard asymptotic tests + information criteria
> likelihood ratio test
> score test

> Wald test
> AlIC, BIC, ...

0=0
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4.2 Estimation (cont’d)

e Based on a fitted joint model, estimates for the random effects are based on the
posterior distribution:

p(T5,6; | bi; 0) p(yi | bi; 0) p(bi; 0)
(T, 6:, v 0)

p(bi | T, 6i, 95, 0) =

oc p(T3,6; | bi; 0) p(yi | bi; 0) p(bi; 0),

in which 6 is replaced by its MLE 9
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4.2 Estimation (cont’d)

e Measures of location

( N
bi = [ b;p(b; | Ty, 0i,yi; 0) db;

| b = argmaxy{log p(b | T;, 61, i; 0)}
e Measures of dispersion

2

var(b;) = [(b; — b;)(bi — b;) " plb; | T, 6, i3 0) db;

; -1
H — & 1ng(b|T¢>5¢,yz';9)‘ )
i b=b;

\ b1 b

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 08



: : : Erasmus MC
4.3 Bayesian Estimation

e Bayesian estimation

> under the Bayesian paradigm both 6 and {b;,7 = 1,...,n} are regarded as
parameters

e Inference is based on the full posterior distribution

1L, p(T5,6i | bi;0) p(yi | bi; 0) p(bi; 0) p(6)
0.b|T.6.y) — L
P00 y) [, p(T;, 0i, yi)

n

< [T{p(T.6: 1 0:0) ply: | 5:0) plvi ) p(6)

1=1

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 99



Erasmus MC

4.3 Bayesian Estimation (cont’d)

e No closed-form solutions for the integrals in the normalizing constant = MCMC

e For the standard joint model we have define thus far, the majority of the parameters
can be updated using Gibbs sampling (or slice sampling)

> when no close-form posterior conditionals are available, we can use the
Metropolis-Hastings algorithm

e To gain in efficiency, we can do block-updating for many of the parameters, i.e.,
> fixed effects 3
> random effects b,

> baseline covariates in the survival submodel ~
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4.3 Bayesian Estimation (cont’d)

e Good proposal distributions can be obtained from the separate fits of the two
submodels

e Not directly programmable in WinBUGS, INLA, etc., due to the integral in the
definition of the survival function

5(018:30) = e~ | hols:6) exp{y T, + ami(s)} is)

extra steps required. . .
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4.3 Bayesian Estimation (cont’d)

e Inference then proceeds in the usual manner from the MCMC output, e.g.,
> posterior means, variances, and standard errors
> credible intervals
> Bayes factors

> DIC, CPO

D
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4.4 A Comparison with the TD Cox

e Example:

To illustrate the virtues of joint modeling, we compare it with the standard

time-dependent Cox model for the AIDS data

i

yi(t)

hi(t)

where

= m;(t) + €;(t)
= Bo+ bt + Bo{t x ddL;} + big + bt + (1), ei(t) ~ N(0,07),

— ho(t) exp{rddI; + am,(t)},

> hg(t) is assumed piecewise-constant
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4.4 A Comparison with the TD Cox (cont’d)

JM Cox
log HR (std.err)  log HR (std.err)

Treat 0.33 (0.16) 0.31 (0.15)
CD4'/2 —0.29 (0.04) —0.19 (0.02)

e Clearly, there is a considerable effect of ignoring the measurement error, especially for
the CD4 cell counts
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4.4 A Comparison with the TD Cox (cont’d)

e A unit decrease in CD4'/2, results in a

> Joint Model: 1.3-fold increase in risk (95% Cl: 1.24; 1.43)
> Time-Dependent Cox: 1.2-fold increase in risk (95% Cl: 1.16; 1.27)

e Which one to believe?

> a lot of theoretical and simulation work has shown that the Cox model
underestimates the true association size of markers
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4.5 Joint Models in R

R> Joint models are fitted using function jointModel () from package JM. This
function accepts as main arguments a linear mixed model and a Cox PH model based
on which it fits the corresponding joint model

lmeFit <- 1lme(CD4 ~ obstime + obstime:drug,
random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

jointFit <- jointModel(lmeFit, coxFit, timeVar = "obstime",
method = "piecewise-PH-aGH")

summary (jointFit)
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4.5 Joint Models in R (cont’d)

R> As before, the data frame given in 1me () should be in the long format, while the
data frame given to coxph() should have one line per subject”

> the ordering of the subjects needs to be the same

R> In the call to coxph() you need to set x = TRUE (or model = TRUE) such that
the design matrix used in the Cox model is returned in the object fit

R> Argument timeVar specifies the time variable in the linear mixed model

* Unless you want to include exogenous time-varying covariates or handle competing risks
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4.5 Joint Models in R (cont’d)

R> Argument method specifies the type of relative risk model and the type of numerical
integration algorithm — the syntax is as follows:

<baseline hazard>-<parameterization>-<numerical integration>

Available options are:

> "piecewise-PH-GH": PH model with piecewise-constant baseline hazard

> "spline-PH-GH": PH model with B-spline-approximated log baseline hazard
> "weibull-PH-GH": PH model with Weibull baseline hazard

> "weibull-AFT-GH": AFT model with Weibull baseline hazard

> "Cox-PH-GH": PH model with unspecified baseline hazard

GH stands for standard Gauss-Hermite; using aGH invokes the pseudo-adaptive
Gauss-Hermite rule
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4.5 Joint Models in R (cont’d)

R> Joint models under the Bayesian approach are fitted using function jm() from
package JMbayes2. This function works in a similar manner as function
jointModel(), e.g.,

lmeFit <- 1lme(CD4 ~ obstime + obstime:drug,
random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id)
jointFitBayes <- jm(coxFit, lmeFit, time_var = "obstime")

summary (jointFitBayes)
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4.5 Joint Models in R (cont’d)

R> JMbayes2 is more flexible:
> directly implements the MCMC
> allows for multiple longitudinal outcomes (continuous & categorical)
> allows for general transformation functions
> penalized B-splines for the baseline hazard function
> multi-state models & competing risks
> recurrent events (soon available)

D
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4.5 Joint Models in R (cont’d)

R> In both packages methods are available for the majority of the standard generic
functions + extras

> summary (), anova(), vcov(), logLik()
> coef (), fixef (), ranef ()

> fitted(), residuals()

> plot ()

> xtable () (you need to load package xtable first)
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4.6 Connection with Missing Data

e So far we have attacked the problem from the survival point of view

e However, often, we may be also interested on the longitudinal outcome

e Issue: When patients experience the event, they dropout from the study

> a direct connection with the missing data field

Dropout must be taken into account when deriving
inferences for the longitudinal outcome
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4.6 Connection with Missing Data (cont’d)

e To show this connection more clearly

> T7*: true time-to-event
> y?: longitudinal measurements before 7

>y longitudinal measurements after 71"

e Important to realize that the model we postulate for the longitudinal responses is
for the complete vector {y?, v/}

> implicit assumptions about missingness
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4.6 Connection with Missing Data (cont’d)

e Missing data mechanism:

p(T57 |y, y") = / p(T7 | b;) p(b; | v, y!™) db;

m

still depends on /!

