Tutorial I: Motivation for Joint Modeling & Joint Models for Longitudinal and Survival Data

Dimitris Rizopoulos

Department of Biostatistics, Erasmus University Medical Center

d.rizopoulos@erasmusmc.nl

Joint Modeling and Beyond Meeting and Tutorials on Joint Modeling With Survival, Longitudinal, and Missing Data April 14, 2016, Diepenbeek

Contents

1	Introduction		1
	1.1 Motivating Longitudinal Studies		2
	1.2 Research Questions	1	0
	1.3 Recent Developments	1	3
	1.4 Joint Models	1	5
2	Linear Mixed-Effects Models	1	8
	2.1 Features of Longitudinal Data	1	9

2.2 The Linear Mixed Model

20

	2.3 Missing Data in Longitudinal Studies	29	
	2.4 Missing Data Mechanisms	32	
3	Relative Risk Models	37	
	3.1 Features of Survival Data	38	
	3.2 Relative Risk Models	41	

3.3	Time Dependent Covariates	•	-	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	44
3.4	Extended Cox Model	_	-	-	-	-					-					-			-		-		-	-					-	49

4	The Basic Joint Model	54
	4.1 Joint Modeling Framework	55

4.2	Estimation	66
4.3	A Comparison with the TD Cox	69
4.4	Joint Models in R	72
4.5	Connection with Missing Data	78

- Often in follow-up studies different types of outcomes are collected
- Explicit outcomes

▷ multiple longitudinal responses (e.g., markers, blood values)

b time-to-event(s) of particular interest (e.g., death, relapse)

• Implicit outcomes

missing data (e.g., dropout, intermittent missingness)
random visit times

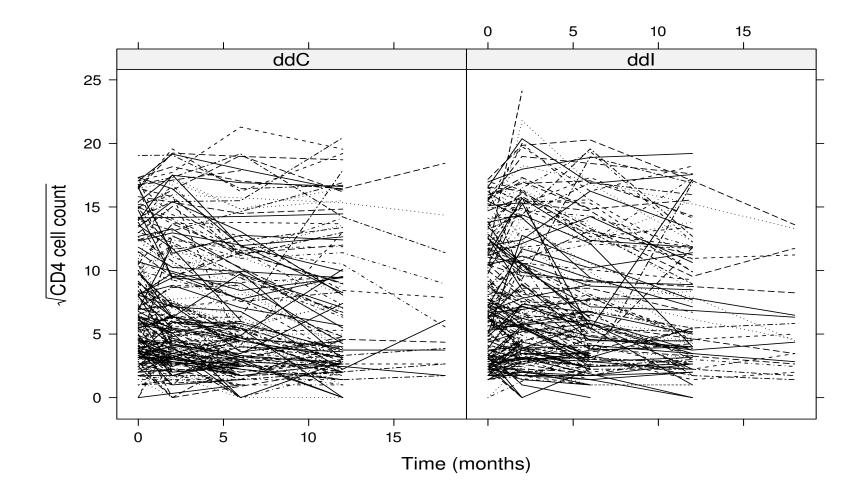
- Methods for the separate analysis of such outcomes are well established in the literature
- Survival data:
 - ▷ Cox model, accelerated failure time models, ...
- Longitudinal data
 - ▷ mixed effects models, GEE, marginal models,

Purpose of these tutorials is to introduce the basics of popular

Joint Modelings Techniques

Chapter 1 Introduction

- AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine therapy (AZT) (Abrams et al., NEJM, 1994)
- The aim of this study was to compare the efficacy and safety of two alternative antiretroviral drugs, didanosine (ddl) and zalcitabine (ddC)
- Outcomes of interest:
 - \triangleright time to death
 - ▷ randomized treatment: 230 patients ddl and 237 ddC
 - > CD4 cell count measurements at baseline, 2, 6, 12 and 18 months
 - ▷ prevOI: previous opportunistic infections



