Tutorial I: Motivation for Joint Modeling & Joint Models for
Longitudinal and Survival Data

Dimitris Rizopoulos
Department of Biostatistics, Erasmus University Medical Center

d.rizopoulos@erasmusmc.nl

Joint Modeling and Beyond
Meeting and Tutorials on Joint Modeling With Survival, Longitudinal, and Missing Data

April 14, 2016, Diepenbeek



Contents

1 Introduction
1.1 Motivating Longitudinal Studies . . . . . . . . . . . . ...
1.2 Research Questions . . . . . . . . . L L s

1.3 Recent Developments . . . . . . . . . . ... Lo

1.4 Joint Models . . . . . . . s

2 Linear Mixed-Effects Models

2.1 Features of Longitudinal Data . . . . . . . . . . . . . .. . . ... ...

2.2 The Linear Mixed Model . . . . . . . . . . . . . . s

10
13
15

18
19
20

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016



2.3 Missing Data in Longitudinal Studies . . . . . . . . . . . . . .. ...,

2.4 Missing Data Mechanisms . . . . . . . . . . . . ... L0000

3 Relative Risk Models

3.1 Features of Survival Data . . . . . . . . . . . . s
3.2 Relative Risk Models . . . . . . . . . . . . s
3.3 Time Dependent Covariates . . . . . . . . . . . . . . . . ... 00

3.4 Extended Cox Model . . . . . . . . . . . . s

4 The Basic Joint Model

4.1 Joint Modeling Framework . . . . . . . . . . . ...

37
38
41
44
49

54
%)

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016



4.2 Estimation
4.3 A Comparison with the TD Cox
4.4 Joint Models in R

4.5 Connection with Missing Data . .

66
69
72
78

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016



Erasmus MC

What are these Tutorials About

e Often in follow-up studies different types of outcomes are collected

e Explicit outcomes
> multiple longitudinal responses (e.g., markers, blood values)

> time-to-event(s) of particular interest (e.g., death, relapse)

e Implicit outcomes
> missing data (e.g., dropout, intermittent missingness)

> random visit times
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What are these Tutorials About (cont’d)

e Methods for the separate analysis of such outcomes are well established in the
literature

e Survival data:

> Cox model, accelerated failure time models, . ..

e Longitudinal data

> mixed effects models, GEE, marginal models, ...
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What are these Tutorials About (cont’d)

Purpose of these tutorials is to introduce the basics of popular

Joint Modelings Techniques
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Chapter 1

Introduction
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1.1 Motivating Longitudinal Studies

e AIDS:| 467 HIV infected patients who had failed or were intolerant to zidovudine
therapy (AZT) (Abrams et al., NEJM, 1994)

e The aim of this study was to compare the efficacy and safety of two alternative
antiretroviral drugs, didanosine (ddl) and zalcitabine (ddC)

e Qutcomes of interest:
> time to death
> randomized treatment: 230 patients ddl and 237 ddC
> CD4 cell count measurements at baseline, 2, 6, 12 and 18 months

> prevOl: previous opportunistic infections
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1.1 Motivating Longitudinal Studies (cont’d)

JCD4 cell count

Time (months)
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1.1 Motivating Longitudinal Studies (cont’d)

Kaplan—-Meier Estimate
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1.1 Motivating Longitudinal Studies (cont’d)

e Research Questions:

> How strong is the association between CD4 cell count and the risk for death?

> |s CD4 cell count a good biomarker?

*if treatment improves CD4 cell count, does it also improve survival?
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1.1 Motivating Longitudinal Studies (cont’d)

e PBC:| Primary Biliary Cirrhosis:
> a chronic, fatal but rare liver disease

> characterized by inflammatory destruction of the small bile ducts within the liver

e Data collected by Mayo Clinic from 1974 to 1984 (Murtaugh et al., Hepatology, 1994)

e Outcomes of interest:
> time to death and/or time to liver transplantation
> randomized treatment: 158 patients received D-penicillamine and 154 placebo

> longitudinal serum bilirubin levels
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1.1 Motivating Longitudinal Studies (cont’d)

0 5 10 0 5 10
| | | | | | | | | | | |
38 39 51 68
3 — —
2 ] @) —
! _w B
i @ij f}aﬁ‘@ M -
-1 4 (@) ®) L
70 82 90 93
c — Q. — 3
2 :M - fﬁ Wﬁ
@ Speetes® O
= 134 148 173 200
E 3 - (@) -
2 (1): ,er@ © voceec™” %‘6%15@@@ B
-1 - -
216 242 269 290
] S f%-ef@ -3
m — 1
@/w S 0
— ~ —1

Time (years)

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016



1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

e Research Questions:

> How strong is the association between bilirubin and the risk for death?