. which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show
different longitudinal evolutions than patients who do not
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4.6 Connection with Missing Data (cont’d)

e Implications of nonrandom dropout

> observed data do not constitute a random sample from the target population

e This feature complicates the validation of the joint model's assumptions using
standard residual plots

> what is the problem: Residual plots may show systematic behavior due to dropout
and not because of model misfit
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4.6 Connection with Missing Data (cont’d)

e What about censoring?

> censoring also corresponds to a discontinuation of the data collection process for
the longitudinal outcome

e Likelihood-based inferences for joint models provide valid inferences when censoring is

MAR
> a patient relocates to another country (MCAR)

> a patient is excluded from the study when her longitudinal response exceeds a

prespecified threshold (MAR)

> censoring depends on random effects (MNAR)
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4.6 Connection with Missing Data (cont’d)

e Joint models belong to the class of Shared Parameter Models

Pyl gl T}) = / p(?, " | ) p(T7 | b)) plbi)db,

the association between the longitudinal and missingness processes is explained by
the shared random effects b,
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4.6 Connection with Missing Data (cont’d)

e [he other two well-known frameworks for MNAR data are

> Selection models

p(yi,y 1) = p(yl, y) o1 | i yi")

> Pattern mixture models:

p(yi,y 1) = pyi, y | 17) p(T))

e These two model families are primarily applied with discrete dropout times and
cannot be easily extended to continuous time
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4.6 Connection with Missing Data (cont’d)

e A nice feature of joint models / shared parameter models is that they can
‘automatically’ handle intermittent missing data — the observed data likelihood
contributions take the form:

Py, T?) = / p(ul, " T7) dy?”

/ / p(yi,yi" | bi) p(T5 | 0i) p(bi) dbidy;"
- /{/p(y“y? | bi) dy’ }P@*\bi)p(bz-) db,

— [ #lat 1) p(T7 | ) pl0)

This is not the case for selection and pattern mixture models!
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4.6 Connection with Missing Data (cont’d)

e |[Example:| In the AIDS data the association parameter o was highly significant,
suggesting nonrandom dropout

e A comparison between

> linear mixed-effects model = MAR
> joint model = MNAR

is warranted

e MAR assumes that missingness depends only on the observed data

p(T [ yis i) = (T3 | y7)
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4.6 Connection with Missing Data (cont’d)

LMM (MAR) JM (MNAR)

value (s.e.) value (s.e)

Inter 7.19 (0.22) 7.22 (0.22)
Time —0.16 (0.02)  —0.19 (0.02)
Treat:Time 0.03 (0.03) 0.01 (0.03)

e Minimal sensitivity in parameter estimates & standard errors

= Warning: This does not mean that this is always the case!
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Extensions of Joint Models
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5.1 Parameterizations

e The standard joint model
(

hi(t ] Mi(t)) = ho(t) exp{~y w; + am;(t)},

yilt) = myll) +&i(t)
=z, ()3 + 2! ()b + &i(t),

where M, (t) = {m,;(s),0 < s < t}
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5.1 Parameterizations (cont’d) '

|
hazard function

0.1 02 03 04

longitudinal outcome

*
*

|
|
|
|
|
| ~
|
I
|
|
1

-0.50.0051.0152.0

Time
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5.1 Parameterizations (cont’d) '

e The standard joint model

’

hi(t | My(t)) = ho(t) exp{y "w; + am; (1)},

yit) = mi(l) +&i(t)
=z, (t)B+ 2 (t)b; + &(t),

\

where M;(t) = {m;(s),0 < s < t}

Is this the only option? Is this the most
optimal choice?
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5.1 Parameterizations (cont’d)

e Note: Inappropriate modeling of time-dependent covariates may result in surprising

results

e Example:

Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to

test the effect of cigarette smoking on survival of patients who underwent coronary
artery surgery

> the estimated effect of current cigarette smoking was positive on survival although
not significant (i.e., patient who smoked had higher probability of survival)

> most of those who had died were smokers but many stopped smoking at the last
follow-up before their death
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5.1 Parameterizations (cont’d) '

We need to carefully consider the functional form of
time-dependent covariates

e Let's see some possibilities. . .
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5.1 Parameterizations (cont’d) '

o [agged Effects: The hazard of an event at ¢ is associated with the level of the marker
at a previous time point:

ha(t | Mi(t)) = ho(t) exp{y w; + am,(t7)},

where

t%. = max(t — c,0)
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5.1 Parameterizations (cont’d) '

|
hazard function

0.1 02 03 04

longitudinal outcome

*
*

|
|
|
|
|
| i~
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|
|
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5.1 Parameterizations (cont’d) '

e [ime-dependent Slopes: The hazard of an event at ¢ is associated with both the
current value and the slope of the trajectory at ¢ (Ye et al., 2008, Biometrics):

hi(t | Mu(t)) = ho(t) exp{y "w; + canm;(t) + agm;(t)},

where

mi(t) = Sl (05 + = (b
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5.1 Parameterizations (cont’d) '

e Cumulative Effects: The hazard of an event at ¢ is associated with the whole area
under the trajectory up to t:

hi(t | M;(t)) = ho(t) exp{yTwz- + oz/ot m;(s) ds}

e Area under the longitudinal trajectory taken as a summary of M,(?)
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5.1 Parameterizations (cont’d) '

|
hazard function

0.1 02 03 04

longitudinal outcome

*
*

E «
|
|
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Time
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5.1 Parameterizations (cont’d) '

o Weighted Cumulative Effects (convolution): The hazard of an event at t is associated
with the area under the weighted trajectory up to ¢:

bt | M) = halt) o {y T+ [ (i - symils) ds ),

where w(-) an appropriately chosen weight function, e.g.,
> Gaussian density
> Student’s-t density

> ...
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5.1 Parameterizations (cont’d) '

e Random Effects: The hazard of an event at ¢ is associated £|y with the random
effects of the longitudinal model:

hi(t ‘ ./\/l@(t» = ho(t) exp(vai + OéTb7;>

e Features:
> avoids numerical integration for the survival function

> interpretation of v more difficult, especially in high-dimensional random-effects
settings
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5.1 Parameterizations (cont’d) '

e |[Example:| Sensitivity of inferences for the longitudinal process to the choice of the
parameterization for the AIDS data

e \We use the same mixed model as before, i.e.,

yilt) = mi(t) +ei(t)

= B+ But + Bo{t x AdL;} + by + byt + (1)

and the following four survival submodels
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5.1 Parameterizations (cont’d) '

e Model | (current value)

hi(t) = ho(t) exp{rddl; + armi(t)}

e Model Il (current value + current slope)
hi(t) = ho(t) exp{~yddI; + aym;(t) + aom;(t)},

where

>m;(t) = [y + [2ddI; + by
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5.1 Parameterizations (cont’d) '

e Model Il (random slope)

hz(t> = ho(t) exp{vddl,— + Oégbﬂ}
e Model IV (area)

hi(t) = ho(t) exp{vddli—l—oq /O t mi(s) ds},

where

> [omi(s) ds = Bot + 22 + 2{? x ddL;} + bigt + ULt
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5.1 Parameterizations (cont’d) '

e There are noticeable differences between the parameterizations

> especially in the slope parameters

e Therefore, a sensitivity analysis should not stop at the standard joint model
parameterization but also consider alternative association structures
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5.1 Parameterizations (cont’d) '