1.1 Motivating Longitudinal Studies (cont'd)

1.0 0.8 Survival Probability 0.6 ddC ddl 0.4 0.2 0.0 5 10 15 20 Ò

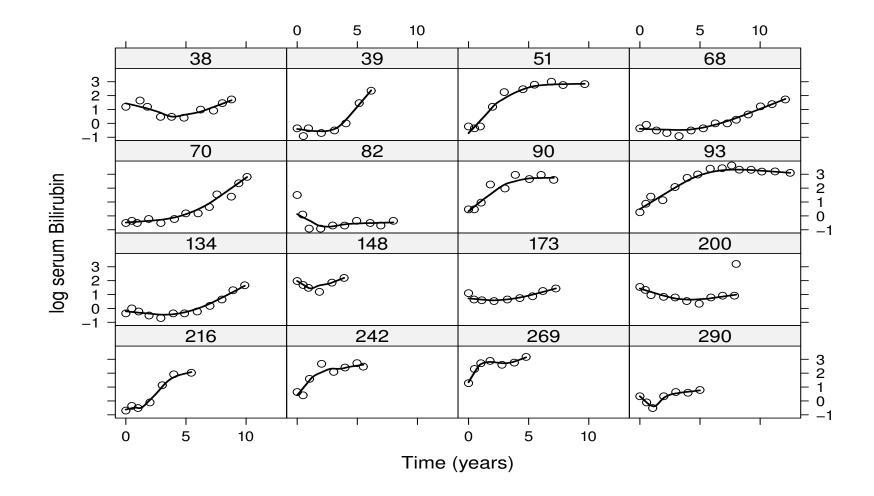
Kaplan–Meier Estimate

Time (months)

• Research Questions:

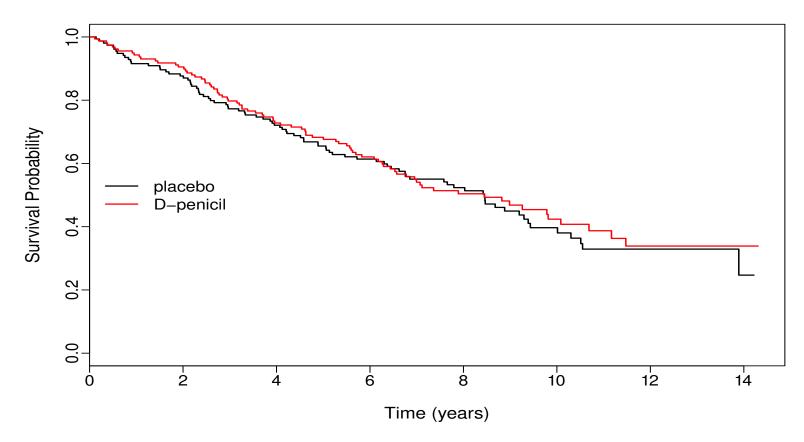
- ▷ How strong is the association between CD4 cell count and the risk for death?
- ▷ Is CD4 cell count a good biomarker?
 - * if treatment improves CD4 cell count, does it also improve survival?

- PBC: Primary Biliary Cirrhosis:
 - \triangleright a chronic, fatal but rare liver disease
 - > characterized by inflammatory destruction of the small bile ducts within the liver
- Data collected by Mayo Clinic from 1974 to 1984 (Murtaugh et al., Hepatology, 1994)
- Outcomes of interest:
 - ▷ time to death and/or time to liver transplantation
 - ▷ randomized treatment: 158 patients received D-penicillamine and 154 placebo
 - Iongitudinal serum bilirubin levels



1.1 Motivating Longitudinal Studies (cont'd)

Kaplan-Meier Estimate



• Research Questions:

- ▷ How strong is the association between bilirubin and the risk for death?
- b How the observed serum bilirubin levels could be utilized to provide predictions of survival probabilities?
- ▷ Can bilirubin discriminate between patients of low and high risk?

- Depending on the questions of interest, different types of statistical analysis are required
- We will distinguish between two general types of analysis
 - ▷ separate analysis per outcome
 - \triangleright joint analysis of outcomes
- Focus on each outcome separately
 - > does treatment affect survival?
 - \triangleright are the average longitudinal evolutions different between males and females?

▷...

- Focus on multiple outcomes
 - Complex hypothesis testing: does treatment improve the average longitudinal profiles in all markers?
 - Complex effect estimation: how strong is the association between the longitudinal evolution of CD4 cell counts and the hazard rate for death?
 - ▷ Association structure among outcomes:
 - * how the association between markers evolves over time (evolution of the association)
 - * how marker-specific evolutions are related to each other (association of the evolutions)

Prediction: can we improve prediction for the time to death by considering all markers simultaneously?