> How the observed serum bilirubin levels could be utilized to provide predictions of
survival probabilities?

> Can bilirubin discriminate between patients of low and high risk?
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1.2 Research Questions

e Depending on the questions of interest, different types of statistical analysis are
required

e We will distinguish between two general types of analysis
> separate analysis per outcome

> joint analysis of outcomes

e Focus on each outcome separately
> does treatment affect survival?
> are the average longitudinal evolutions different between males and females?

> ...
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1.2 Research Questions (cont’d)

e Focus on multiple outcomes

> Complex hypothesis testing: does treatment improve the average longitudinal
profiles in all markers?

> Complex effect estimation: how strong is the association between the longitudinal
evolution of CD4 cell counts and the hazard rate for death?

> Association structure among outcomes:
* how the association between markers evolves over time (evolution of the
association)

* how marker-specific evolutions are related to each other (association of the
evolutions)
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1.2 Research Questions (cont’d)

> Prediction: can we improve prediction for the time to death by considering all
markers simultaneously?

> Handling implicit outcomes: focus on a single longitudinal outcome but with
dropout or random visit times
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1.3 Recent Developments

e Up to now emphasis has been
> restricted or coerced to separate analysis per outcome

> or given to naive types of joint analysis (e.g., last observation carried forward)

e Main reasons
> lack of appropriate statistical methodology

> lack of efficient computational approaches & software
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1.3 Recent Developments (cont’d)

e However, recently there has been an explosion in the statistics and biostatistics
literature of joint modeling approaches

e Many different approaches have been proposed that
> can handle different types of outcomes
> can be utilized in pragmatic computing time
> can be rather flexible

> most importantly: can answer the questions of interest
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e Let Y7 and Y5 two outcomes of interest measured on a number of subjects for which

joint modeling is of scientific interest
> both can be measured longitudinally

> one longitudinal and one survival

e We have various possible approaches to construct a joint density p(y1,y2) of {Y7, Y5}

> Conditional models: p(y1, y2) = p(y1)p(ys | Y1)
> Copulas: p(yl, yz) = c{J-"(y1), f(yz)}p(yﬁp(yz)

But Random Effects Models have (more or less) prevailed

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016
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1.4 Joint Models (cont’d)

e Random Effects Models specify

p(y1,y2) = / p(y1, 92 | b) p(b) db

_ / p(y1 | ) plys | b) p(b) db

> Unobserved random effects b explain the association between Y] and Y5

> Conditional Independence assumption

Vi AL Yy | b
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1.4 Joint Models (cont’d)
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e Features:

> Y7 and Y5 can be of different type

* one continuous and one categorical

* one continuous and one survival
%

> Extensions to more than two outcomes straightforward
> Specific association structure between Y] and Y5 is assumed

> Computationally intensive (especially in high dimensions)

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016
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Chapter 2
Linear Mixed-Effects Models
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2.1 Features of Longitudinal Data

e Repeated evaluations of the same outcome in each subject in time

> CD4 cell count in HIV-infected patients

> serum bilirubin in PBC patients

Measurements on the same subject are expected to
be (positively) correlated

e This implies that standard statistical tools, such as the t-test and simple linear
regression that assume independent observations, are not optimal for longitudinal
data analysis.

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 19
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2.2 The Linear Mixed Model

e T he direct approach to model correlated data = multivariate regression

yi = XiB+¢e;, € ~N(0,V),

where
> 1; the vector of responses for the ith subject
> X, design matrix describing structural component

> V; covariance matrix describing the correlation structure

e There are several options for modeling V;, e.g., compound symmetry, autoregressive
process, exponential spatial correlation, Gaussian spatial correlation, . ..
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2.2 The Linear Mixed Model (cont’d)

e Alternative intuitive approach: Each subject in the population has her own
subject-specific mean response profile over time
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2.2 The Linear Mixed Model (cont’d)
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2.2 The Linear Mixed Model (cont’d)

e The evolution of each subject in time can be described by a linear model

yii = Bio+ Buti; +eij,  ij ~ N(0,07),

where
> v;; the jth response of the ith subject

> Bz'o is the intercept and Bﬂ the slope for subject 7

e Assumption: Subjects are randomly sampled from a population = subject-specific
regression coefficients are also sampled from a population of regression coefficients