R> Lagged effects can be fitted using the 1ag argument of jointModel (). For
example, the following code fits a joint model for the PBC dataset with

> random intercepts and random slopes for log serum bilirubin, and

> a relative risk model with piecewise-constant baseline hazard and the true effect
at the previous year

lmeFit <- lme(log(serBilir) ~ year, random = ~ year | id, data = pbc2)

coxFit <- coxph(Surv(years, status2) ~ 1, data = pbc2.id, x = TRUE)

jointFit <- jointModel(lmeFit, coxFit, timeVar = "year",
method = "piecewise-PH-aGH", lag = 1)

summary (jointFit)
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5.1 Parameterizations (cont’d) '

R> For the time-dependent slopes and cumulative effects parameterizations, arguments
parameterization and derivForm of jointModel () should be used

> the first one just specifies whether we want to include a single or two terms
involving m;(t) in the linear predictor of the survival submodel, options are

* parameterization = "value"
* parameterization = "slope"
* parameterization = "both"

> the second one requires a few extra steps to specify — we will see an example in
the practical
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5.1 Parameterizations (cont’d) ' '

R> In the newer JMbayes2 the specification of functional forms is easier

> e.g., the following codes includes the area and slope in the linear predictor, and
the interaction of the former with sex

jmFit <- jm(CoxFit, lmeFit, time_var = "time",
functional _forms = ~ value(y) + area(y):sex)
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5.2 Latent Class Joint Models

e In many settings it may not be reasonable to assume that the population under study
Is homogeneous

e Heterogeneity attributed to factors we have recorded

> stratified analysis

e Heterogeneity attributed to factors we have not recorded

> mixture models (aka latent class models)
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5.2 Latent Class Joint Models (cont’d)

e |Latent class joint model:| We assume that the association between the longitudinal
and event time processes is explained by some latent population heterogeneity

e Let GG sub-populations, and ¢; = 1,. .., G the latent sub-population indicator of the
1th subject in the sample

e Conditional independence:

p(yi | ci = g,b::0) = [ oy | ¢ = g.b::6)

J
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5.2 Latent Class Joint Models (cont’d)

p
T

hit|c=g) = hOg(t) eXp(’yg w;),

N\

{yi(t) | ci =g} = ] (t)By+ 2 (O)big +€i(t), big ~ N (g, 0,D),

Pr(ci=g) = expAu) / S exp( u)

e The latent class joint models consists of three parts:
> stratified relative risk model
> heterogeneity linear mixed model

> multinomial model for class membership
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5.2 Latent Class Joint Models (cont’d)

e Features:
> avoids numerical integration
> local maxima

> requires multiple fits to find the optimal number of classes (typically chosen using
information criteria)

> no association parameter = no straightforward interpretation
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5.2 Latent Class Joint Models (cont’d)

e Example:

Latent class joint model analysis of the AIDS dataset

> longitudinal submodel: random intercepts and random slopes with class-specific
fixed effects

> survival submodel: class-specific baseline risk & treatment effects

> class membership submodel: treatment effect

o We fitted the models with 2, 3, 4, and 5 classes
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5.2 Latent Class Joint Models (cont’d)

# Classes  loglik AlC BIC
2 —4258.74  8565.48 8665.00
3 —4223.03  8516.06  8661.18
4 —4198.63 8489.26  8679.99
5 —4192.98  8499.96 8736.30

e AIC favors the 4-class model, whereas BIC chooses the 3-class solution

e Empirical studies suggest that the BIC more often finds the correct number of latent
subgroups
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o
1Y
0_|
o
[7p]
o)
=
ﬂ. —_
o)
a I
(@) o)
= g
ge)
2 IS
ir =
=
S
)
(@p)]
L()_
o_

I I I
0 5 10 15

Time (months)

1.0

0.8

0i6

0.4

0.2

0.0

- (Class 1
— (Class 2
Class 3

I I I
0 5 10 15

Time (months)

20

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern

150



: Erasmus MC
5.2 Latent Class Joint Models (cont’d)

R> Latent class joint models can be fitted in R using function Jointlcmm() from
package lcmm

lcjmFit.aids <- Jointlcmm(fixed = CD4 ~ obstime + drug,

mixture = ~ obstime + drug, random = ~ obstime,
classmb = ~

drug, subject = "patient", ng = 3, data = aids,
survival = Surv(Time, death) ~ mixture(drug),

hazard = "6-quant-piecewise", hazardtype = "Specific")

summary(lcjmFit.aids)
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5.3 Multiple Longitudinal Markers

e So far we have concentrated on a single continuous marker

e But very often we may have several markers we wish to study, some of which could
be categorical

e Example:| In the PBC dataset we have used serum bilirubin as the most important
marker, but during follow-up several other markers have been recorded

> serum cholesterol (continuous)
> edema (3 categories)
> ascites (2 categories)

D
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5.3 Multiple Longitudinal Markers (cont’d)

We need to extend the basic joint model!

e To handle multiple longitudinal markers of different types we use Generalized Linear
Mixed Models

> We assume Y, ..., Y, for each subject, each one having a distribution in the
exponential family, with expected value

mij(t) = E(yi;(t) | big) = g; {x;(6)8; + 2,56},

with ¢(-) denoting a link function
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5.3 Multiple Longitudinal Markers (cont’d)

> Correlation between the outcomes is built by assuming a multivariate normal
distribution for the random effects

bl:<bz—|;77b;|:]>TNN<OaD)

e The expected value of each longitudinal marker is incorporated in the linear predictor
of the survival submodel

J
hilt) = ho(t) exp{nTw; + S agmis (1)}

J=1

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 154



Erasmus MC

5.3 Multiple Longitudinal Markers (cont’d)

e Full Conditional Independence: Given the random effects
> the repeated measurements in each outcome are independent,
> the longitudinal outcomes are independent of each other, and

> longitudinal outcomes are independent of the time-to-event outcome

1P | 03))

k=1

plyi 1 i) = ] plyii | b))
j

p(yij | bij)

plyi: Ti, 6 1 b)) = [ ] (i | bi) p(T3,6: | by)
J
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5.3 Multiple Longitudinal Markers (cont’d)

e Features of multivariate joint models

> using Cl is straightforward to extend joint models to multiple longitudinal
outcomes of different types

> computationally much more intensive due to requirement for high dimensional
numerical integrations with respect to the random effects
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5.3 Multiple Longitudinal Markers (cont’d)

R> An example for the PBC dataset using serum bilirubin (continuous) and spiders
(binary)

lmmFit <- lme(log(serBilir) ~ year, data = pbc2, random = ~ year | id)

melrFit <- mixed_model(spiders ~ year, data = pbc2, family = binomial(),
random = ~ year | id)

CoxFit <- coxph(Surv(years, status2) ~ drug + age, data = pbc2.id)

multJMFit <- jm(CoxFit, list(lmmFit, melrFit), time_var = "year")
summary (multJMFit)
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5.3 Multiple Longitudinal Markers (cont’d)

R> Function jm() also allows for
> right, left, interval censored data
> left truncated data