Handling implicit outcomes: focus on a single longitudinal outcome but with dropout or random visit times

- Up to now emphasis has been
 - ▷ *restricted* or *coerced* to separate analysis per outcome
 - ▷ or given to naive types of joint analysis (e.g., last observation carried forward)
- Main reasons
 - Iack of appropriate statistical methodology
 - ▷ lack of efficient computational approaches & software

- However, recently there has been an explosion in the statistics and biostatistics literature of joint modeling approaches
- Many different approaches have been proposed that
 - ▷ can handle different types of outcomes
 - ▷ can be utilized in pragmatic computing time
 - \triangleright can be rather flexible
 - > most importantly: can answer the questions of interest

- Let Y_1 and Y_2 two outcomes of interest measured on a number of subjects for which joint modeling is of scientific interest
 - ▷ both can be measured longitudinally
 - \triangleright one longitudinal and one survival
- We have various possible approaches to construct a joint density $p(y_1, y_2)$ of $\{Y_1, Y_2\}$ > Conditional models: $p(y_1, y_2) = p(y_1)p(y_2 \mid y_1)$

 $\triangleright \mathsf{Copulas:} \ p(y_1, y_2) = c\{\mathcal{F}(y_1), \mathcal{F}(y_2)\} p(y_1) p(y_2)$

But Random Effects Models have (more or less) prevailed

• Random Effects Models specify

$$p(y_1, y_2) = \int p(y_1, y_2 \mid b) p(b) db$$

= $\int p(y_1 \mid b) p(y_2 \mid b) p(b) db$

 \triangleright Unobserved random effects b explain the association between Y_1 and Y_2

Conditional Independence assumption

$$Y_1 \perp \!\!\!\perp Y_2 \mid b$$

• Features:

Y₁ and Y₂ can be of different type
* one continuous and one categorical
* one continuous and one survival
* ...

Extensions to more than two outcomes straightforward

 \triangleright Specific association structure between Y_1 and Y_2 is assumed

Computationally intensive (especially in high dimensions)

Chapter 2

Linear Mixed-Effects Models

- Repeated evaluations of the same outcome in each subject in time
 - ▷ CD4 cell count in HIV-infected patients
 - \triangleright serum bilirubin in PBC patients

Measurements on the same subject are expected to be (positively) correlated

• This implies that standard statistical tools, such as the *t*-test and simple linear regression that assume independent observations, are not optimal for longitudinal data analysis.

• The direct approach to model correlated data \Rightarrow *multivariate regression*

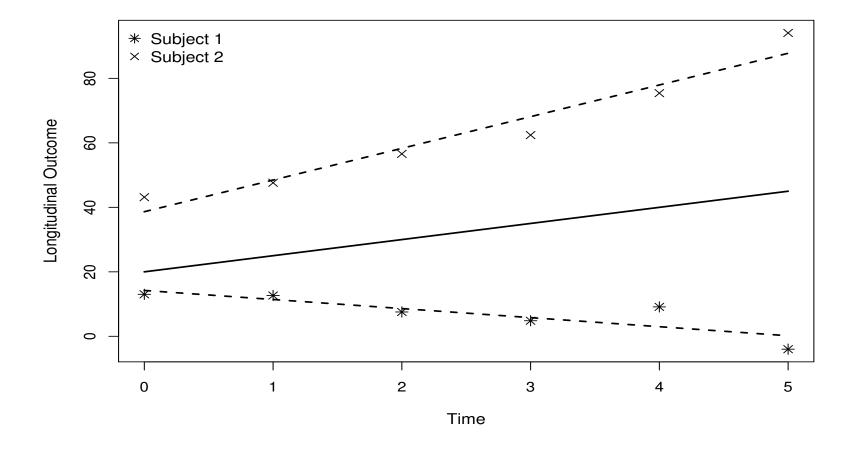
$$y_i = X_i\beta + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, V_i),$$

where

 $\triangleright y_i$ the vector of responses for the *i*th subject

- $\triangleright X_i$ design matrix describing structural component
- $\triangleright V_i$ covariance matrix describing the correlation structure
- There are several options for modeling V_i , e.g., compound symmetry, autoregressive process, exponential spatial correlation, Gaussian spatial correlation, ...