~
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2.2 The Linear Mixed Model (cont’d)

e \We can reformulate the model as

Yii = (Bo + bio) + (51 + bi1)ti; + €ij,

where
> Bs are known as the fixed effects

> b;s are known as the random effects

e In accordance for the random effects we assume

b; = ~ N (0, D)
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Erasmus MC

2.2 The Linear Mixed Model (cont’d)

e Put in a general form

/

yi = Xib+ Zibi + ¢,

\ bl ~ N<07D>7 ¥ NN<O7O2|ni>’

with
> X design matrix for the fixed effects (3

> Z design matrix for the random effects b;

I>bZ'J_|_€7;
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2.2 The Linear Mixed Model (cont’d)

e Interpretation:
> [3; denotes the change in the average y; when x; is increased by one unit

> b; are interpreted in terms of how a subset of the regression parameters for the ith
subject deviates from those in the population

e Advantageous feature: population + subject-specific predictions
> (3 describes mean response changes in the population

> (3 + b; describes individual response trajectories

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 26
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2.2 The Linear Mixed Model (cont’d)

e Example:

We fit a linear mixed model for the AIDS dataset assuming

> different average longitudinal evolutions per treatment group (fixed part)

> random intercepts & random slopes (random part)

’

Yii = Bo + Pitij + Po{ddI; X 1} + bio + birtij + €ij,

\ bZNN<O,D), SijNN(O,Oj)

e Note: We did not include a main effect for treatment due to randomization

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016
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2.2 The Linear Mixed Model (cont’d)

Value Std.Err. t-value p-value
By 7189  0.222 32.359 < 0.001
By —0.163  0.021 —=7.855 < 0.001
By 0.028  0.030 0.952  0.342

e No evidence of differences in the average longitudinal evolutions between the two
treatments
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2.3 Missing Data in Longitudinal Studies

e A major challenge for the analysis of longitudinal data is the problem of missing data

> studies are designed to collect data on every subject at a set of prespecified
follow-up times

> often subjects miss some of their planned measurements for a variety of reasons

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 29
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2.3 Missing Data in Longitudinal Studies (cont’d)

e Implications of missingness:
> we collect less data than originally planned = loss of efficiency
> not all subjects have the same number of measurements = unbalanced datasets

> missingness may depend on outcome =- potential bias

e For the handling of missing data, we introduce the missing data indicator

1 if y;; is observed

0 otherwise

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 30



Erasmus MC

2.3 Missing Data in Longitudinal Studies (cont’d)

e We obtain a partition of the complete response vector y;
> observed data y7, containing those y;; for which r;; =1

> missing data ", containing those y;; for which r;; = 0

e For the remaining we will focus on dropout = notation can be simplified

n;
> Discrete dropout time: 7! = 1+ >_ r;; (ordinal variable)

J=1

> Continuous time: 7" denotes the time to dropout

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 31
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2.4 Missing Data Mechanisms

e To describe the probabilistic relation between the measurement and missingness
processes Rubin (1976, Biometrika) has introduced three mechanisms

e Missing Completely At Random (MCAR): The probability that responses are missing

m

is unrelated to both y¢ and v!

(4

p(ri |y y") = p(rs)

e Examples

> subjects go out of the study after providing a pre-determined number of
measurements

> laboratory measurements are lost due to equipment malfunction
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2.4 Missing Data Mechanisms (cont’d)

e Missing At Random (MAR): The probability that responses are missing is related to

m

1?2, but is unrelated to /!