> exogenous time-varying covariates

More info and vignettes in
https://drizopoulos.github.io/JMbayes2/
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5.4 Multiple Failure Times

e Often multiple failure times are recorded
> competing risks

> recurrent events

e |[Example:| In the PBC dataset = competing risks

> Some patients received a liver transplantation

> So far we have used the composite event, i.e. death or transplantation whatever
comes first

> When interest only is on one type of event, the other should be considered as a
competing risk

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 159



Erasmus MC

5.4 Multiple Failure Times (cont’d)

e Joint models with competing risks:

’

yi(t) = mi(t) +&it) =z ()8 + 2z (£)b; + &(t),

4 hi(t) = hil(t) exp{y, w; + agmi(t)},

hz‘r<t> — hg"(t) exp{’y;:wz + atrmi(t)}7

where
> h¢(t) hazard function for death

> h"(t) hazard function for transplantation
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5.4 Multiple Failure Times (cont’d)

e In the estimation, the only difference is in the construction of the likelihood part for
the event process

K 1(5;=k)
p(Ti,0; | bi; 0) = H[h()k(Tz‘) exp{y, wi + Oékmz(Tz)}}

k=1

K T;
X exp (— Z / hok(s) exp{vk w; + akmz(s)} ds) ,
k=10
with
> T =min(T7}, ..., T4, C;), with C; denoting the censoring time

>d; € {0,1,..., K}, with 0 corresponding to censoring
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5.4 Multiple Failure Times (cont’d)

e This is different than in standard Cox models

> i.e., we cannot fit a cause-specific hazard joint model by treating events from
other causes as censored
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5.4 Multiple Failure Times (cont’d)

R> Function jm() can fit joint models with competing risks and multi-state processes;
an example with competing risks

> first, the survival data have to be prepared in the competing risks long format
using function crLong(), e.g.,

pbc2.id[pbc2.id$id %in% c(1,2,5), c("id", "years", "status")]

id years status
1 1 1.095170 dead
2 2 14.152338 alive
5 b 4.120578 transplanted
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5.4 Multiple Failure Times (cont’d)

pbc2.idCR <- crlLong(pbc2.id, statusVar = "status",
censLevel = "alive", nameStrata = "CR")

pbc2.idCR [pbc2.idCR$id %in% c(1,2,5),
c("id", "years", "status", "CR", "status2")]

id years status CR status?2
1 1 1.095170 dead dead 1
1.1 1 1.095170 dead transplanted 0
2 2 14.152338 alive dead 0
2.1 2 14.152338 alive transplanted 0
5 5 4.120578 transplanted dead 0
5.1 5 4.120578 transplanted transplanted 1
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5.4 Multiple Failure Times (cont’d)

R> To fit the joint model, we first fit the linear mixed and relative risk models as before

> for the latter we use the data in the competing risks long and put the event-type
variable as strata

lmeFit.CR <- lme(log(serBilir) ~ drug * year, data = pbc2,
random = ~ year | id)

coxFit.CR <- coxph(Surv(years, status2) ~ drug * strata(CR),
data = pbc2.idCR)
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5.4 Multiple Failure Times (cont’d)

R> Then the joint model is fitted with the code

jointFit.CR <- jm(coxFit.CR, lmeFit.CR, time_var = "year",
functional_forms = ~ value(log(serBilir)):CR)

summary (jointFit.CR)

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 166



Erasmus MC

5.4 Multiple Failure Times (cont’d)

e Multiple Failure Times: recurrent events

e |[Example:| In the PBC dataset = recurrent events

> Patients showed irregular visiting patterns

> So far, when we fitted the joint model we assumed that the visiting process is
non-informative

> |f this assumption is violated, we should also model this process in order to obtain
valid inferences
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5.4 Multiple Failure Times (cont’d)

e Joint model with recurrent (visiting process) & terminal events

P

yi(t) = mi(t) +e,(t) = o] (£)8 + 2 (£)b; + (1),

 Tit) = ro(t) GXP{%TmerOérmz'@) —|_V7§}7

hi(t) = ho(t) exp{v) wn; + apm;(t) + Cvi},

with
> r;(t) hazard function for the recurrent events
> h;(t) hazard function for the terminal event

> v, frailty term accounting for the correlation in the recurrent events
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5.4 Multiple Failure Times (cont’d)

e Conditional independence assumptions augmented
> recurrent events are independent given v;
> longitudinal measurements are independent giver b;

> all three processes, namely

* longitudinal process,
* recurrent events process, and
* terminating event process

are independent given {b;,v;}

e We need to postulate a distribution for the frailty terms

> typical choice is the Gamma because it's conjugate
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5.5 Extensions & Parameterizations

e Note: In the previous extensions of joint models, i.e.,
> multiple longitudinal markers
> multiple failure times

we used the default parameterization that includes the current value term m;() in
the linear predictor of the survival submodel(s)

Nonetheless, all the other parameterizations we have seen
earlier are also applicable
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5.5 Extensions & Parameterizations (cont’d)

e For example in the case of multiple longitudinal outcomes

95| E{yii(t) | bij}] = mi(t) = 25(t) ) + 2i;(t)by

J L

hilt) = ho(t) exp{yTwi+ > 3 FulHi(t), )}

j=1 1=1
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5.5 Extensions & Parameterizations (cont’d)

e In this case we face a challenging model selection problem

e Different possible solutions
> lasso
> ridge
> horseshoe

> ...
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5.5 Extensions & Parameterizations (cont’d)

R> Function jm() also allows to consider multiple parameterizations per outcome

R> It also implements a global-local ridge-type prior for the association parameters
Qg N(O, T@Dﬂ)
7t ~ Gamma(0.1,0.1)

wj_ll ~ Gamma(1,0.01)
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Dynamic Predictions, Discrimination & Calibration
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6.1 Survival Probabilities: Definitions

e Nowadays there is great interest for prognostic models and their application to
personalized medicine

e Examples are numerous

> cancer research, cardiovascular diseases, HIV research, ...

Physicians are interested in accurate prognostic tools that will
inform them about the future prospect of a patient in order to
adjust medical care
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6.1 Survival Probabilities: Definitions (cont’d)

e We are interested in predicting survival probabilities for a new patient j that has
provided a set of serum bilirubin measurements up to a specific time point ¢

e |[Example:| We consider Patients 2 and 25 from the PBC dataset that have provided
us with 9 and 12 serum bilirubin measurements, respectively

> Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded

e We need to account for the endogenous nature of the marker

> providing measurements up to time point ¢ = the patient was still alive at time ¢
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6.1 Survival Probabilities: Definitions (cont’d)
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6.1 Survival Probabilities: Definitions (cont’d)

e More formally, for a new subject 5 we have available measurements up to time point ¢
Vi(t) = {y;(s),0 < s <t}
and we are interested in
mu | 1) = Pe{T} > u | T > 1,9)(). D, },

where
> where u > t, and

> D,, denotes the sample on which the joint model was fitted
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6.2 Survival Probabilities: Estimation

e We assume that the joint model has been fitted to the data at hand

e Based on the fitted model we can estimate the conditional survival probabilities
(Rizopoulos, 2011, Biometrics)
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6.2 Survival Probabilities: Estimation (cont’d)

e mi(u | t) can be rewritten as

| B Sj{u|/\/lj(u,bj,0);8} s . |
) = g P | T > L0 db

e A naive estimator for 7;(u | t) can be constructed by plugging-in the MLEs and the
Empirical Bayes estimates

> this works relatively well in practice, but

> standard errors are difficult to compute
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6.2 Survival Probabilities: Estimation (cont’d)

e |t is convenient to proceed using a Bayesian formulation of the problem =
7i(u | t) can be written as

mﬂ7zuu7>u%@J%}i/Mﬂ7zuu7>u%@ﬁ}mﬂpgw

e \We have already seen the first part of the integrand

Pr{T} > u| T} >t V(t):0} =

_ Sj{u ‘ Mj(uabj79)3‘9}
Si{t | Mj(t,b;,0);0}

p(b; | T7 > 1,Y;(1); 0) db;
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6.2 Survival Probabilities: Estimation (cont’d)

e Provided that the sample size is sufficiently large, we can approximate the posterior
of the parameters by

{(9 ‘ Dn} NN@??:O;

where
> 0 are the MLEs, and

> H their asymptotic covariance matrix
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6.2 Survival Probabilities: Estimation (cont’d)

e A Monte Carlo estimate of 7;(u | t) can be obtained using the following simulation
scheme:

AN AN

Step 1. draw 0Y) ~ N(0, H)

Step 2. drawb ~{b; | TF > t,Y(t), 0 (1

Step 3. compute 77](@( S{u\/\/l u, b }/S {t\/\/l (t b] 60, ()}
e Repeat Steps 1-3, £ =1, ..., L times, where L denotes the number of Monte Carlo
samples
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6.2 Survival Probabilities: Estimation (cont’d)

e Steps 1 and 3 are straightforward

o In Step 2 we need to sample from {b; | T > t, V;(t), 0}, which is nonstandard

> as n; increases, this posterior converges to a multivariate normal distribution
(Rizopoulos et al., Biometrika, 2008)

> we use a Metropolis-Hastings algorithm with multivariate ¢ proposals
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6.2 Survival Probabilities: Estimation (cont’d)

e |[Example:| Dynamic predictions of survival probabilities for Patients 2 & 25 from the
PBC dataset: We fit the joint model

e Longitudinal submodel
> fixed effects: Linear & quadratic time, treatment and their interaction

> random effects: Intercept, linear & quadratic time effects

e Survival submodel
> treatment effect + underlying serum bilirubin level

> piecewise-constant baseline hazard in 7 intervals
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6.2 Survival Probabilities: Estimation (cont’d)

e Based on the fitted joint model we estimate 7,(u | t) for Patients 2 and 25

e We use 500 Monte Carlo samples, and we took as estimate
7j(u | t) = mean{m\ (u | t),6=1,...,L}

and calculated a corresponding 95% pointwise Cls
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6.2 Survival Probabilities:

Estimation (cont’d)
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6.2 Survival Probabilities:

Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)
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log(serum Bilirubin)
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6.2 Survival Probabilities: Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)

R> In package JM, individualized predictions of survival probabilities are computed by
function survfitJM() — for example, for Patient 2 from the PBC dataset we have

sfit <- survfitJM(jointFit, newdata = pbc2[pbc2$id == "2", 1)
sfit
plot(sfit)

plot(sfit, include.y = TRUE)
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6.2 Survival Probabilities: Estimation (cont’d)

R> In package JMbayes2, individualized predictions of survival probabilities are
computed by function predict () — for example, for Patient 2 from the PBC dataset

we have
sfit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],
process = "event", return_newdata = TRUE)
sfit
plot(sfit)
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6.3 Longitudinal Responses: Definitions

e In some occasions it may be also of interest to predict the longitudinal outcome

e We can proceed in the same manner as for the survival probabilities: We have
available measurements up to time point ¢

Yi(t) ={y;(s),0 < s < t}
and we are interested in

wi(u [ t) = E{y;(w) | T > ¢, Yi(t),Dn}, u>t
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6.3 Longitudinal Responses: Definitions (cont’d)

e To estimate w;(u | t) we can follow a similar approach as for 7;(u | t) — Namely,
w;(u | t) is written as:

By | T} > £5,0.0.} = [ E{u(w) | T > £.9,(6), D0} pl6 | D,) a8
e With the first part of the integrand given by:

E{y;(u) | TF > t,Vi(t),Dp;0} =

- /{x}(u)ﬁ + 2] (Wb} p(by | T} > t,V(t); 6) db
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6.3 Longitudinal Responses: Estimation (cont’d)

e A similar Monte Carlo simulation scheme:

AN AN

Step 1. draw 09 ~ N(0, H)
Step 2. draw bég) ~ {b; | T: > t, Vi(t), 9(@}

Step 3. compute wj@(u 1) = x?(u)ﬁ(ﬁ) 4+ zT(u)b(@

e |Note:| Prediction intervals can be easily computed by replacing Step 3 with a draw
from:

| £) ~ N LT @O+ 2T @, 070}

J
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6.3 Longitudinal Responses: Estimation (cont’d)

e |[Example:| Dynamic predictions of serum bilirubin for Patients 2 & 25 from the PBC
dataset: We fit the joint model

e Longitudinal submodel
> fixed effects: Linear & quadratic time, treatment and their interaction

> random effects: Intercept, linear & quadratic time effects

e Survival submodel
> treatment effect + underlying serum bilirubin level

> piecewise-constant baseline hazard in 7 intervals
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6.3 Longitudinal Responses: Estimation (cont’d)

e Based on the fitted joint model we estimate w;(u | t) for Patients 2 and 25

e Point estimates
Gi(u | t) =z (W) + 2] (u)b;,

where B: MLEs & IA)j: empirical Bayes estimates

¢ 95% pointwise Cls

> simulation scheme: 2.5% and 97.5% percentiles of 500 Monte Carlo samples of
(0) "
w; (u | t)
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6.3 Longitudinal Responses: Estimation (cont’d)
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6.3 Longitudinal Responses: Estimation (cont’d)
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6.3 Longitudinal Responses: Estimation (cont’d)
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6.3 Longitudinal Responses: Estimation (cont’d)
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6.3 Longitudinal Responses: Estimation (cont’d)
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6.3 Longitudinal Responses: Estimation (cont’d)
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6.3 Longitudinal Responses: Estimation (cont’d)

R> Individualized predictions for the longitudinal outcome are computed by function
predict () — for example, for Patient 2 from the PBC dataset we have function

# in JM

1fit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],
type = "Subject", interval = "conf",
returnData = TRUE)

# in JMbayes2

gfit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],
times = seq(7, 12, length.out = 51),
return_newdata = TRUE)
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6.3 Longitudinal Responses: Estimation (cont’d)

R> Web interface using the shiny package
library(shiny)

runApp(file.path(.Library, "JMbayes/demo"))

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 198



N Erasmus MC
6.4 Importance of the Parameterization

e All previous predictions were based on the standard joint model
(

hi(t ] Mi(t)) = ho(t) exp{~y w; + am;(t)},

yilt) = myll) +&i(t)
=z, ()3 + 2! ()b + &i(t),

where M;(t) = {m;(s),0 < s < t}
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6.4 Importance of the Parameterization (cont’d)

e We have seen earlier that there are several alternative parameterizations (see Section 5.1)

e Relevant questions:
> Does the assumed parameterization affect predictions?