1

p(ri | yi u") = plri | y7)

e Examples

> study protocol requires patients whose response value exceeds a threshold to be
removed from the study

> physicians give rescue medication to patients who do not respond to treatment

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 33



Erasmus MC

2.4 Missing Data Mechanisms (cont’d)

e Missing Not At Random (MNAR): The probability that responses are missing is

related to ¥", and possibly also to ¥/

1

p(ri | y") or p(ri |y, y")

e Examples

> in studies on drug addicts, people who return to drugs are less likely than others
to report their status

> in longitudinal studies for quality-of-life, patients may fail to complete the
questionnaire at occasions when their quality-of-life is compromised
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2.4 Missing Data Mechanisms (cont’d)

e Features of MNAR

> The observed data cannot be considered a random sample from the target
population

> Only procedures that explicitly model the joint distribution {y?, /", r;} provide
valid inferences = analyses which are valid under MAR will not be valid
under MNAR

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 35



2.4 Missing Data Mechanisms (cont’d)
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We cannot tell from the data at hand whether the
missing data mechanism is MAR or MNAR

Note: We can distinguish between MCAR and MAR

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016
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Chapter 3
Relative Risk Models
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3.1 Features of Survival Data

e The most important characteristic that distinguishes the analysis of time-to-event
outcomes from other areas in statistics is Censoring

> the event time of interest is not fully observed for all subjects under study

e Implications of censoring:

> standard tools, such as the sample average, the t-test, and linear regression
cannot be used

> inferences may be sensitive to misspecification of the distribution of the event
times
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Eraspmus MC

3.1 Features of Survival Data (cont’d)

e Several types of censoring:
> Location of the true event time wrt the censoring time: right, left & interval

> Probabilistic relation between the true event time & the censoring time:
informative & non-informative (similar to MNAR and MAR)

Here we focus on non-informative right censoring

e Note: Survival times may often be truncated; analysis of truncated samples requires
similar calculations as censoring

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 39
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3.1 Features of Survival Data (cont’d)

e Notation (¢ denotes the subject)
> T ‘true’ time-to-event

> C}; the censoring time (e.g., the end of the study or a random censoring time)

e Available data for each subject
> observed event time: T; = min(7}, C;)

> event indicator: 0; = 1 if event; 9, = O if censored

Our aim is to make valid inferences for T but using
only {T;,6;}

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016
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3.2 Relative Risk Models

e Relative Risk Models assume a multiplicative effect of covariates on the hazard
scale, i.e.,

hi(t) = ho(t) exp(yiwin + Yowis + ... + pPpwy) =

log hi(t) = logho(t) + y1wit + Yowia + . .. + Ypwip,

where
> h;(t) denotes the hazard for an event for patient i at time ¢
> ho(t) denotes the baseline hazard

> W1, . .., W;, a set of covariates

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 41
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3.2 Relative Risk Models (cont’d)

e Cox Model: We make no assumptions for the baseline hazard function

e Parameter estimates and standard errors are based on the log partial likelihood
function

pl(v) = zn:5 [vai—log{ > exp(vaj)Ha

71215

where only patients who had an event contribute
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Erasmus MC

3.2 Relative Risk Models (cont’d)

e [Example:| For the PBC dataset were interested in the treatment effect while
correcting for sex and age effects

hi(t) = ho(t) exp(y,D-penic; + y,Female; + y3Age;)

Value HR Std.Err. z-value p-value

v —0.138 0.871  0.156 —0.882  0.378
v —0.493 0.611  0.207 —=2.379  0.017
vs  0.021 1.022  0.008  2.784  0.005
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3.3 Time Dependent Covariates

e Often interest in the association between a time-dependent covariate and the risk for
an event

> treatment changes with time (e.g., dose)
> time-dependent exposure (e.g., smoking, diet)
> markers of disease or patient condition (e.g., blood pressure, PSA levels)

> ...

e Example: In the PBC study, are the longitudinal bilirubin measurements associated
with the hazard for death?

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 44
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3.3 Time Dependent Covariates (cont’d)

e To answer our questions of interest we need to postulate a model that relates
> the serum bilirubin with

> the time-to-death

e [ he association between baseline marker levels and the risk for death can be
estimated with standard statistical tools (e.g., Cox regression)

e When we move to the time-dependent setting, a more careful consideration is
required
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3.3 Time Dependent Covariates (cont’d)

e There are two types of time-dependent covariates
(Kalbfleisch and Prentice, 2002, Section 6.3)

> Exogenous (aka external): the future path of the covariate up to any time ¢t > s is
not affected by the occurrence of an event at time point s, i.e.,

P{YI(t) | Di(s). T7 > s} = Pr{Di(t) | Yi(s). T = s},

where 0 < s <t and V;(t) = {yi(s),0 < s < t}

> Endogenous (aka internal): not Exogenous

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 46
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3.3 Time Dependent Covariates (cont’d)

e It is very important to distinguish between these two types of time-dependent
covariates, because the type of covariate dictates the appropriate type of analysis

e In our motivating examples all time-varying covariates are Biomarkers =- These are
always endogenous covariates