> Which parameterization is the most optimal?

e Example:| We compare predictions for the longitudinal and survival outcomes under
different parameterizations for Patient 51 from the PBC study
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6.4 Importance of the Parameterization (cont’d)
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6.4 Importance of the Parameterization (cont’d)

e Predictions based on five joint models for the PBC dataset
> the same longitudinal submodel as before, and

> relative risk submodels:

hi(t) = ho(t) exp{yD-pnc, + aym;(t)},

hi(t) = ho(t) exp{yD-pnc; + aym;(t)},

hi(t) = ho(t) exp{yD-pnc; + arm;(t) + asm;(t)},
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6.4 Importance of the Parameterization (cont’d)

hi(t) = hol(t) exp{’yD—pnCZH—ag /O th-(s)ds},

hi(t) = holt) exp{w-pncﬁ% /O tqb(t—s)mi(s)ds},

where ¢(-) standard normal pdf
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6.4 Importance of the Parameterization (cont’d)

Longitudinal Outcome
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6.4 Importance of the Parameterization (cont’d)

Survival Outcome
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6.4 Importance of the Parameterization (cont’d)

e The chosen parameterization can influence the derived predictions

> especially for the survival outcome

e My current work: How to optimally choose parameterization?

> per subject (personalized medicine)

e Quite promising results from the Bayesian approach using Bayesian Model Averaging
techniques

> it can be done with package JMbayes,
> it falls a bit outside the scope of this course, but

> | can provide information if interested. . .

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 206



. . . . Erasmus MC
6.5 Discrimination

e Often clinical interest lies in the predictive performance of a model

> how good is a model in discriminating between patients of low and high risk of
dying

e We develop and estimate prospective accuracy measures based on ROC methodology
within the joint modeling framework
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6.5 Discrimination (cont’d)

e We assume the following setting
> using the available longitudinal data up to time ¢,

> we are interested in events in the medically relevant interval (¢,1 + At]

e Based on the fitted joint model and for a particular threshold value ¢ € [0, 1], we can
term a subject as a case if

7T]<t+At|t>§C
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6.5 Discrimination (cont’d)

e Following, we can define sensitivity
Pr{mj(t + At | t) < c| T} € (t,t+ At]},
specificity
Pr{mj(t + At | t) > c | T >t + At},
and the corresponding AUC

AUC(t, At)
= Prim(t+ At | t) <m(t+ At | ) | {T7 € (t,t+ At} N {T} >t + At}]
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6.5 Discrimination (cont’d)

Erasmus MC

e Estimation of AUC(¢, At) can be based on
> similar arguments as Harrell's C' index, or

> inverse probability of censoring weighting
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6.5 Model Discrimination (cont’d)

R> For a joint model fitted in JM, AGC(t, At) is calculated by function aucJM() — for
the PBC dataset

# AUC(t = 7, Delta t = 2)
aucJM(jointFit, newdata = pbc2, Tstart = 7, Dt = 2)
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6.5 Model Discrimination (cont’d)

R> For a fitted joint model with JMbayes2, we calculate the ROC curve and the
corresponding AUC

roc <- tvROC(jointFit, newdata = pbc2, Tstart = t0, Dt = 2)

roc

tvAUC(roc)
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6.6 Prediction Error

e We have extensively covered discrimination, i.e.,

> how well can the longitudinal biomarker(s) discriminate between subject of low
and high risk of the event

e Another relevant measure for quantifying predictive ability is calibration, i.e.,

> how well can the longitudinal biomarker(s) accurately predict future events

e In standard survival analysis and on the latter front there has been a lot of work on
extensions of the Brier score (see Gerds and Schumacher, (2006) and references therein)
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6.6 Prediction Error (cont’d)

e In the joint modeling framework we need to take into account the dynamic nature of
the longitudinal marker

e The expected error of prediction has the form

where
> N;(t) = I(T; > t) is the event status at time ¢

> L(-) denotes a loss function, such as the absolute or square loss
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6.6 Prediction Error (cont’d)

e An estimator for PE(u | t) that accounts for censoring has been proposed by
Henderson et al. (2002)

PE(u | ) = {R®} " > (T > w)L{1 = 7i(u [ )} + 6 (T; < u) L{0 — #;(u | )}

115>t

HL = )I(T; < w) [l | TILAL — (e | )} + {1 = il | TIILAO — il | 1)}]

where
> R(t) denotes the number of subjects at risk at ¢
> red part: subjects still alive at u
> blue part: subjects who died before

> green part: subject censored before
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6.6 Prediction Error (cont’d)

e PE(u | t) uses the longitudinal information up to time ¢ and focuses on accuracy at
single time point u

> alternatively, we could summarize the error of prediction in a specific interval of
interest, say |t, u]

e A weighted average of PE(u | t) that accounts for the reduction in the number of
events due to censoring:

> 6:{Sc(t)/Se(T) YPE(u | 1)

=~ 1t<T;<u

IPE(u | t) = S 6:{Sc(t)/Sc(T)}

i:tSTZ’SU

where

> Sc(-) denotes the Kaplan-Meier estimator of the censoring time distribution
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6.6 Prediction Error (cont’d)

e Both IPE(u | t) and ﬁﬁ(u | ) can be used to provide a measure of explained
variation between nested models

e Say model M is nested in model M, we can compute how much the extra structure
in M5 improves accuracy by

Rpplu | t; My, My) = 1= PEus(u | £) /PEag (u | 1
or

R2pp(u | My, My) = 1 — IPEys, (u | 1) / PEas, (u | )
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6.6 Prediction Error (cont’d)

R> For a fitted joint model ﬁE(u | £) and IﬁE(u | t) are calculated by function
prederrJM() — for the PBC dataset

# PE(w=9 | t=7)
prederrJM(jointFit, newdata

9)

pbc2, Tstart = 7, Thoriz

# IPE(u =9 | t =7)
prederrJM(jointFit, newdata
interval = TRUE)

pbc2, Tstart = 7, Thoriz = 9,
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6.7 Validation

e \Validation of both discrimination and calibration measures can be achieved with
standard re-sampling techniques

> cross-validation (leave-one-out or better 10-fold)

> Bootstrap

e In general time consuming because it requires fitting the joint model many times

> take advantage of parallel computing (e.g., using package parallel)
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7.1 Concluding Remarks

e When we need joint models for longitudinal and survival outcomes?
> to handle endogenous time-varying covariates in a survival analysis context

> to account for nonrandom dropout in a longitudinal data analysis context

e How joint models work?
> a mixed model for the longitudinal outcome
> a relative risk model for the event process

> explain interrelationships with shared random effects
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7.1 Concluding Remarks (cont’d)

e Where to pay attention when defining joint models?
> model flexibly the subject-specific evolutions for the longitudinal outcome
> use parametric but flexible models for the baseline hazard function

> consider how to model the association structure between the two processes
= Parameterization

e Extensions

> under the full conditional independence assumption we can easily extend the basic
joint model

> multiple longitudinal outcomes and/or multiple failure times

> though more computationally intensive
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7.1 Concluding Remarks (cont’d)

¢ Individualized predictions

> joint models can provide subject-specific predictions for the longitudinal and
survival outcomes

> these are dynamically updated as extra information is recorded for the subjects

> = joint models constitute an excellent tool for personalized medicine

e What we did not cover
> diagnostics for joint models using residuals

> ...
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e Lin, H., Turnbull, B., McCulloch, C. and Slate, E. (2002). Latent class models for joint analysis of longitudinal
biomarker and event process: Application to longitudinal prostate-specific antigen readings and prostate cancer.
Journal of the American Statistical Association 97, 53—65.

e Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the
presence of death, with application to a study on acquired immune deficiency syndrome. Journal of the Royal
Statistical Society, Series C 58, 65-81.

e Proust-Lima, C., Joly, P., Dartigues, J. and Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal
outcomes and a time-to-event: A nonlinear latent class approach. Computational Statistics and Data Analysis 53,
1142-1154.

e Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer
recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics 10, 535-549.

e Rizopoulos, D. (2012). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive
Gaussian quadrature rule. Computational Statistics and Data Analysis 56, 491-501.

e Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and
time-to-event data. Biometrics 67, 819-829.