> measured with error (i.e., biological variation)
> the complete history is not available

> existence directly related to failure status
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3.3 Time Dependent Covariates (cont’d)
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JCD4 cell count

Subject 127

5 10

Follow—up Time (months)

20
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3.4 Extended Cox Model

e The Cox model presented earlier can be extended to handle time-dependent
covariates using the counting process formulation

hz<t | yz<t>, ’UJZ') = ]’Lo(t)RAt) exp{fyTwz- -+ Oé%(t)},

where

> IV;(t) is a counting process which counts the number of events for subject 7 by
time ¢,

> h;(t) denotes the intensity process for N;(t),
> R;(t) denotes the at risk process (‘1" if subject @ still at risk at ¢), and

> y;(t) denotes the value of the time-varying covariate at ¢

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 49
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3.4 Extended Cox Model (cont’d)

e Interpretation:

hi(t | Vi), wi) = ho(t)Ri(t) exp{y " w; + ayi(t)}

exp(a) denotes the relative increase in the risk for an event at time ¢ that results
from one unit increase in y;(t) at the same time point

e Parameters are estimated based on the log-partial likelihood function

Z / { t) exp{y wi + ayi(t)}
— log {Z R;(t) exp{y w; + ozyj(t)}} } dN;(t)

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 50



3.4 Extended Cox Model (cont’d)
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e How does the extended Cox model handle time-varying covariates?
> assumes no measurement error
> step-function path

> existence of the covariate is not related to failure status

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016
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3.4 Extended Cox Model (cont’d)
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|
hazard function
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3.4 Extended Cox Model (cont’d)

e Therefore, the extended Cox model is only valid for exogenous time-dependent
covariates

Treating endogenous covariates as exogenous may
produce spurious results!

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016
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Chapter 4
The Basic Joint Model
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4.1 Joint Modeling Framework

e To account for the special features of endogenous covariates a new class of models
has been developed

Joint Models for Longitudinal and Time-to-Event Data

e |ntuitive idea behind these models

1. use an appropriate model to describe the evolution of the marker in time for each
patient

2. the estimated evolutions are then used in a Cox model

o Feature: Marker level's are not assumed constant between visits
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4.1 Joint Modeling Framework (cont’d)
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4.1 Joint Modeling Framework (cont’d)

Eraspmus MC

e Some notation
> 17" True event time for patient ¢
> T;: Observed event time for patient 2
> 0;: Event indicator, i.e., equals 1 for true events

> 1;: Longitudinal responses

e We will formulate the joint model in 3 steps — in particular, ...

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016
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4.1 Joint Modeling Framework (cont’d)

e |Step 1:| Let's assume that we know m,(t), i.e., the true & unobserved value of the
marker at time ¢

e Then, we can define a standard relative risk model
hi(t | M;(t)) = ho(t) eXp{WTwz- + am;(t)},

where
> M;(t) = {m;(s),0 < s < t} longitudinal history

> « quantifies the strength of the association between the marker and the risk for
an event

> w; baseline covariates
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4.1 Joint Modeling Framework (cont’d)

e Step 2:

From the observed longitudinal response y;(t) reconstruct the covariate

history for each subject

e Mixed effects model (we focus, for now, on continuous markers)

where

yi(t) = m(t) + &(t)

— ] (D) + 2 (b +ei(t),  &(t) ~N(0,0%),

> x;(t) and 3: Fixed-effects part
> z;(t) and b;: Random-effects part, b; ~ N (0, D)
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4.1 Joint Modeling Framework (cont’d)

e Step 3:

The two processes are associated = define a model for their joint

distribution

e Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

where

p(yi, T3, 0;) = /p(yz | b;) {R(T; | b,)" S(T; | b))} plb;) db;,

> b; a vector of random effects that explains the interdependencies

> p(-) density function; S(-) survival function

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016

60



Erasmus MC

4.1 Joint Modeling Framework (cont’d)

e Key assumption: Full Conditional Independence = random effects explain all
interdependencies

> the longitudinal outcome is independent of the time-to-event outcome

> the repeated measurements in the longitudinal outcome are independent of each
other

p(yi, Ti, 0i | b)) = plyi | bi) (L3, 0; | b;)

p(yi | bi) = Hp(yz-j | bi)

Caveat: Cl is difficult to be tested
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4.1 Joint Modeling Framework (cont’d)

e The censoring and visiting™ processes are assumed non-informative:

e Decision to withdraw from the study or appear for the next visit

> may depend on observed past history (baseline covariates + observed
longitudinal responses)

> no additional dependence on underlying, latent subject characteristics
associated with prognosis

*The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which

longitudinal measurements are collected.
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4.1 Joint Modeling Framework (cont’d)

e The survival function, which is a part of the likelihood of the model, depends on the
whole longitudinal history

s(018) = e~ | o(s) exp{y T + ami(s)} is)

e Therefore, care in the definition of the design matrices of the mixed model
> when subjects have nonlinear profiles =

> use splines or polynomials to model them flexibly
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e Assumptions for the baseline hazard function hg(t)
> parametric = possibly restrictive

> unspecified = within JM framework underestimates standard errors

e It is advisable to use parametric but flexible models for h(t)

> splines

Q
log ho(t) = Yho + Y YnoaBa(t, ),
qg=1

where

* B,(t,v) denotes the g-th basis function of a B-spline with knots vy, . ..

* 1, a vector of spline coefficients

» VQ
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4.1 Joint Modeling Framework (cont’d)

e It is advisable to use parametric but flexible models for hg(t)

> step-functions: piecewise-constant baseline hazard often works satisfactorily

Q
ho(t) = Z‘Sq](?}q—l <t < vy),
qg=1

where 0 = vy < v; < - -+ < v denotes a split of the time scale
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4.2 Estimation

e Mainly maximum likelihood but also Bayesian approaches

e The log-likelihood contribution for subject ¢:

o) = 1og | {Hp oy 0:0) (AT )" ST ) o(0:0) b,

where

Si(t]b;0) = exp(— /Ot ho(s; 0) exp{y " w; + am;(s)} ds)
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4.2 Estimation (cont’d)

e Both integrals do not have, in general, a closed-form solution = need to be
approximated numerically

e Standard numerical integration algorithms
> Gaussian quadrature
> Monte Carlo

> ...

e More difficult is the integral with respect to b, because it can be of high dimension
> Laplace approximations

> pseudo-adaptive Gaussian quadrature rules
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4.2 Estimation (cont’d)

e To maximize the approximated log-likelihood

(o) = Zlog/p@z | 0:;6) {h(T; | b;;0)" S{(T; | b;;0)} p(bi; 6) db;,

we need to employ an optimization algorithm

e Standard choices
> EM (treating b; as missing data)
> Newton-type

> hybrids (start with EM and continue with quasi-Newton)
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4.3 A Comparison with the TD Cox

e Example:

To illustrate the virtues of joint modeling, we compare it with the standard

time-dependent Cox model for the AIDS data

r yi(t)

hi(t)

where

= m;(t) + €;(t)
— 6() -+ 61t -+ 52{?5 X ddI@'} -+ biO -+ bﬂt + 82'(75), 8Z'<t> ~ N(O, 0'2),

= ho(t) exp{yddI; + ami(t)},

> ho(t) is assumed piecewise-constant
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JM
log HR (std.err)

Cox
log HR (std.err)

Treat
CD41/2

0.33 (0.16)
—0.29 (0.04)

0.31 (0.15)
—0.19 (0.02)

e Clearly, there is a considerable effect of ignoring the measurement error, especially for

the CD4 cell counts
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4.3 A Comparison with the TD Cox (cont’d)

e A unit decrease in CD4'/2. results in a

> Joint Model: 1.3-fold increase in risk (95% Cl: 1.24; 1.43)
> Time-Dependent Cox: 1.2-fold increase in risk (95% Cl: 1.16; 1.27)

e Which one to believe?