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 227



Erasmus MC

7.2 Additional References (cont’d)
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e Wu, M. and Bailey, K. (1988). Analysing changes in the presence of informative right censoring caused by death and
withdrawal. Statistics in Medicine 7, 337-346.

e Wu, M. and Bailey, K. (1989). Estimation and comparison of changes in the presence of informative right censoring:
conditional linear model. Biometrics 45, 939-955.

e Wu, M. and Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring
by modeling the censoring process. Biometrics 44, 175-188.

e Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics
53, 330-339.

e Xu, C., Baines, P. and Wang, J.-L. (2014). Standard error estimation using the EM algorithm for the joint modeling
of survival and longitudinal data. Biostatistics, to appear.

e Xu, J. and Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated measures and times to events.
Applied Statistics 50, 375-387.

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 231



Erasmus MC

7.2 Additional References (cont’d)
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7.3 Medical Papers with Joint Modeling (cont’d)
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8.1 Practical 1: A Simple Joint Model

e We will fit a simple joint model to the PBC dataset

e Start R and load package JM, using 1library (JM)

e The longitudinal (long format) and survival information for the PBC patients can be
found in data frames pbc2 and pbc2.id. The variables that we will need are:
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8.1 Practical 1: A Simple Joint Model (cont’d)

> pbc2
* 1d: patient id number
* serBilir: serum bilirubin

* year: follow-up times in years

> pbc2.id
* years: observed event times in years
* status: ‘alive’, ‘transplanted’, ‘dead’
* drug: treatment indicator
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8.1 Practical 1: A Simple Joint Model (cont’d)

e | T1:] Fit the linear mixed effects model for log serum bilirubin using function 1me (),
assuming simple linear evolutions over time for each subject, i.e., a simple
random-intercepts and random-slopes structure and different average evolutions per
treatment group (see pp. 37-41)

yi(t) = Bo+ Pit + Po{D-penic, X t} + by + bt + &;(t)

e | T2:| Create the indicator for the composite event (i.e., ‘alive’ = 0, ‘transplanted’ or
‘dead’ = 1) using the code

pbc2.id$status2 <- as.numeric(pbc2.id$status != "alive")
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8.1 Practical 1: A Simple Joint Model (cont’d)

o T3:

Fit the Cox PH model using coxph () that includes only treatment as baseline

covariate, remember to set x = TRUE (see pp. 67-68)

e We want to fit the joint model

yi(t) = my(t) +&i(t)

= 50 + 51?5 —+ BQ{D—penici X If} + bjg + bt + 82'(?5), 5z'<t) ~ N(O, 0'2),

hi(t) = ho(t) exp{yD-penic; + am;(t)},

Joint Models for Longitudinal and Survival Data: May 20-21, 2021, Bern 239



8.1 Practical 1: A Simple Joint Model (cont’d)

Erasmus MC

e | T4:| Fit this joint model based on the fitted linear mixed and Cox models using
function jointModel () (see pp. 106-108)

> with piecewise-constant baseline hazard & the (pseudo) adaptive GH rule

e | T5:| Use the summary () method to obtain a detailed output of the fitted joint
model — interpret the results

e | T6:| Produce 95% confidence intervals for the parameters in the longitudinal
submodel, and for the hazard ratios in the survival submodel using function

confint () (the parm argument of confint () can take as values "all" (default), "Longitudinal" and
"Event")
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8.1 Practical 1: A Simple Joint Model (cont’d)

e This model assumes that the strength of the association between the level of serum
bilirubin and the risk for the composite event is the same in the the two treatment
groups

e To relax this additivity assumption we will add the interaction effect between serum
bilirubin and treatment

2

yi(t) = my(t) +&i(t)
= [y + Pit + Bo{D-penic; X t} + b + bt +i(t), &;(t) ~ N(0,07),

hi(t) = ho(t) exp|yD-penic, + aym;(t) + ax{D-penic; x m;(t)}],
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8.1 Practical 1: A Simple Joint Model (cont’d)

e To fit this model with package JM we need to define the interFact argument of
jointModel (). This should be a named 1ist with two elements:

> value: a formula with the factors for which we wish to calculate the interaction

terms

> data: the data frame used to fit the Cox model

o I7:

Define this list and fit the corresponding joint model. Use the summary ()

method to obtained a detailed output and interpret the results
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8.1 Practical 1: A Simple Joint Model (cont’d)

e Based on the fitted joint model we can test for three treatment effects, namely

> in the longitudinal process:

Holﬂgzo

> in the survival process:

Hoi’)/IOéQ:O

> in the joint process:

H()Z@QZ’}/:CYQ:O
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8.1 Practical 1: A Simple Joint Model (cont’d)

e We would like test these hypotheses using likelihood ratio tests

e | 18:| Fit the three joint models under the corresponding H(), and use function
anova() to perform the LRTs (this function accepts as a first argument the joint model under the null,

and as second the joint model under the alternative)
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8.2 Practical 2: Challenging jointModel ()

e | T1:] Download the workspace DataPract2.RData from
http://jmr.r-forge.r-project.org/DataPract2.RData and load it to R (File
— Load Workspace. . .)

e In this workspace there are the two datasets

> datalong

* patnr: patient id number

* 1nY: longitudinal response variable
* obstime: follow-up time

* age: the age of the patients

* gender: the gender of the patients
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8.2 Practical 2: Challenging jointModel () (cont’d)

and

> dataSurv

* eventTime: observed event times

* event: 0 censored, 1 event
* age: the age of the patients
*

gender: the gender of the patients
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8.2 Practical 2: Challenging jointModel () (cont’d)

e We will fit a joint model in which

> longitudinal submodel: linear subject-specific random slopes

yi(t) = mi(t) + &(t)
m;i(t) = (Bo + bio) + (51 + bi1)t + Poage, + Psgender,

> survival submodel: age, gender & the true effect of InY

hi(t) = ho(t) exp{y1age; + Yogender, + am;(t)}

ho(t) taken piecewise-constant
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8.2 Practical 2: Challenging jointModel () (cont’d)

e | T2:] Fit the linear mixed effects model for InY using function 1me (), controlling for
age and gender, and assuming a diagonal matrix for the random effects (see pp. 37-41)

e | T3:| Fit the Cox PH model using coxph () that includes Age and Gender (see pp.
67-68)

e T4:| Fit the corresponding joint model based on the fitted linear mixed and Cox
models using function jointModel () (see pp. 106-108)

> with piecewise-constant baseline hazard & the (pseudo) adaptive GH rule

= What do you observe?
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8.2 Practical 2: Challenging jointModel () (cont’d)

e | T5:] Refit the joint model setting verbose = TRUE. This will print the parameter
values during the optimization = What do you observe?

e | T6:| Refit the joint model by appropriately adjusting the init argument (check the help

page of jointModel () for the syntax)
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8.3 Practical 3: Using derivForm

e We will fit a joint model for the PBC dataset

> longitudinal submodel: linear and quadratic subject-specific random slopes for log
serum bilirubin

yi(t) = m;(t) + &i(t)
mi(t) = (Bo+ bio) + (81 + b )t + (B2 + big)t?