> a lot of theoretical and simulation work has shown that the Cox model
underestimates the true association size of markers
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4.4 Joint Models in R

R> Joint models are fitted using function jointModel () from package JM. This
function accepts as main arguments a linear mixed model and a Cox PH model based
on which it fits the corresponding joint model

lmeFit <- 1me(CD4 ~ obstime + obstime:drug,
random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

jointFit <- jointModel(lmeFit, coxFit, timeVar = "obstime",
method = "piecewise-PH-aGH")

summary (jointFit)
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4.4 Joint Models in R (cont’d)

R> The data frame given in 1me () should be in the long format, while the data frame
given to coxph () should have one line per subject™

> the ordering of the subjects needs to be the same

R> In the call to coxph() you need to set x = TRUE (or model = TRUE) such that
the design matrix used in the Cox model is returned in the object fit

R> Argument timeVar specifies the time variable in the linear mixed model

* Unless you want to include exogenous time-varying covariates or handle competing risks
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4.4 Joint Models in R (cont’d)

R> Argument method specifies the type of relative risk model and the type of numerical
integration algorithm — the syntax is as follows:

<baseline hazard>-<parameterization>-<numerical integration>

Available options are:

> "piecewise-PH-GH": PH model with piecewise-constant baseline hazard

> "spline-PH-GH": PH model with B-spline-approximated log baseline hazard
> "weibull-PH-GH": PH model with Weibull baseline hazard

> "weibull-AFT-GH": AFT model with Weibull baseline hazard

> "Cox-PH-GH": PH model with unspecified baseline hazard

GH stands for standard Gauss-Hermite; using aGH invokes the pseudo-adaptive
Gauss-Hermite rule

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 74



Eraspmus MC

4.4 Joint Models in R (cont’d)

R> Joint models under the Bayesian approach are fitted using function
jointModelBayes () from package JMbayes. This function works in a very similar
manner as function jointModel (), e.g.,

lmeFit <- 1me(CD4 ~ obstime + obstime:drug,

random = ~ obstime | patient, data = aids)
coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)
jointFitBayes <- jointModelBayes(lmeFit, coxFit, timeVar = "obstime")

summary (jointFitBayes)
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R> JMbayes is more flexible (in some respects):
> directly implements the MCMC
> allows for categorical longitudinal data as well
> allows for general transformation functions
> penalized B-splines for the baseline hazard function

> ...
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4.4 Joint Models in R (cont’d)

R> In both packages methods are available for the majority of the standard generic
functions + extras

> summary (), anova(), vcov(), logLik()
> coef (), fixef (), ranef ()

> fitted(), residuals()

> plot()

> xtable () (you need to load package xtable first)
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4.5 Connection with Missing Data

e So far we have attacked the problem from the survival point of view

e However, often, we may be also interested on the longitudinal outcome

e Issue: When patients experience the event, they dropout from the study

> a direct connection with the missing data field

Tutorial I: Joint Models for Longitudinal and Survival Data: April 14, 2016 78



Erasmus MC

4.5 Connection with Missing Data (cont’d)

e To show this connection more clearly

> T7: true time-to-event
> y?: longitudinal measurements before 1’*

>y longitudinal measurements after T'*

e Important to realize that the model we postulate for the longitudinal responses is
for the complete vector {y?, y"}

> implicit assumptions about missingness
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e Missing data mechanism:

p(T? | o2 y") = / p(T? | bi) p(bs | 4 ") db,

still depends on ", which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show
different longitudinal evolutions than patients who do not
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4.5 Connection with Missing Data (cont’d)

e Joint models belong to the class of Shared Parameter Models

Pyl gl TY) = / P2,y | b) p(T? | by) p(bs)db

the association between the longitudinal and missingness processes is explained by
the shared random effects b,
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4.5 Connection with Missing Data (cont’d)

e [ he other two well-known frameworks for MNAR data are

> Selection models

p(yi,ui 1) = p(yl, i) o1 | i yi")

> Pattern mixture models:

p(yi,y 1) = pyi, y | 17) p(T})

e These two model families are primarily applied with discrete dropout times and
cannot be easily extended to continuous time
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4.5 Connection with Missing Data (cont’d)

e [Example:| In the AIDS data the association parameter v was highly significant,
suggesting nonrandom dropout

e A comparison between

> linear mixed-effects model = MAR
> joint model = MNAR

Is warranted

e MAR assumes that missingness depends only on the observed data

(T i i) = (T3 | i)
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LMM (MAR) JM (MNAR)

value (s.e.) value (s.e)

Inter 7.19 (0.22) 7.22 (0.22)
Time —0.16 (0.02)  —0.19 (0.02)
Treat:Time 0.03 (0.03) 0.01 (0.03)

e Minimal sensitivity in parameter estimates & standard errors

= Warning: This does not mean that this is always the case!
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The End of Tutorial I!
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