> survival submodel: true effect of log serum bilirubin
hi(t) = ho(t) exp{am;(t)}

ho(t) taken piecewise-constant
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8.3 Practical 3: Using derivForm (cont’d)

e Start R and load package JM, using library (JM)

e The longitudinal (long format) and survival information for the PBC patients can be
found in data frames pbc2 and pbc2.id. The variables that we will need are:
> pbc2
* i1d: patient id number

* serBilir: serum bilirubin
* year: follow-up times in years

> pbc2.1id
* years: observed event times in years
* status: ‘alive’, ‘transplanted’, ‘dead’
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8.3 Practical 3: Using derivForm (cont’d)

e | T1:] Fit the linear mixed effects model for log serum bilirubin using function 1me ()
and assuming linear and quadratic evolutions over time for each subject, and a
diagonal matrix for the random effects (see pp. 37-41), i.e.,

yilt) = milt) + &i(t)

mi(t) = (Bo+ bio) + (B1 + b )t + (Ba + bin)t?

e | T2:| Create the indicator for the composite event (i.e., ‘alive’ = 0, ‘transplanted’ or
‘dead’ = 1) using the code

pbc2.id$status2 <- as.numeric(pbc2.id$status != "alive")
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8.3 Practical 3: Using derivForm (cont’d)

e | T3:] Fit the null Cox PH model using coxph() that does not include any covariates,
remember to set x = TRUE (see pp. 67-68)

e T4:| Fit the corresponding joint model based on the fitted linear mixed and Cox
models using function jointModel () (see pp. 106-108)

> with piecewise-constant baseline hazard & the (pseudo) adaptive GH rule

e We want to extend the previous joint model and include the current value and the
time-dependent slope term, i.e.,

hi(t) = ho(t) exp{aym;(t) + com(t)}
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8.3 Practical 3: Using derivForm (cont’d)

e The derivative of m;(t) with respect to time is

m;(t) = dﬂ:l;(t) = (B + bir) +2(82 + bio)t

e To fit this joint model we need to specify the derivForm argument, which is a 1ist
with four elements

> fixed: a formula describing the fixed part of m/(t)
> random: a formula describing the random part of m(?)

> indFixed: index denoting which 3 of m;(t) are involved in the calculation of
m;(t)

(;
> indRandom: index denoting which b; of m;(t) are involved in the calculation of
m(t)

(
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e Rewriting m;(t) and m/(t) to split in a fixed and random part
mi(t) = (Bo+ Bit + Bat”®) + (bio + bunt + biot”)

mi(t) = (P14 20at) + (b + 2bj0t)

Thus, the 1ist to supply to derivForm will have the form

dForm <- list(
fixed = © I(2%*year),
random = ~ I(2x*year),
indFixed = c(2,3),
indRandom = c(2,3)
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8.3 Practical 3: Using derivForm (cont’d)

e | T5:] Fit the joint model that includes both m;(t) and m/(t) (see pp. 141-142)
> you will need to set parameterization = "both", and

> for argument derivForm use the dForm list we defined above
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8.3 Practical 3: Using derivForm (cont’d)

e We would like again to fit the joint model that includes both m;(¢) and m!(¢), but
now we would like to model the subject-specific longitudinal profiles more flexibly

using regression splines

o | T6:| Re-fit the linear mixed model using natural cubic splines with 3 d.f. To do this
you need to use function ns () from package splines (which is automatically loaded

when you load JM)

> assume again a diagonal covariance matrix for the random effects
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8.3 Practical 3: Using derivForm (cont’d)

e To fit the joint models, we again require to appropriately define the derivForm
argument

> Problem: How can | calculate the derivative of natural cubic spline

> Solution: Theoretically a bit difficult, but we can do it easily in practice
numerically (i.e., using numerical derivatives). This is already implemented in
function dns ()

T7:/ Using dns () define the list with the R formulas and index vector for the fixed
and random effects, respectively, and fit the joint model
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8.4 Practical 4: Dynamic Predictions

e We will work with the Liver Cirrhosis dataset

> a placebo-controlled randomized trial on 488 liver cirrhosis patients

e Start R and load package JM, using library (JM)

e The longitudinal (long format) and survival information for the liver cirrhosis patients
can be found in data frames prothro and prothros, respectively. The variables
that we will need are:
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8.4 Practical 4: Dynamic Predictions (cont’d)

> prothro
* 1d: patient id number
* pro: prothrobin measurements
* time: follow-up times in years
* treat: randomized treatment

> prothros

* Time: observed event times in years
* death: event indicator with 0 = ‘alive’, and 1 = ‘dead’

* treat: randomized treatment
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8.4 Practical 4: Dynamic Predictions (cont’d)

e We will fit the following joint model to the Liver Cirrhosis dataset

> longitudinal submodel: linear subject-specific random slopes for prothrobin levels
allowing for different average evolutions in the two treatment groups

yi(t) = mi(t) 4 &i(t)
= 50 + 51t -+ Bg{TrtZ- X t} -+ bz'() + bﬂt

E

e

~

N———
|

> survival submodel: treatment effect & true effect of prothrobin

hi(t) = ho(t) exp{yTrt; + am;(t)}

ho(t) taken piecewise-constant
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8.4 Practical 4: Dynamic Predictions (cont’d)

e | T1:] Fit the linear mixed model using 1me (), the Cox model using coxph (), and the
corresponding joint model using jointModel ()

e We are interested in producing predictions of survival probabilities for Patient 155

e | T2:] Extract the data of Patient 155 using the code

dataP155 <- prothrol[prothro$id == 155, ]
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8.4 Practical 4: Dynamic Predictions (cont’d)

e | T3:] Using the first measurement of Patient 155, and the fitted joint model calculate
his conditional survival probabilities using function survfitJM() and plot it using
the plot method (see p. 190)

e T4:| Repeat the same procedure by including each time the next measurement of
Patient 155 and see how his survival probabilities evolve dynamically over time as
extra prothrobin measurements are recorded

> check arguments conf.int and fill.area of the plot () method for including
the 95% confidence intervals
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8.4 Practical 4: Dynamic Predictions (cont’d)

o [5:

Similarly, produce predictions for future longitudinal responses of Patient 155

using the predict () method for fitted joint models (see p. 197)

> first using only the first measurement,

> and following update the predictions after each new longitudinal measurement has

o [6:

been recorded

Calculate the AUC under the postulated model at year 2 and with a half a year

window (see p. 211)

o I7:

Do the same for the prediction error (see p. 218)
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