• Alternative intuitive approach: Each subject in the population has her own subject-specific mean response profile over time



• The evolution of each subject in time can be described by a linear model

$$y_{ij} = \tilde{\beta}_{i0} + \tilde{\beta}_{i1}t_{ij} + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2),$$

where

 $> y_{ij}$ the *j*th response of the *i*th subject

 $\triangleright \tilde{\beta}_{i0}$ is the intercept and $\tilde{\beta}_{i1}$ the slope for subject i

 Assumption: Subjects are randomly sampled from a population ⇒ subject-specific regression coefficients are also sampled from a population of regression coefficients

$$\tilde{\beta}_i \sim \mathcal{N}(\beta, D)$$

• We can reformulate the model as

$$y_{ij} = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})t_{ij} + \varepsilon_{ij},$$

where

▷ βs are known as the *fixed effects*▷ b_is are known as the *random effects*

• In accordance for the random effects we assume

$$b_i = \begin{bmatrix} b_{i0} \\ b_{i1} \end{bmatrix} \sim \mathcal{N}(0, D)$$

• Put in a general form

$$\begin{cases} y_i = X_i \beta + Z_i b_i + \varepsilon_i, \\ \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_{n_i}), \end{cases}$$

with

 $\triangleright X$ design matrix for the fixed effects β

 $\triangleright Z$ design matrix for the random effects b_i

 $\triangleright b_i \perp \varepsilon_i$

- Interpretation:
 - $\triangleright \beta_j$ denotes the change in the average y_i when x_j is increased by one unit
 - $> b_i$ are interpreted in terms of how a subset of the regression parameters for the *i*th subject deviates from those in the population
- Advantageous feature: population + subject-specific predictions
 - $\triangleright \beta$ describes mean response changes in the population
 - $\triangleright \beta + b_i$ describes individual response trajectories

Example: We fit a linear mixed model for the AIDS dataset assuming
 b different average longitudinal evolutions per treatment group (fixed part)
 b random intercepts & random slopes (random part)

$$\begin{cases} y_{ij} = \beta_0 + \beta_1 t_{ij} + \beta_2 \{ dd \mathbf{I}_i \times t_{ij} \} + b_{i0} + b_{i1} t_{ij} + \varepsilon_{ij} \} \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

• <u>Note</u>: We did not include a main effect for treatment due to randomization

	Value	Std.Err.	<i>t</i> -value	p-value
eta_0	7.189	0.222	32.359	< 0.001
β_1	-0.163	0.021	-7.855	< 0.001
β_2	0.028	0.030	0.952	0.342

• No evidence of differences in the average longitudinal evolutions between the two treatments

- A major challenge for the analysis of longitudinal data is the problem of missing data
 - studies are designed to collect data on every subject at a set of prespecified follow-up times
 - > often subjects miss some of their planned measurements for a variety of reasons

• Implications of missingness:

 \triangleright we collect less data than originally planned \Rightarrow *loss of efficiency*

 \triangleright not all subjects have the same number of measurements \Rightarrow *unbalanced datasets*

 \triangleright missingness may depend on outcome \Rightarrow *potential bias*

• For the handling of missing data, we introduce the missing data indicator

$$r_{ij} = \left\{ egin{array}{c} 1 & ext{if } y_{ij} & ext{is observed} \ 0 & ext{otherwise} \end{array}
ight.$$

• We obtain a partition of the complete response vector y_i

 \triangleright observed data y_i^o , containing those y_{ij} for which $r_{ij} = 1$

 \triangleright missing data y_i^m , containing those y_{ij} for which $r_{ij} = 0$

• For the remaining we will focus on dropout \Rightarrow notation can be simplified

$$\triangleright$$
 Discrete dropout time: $r_i^d = 1 + \sum_{j=1}^{n_i} r_{ij}$ (ordinal variable)

 \triangleright **Continuous time**: T_i^* denotes the time to dropout

- To describe the probabilistic relation between the measurement and missingness processes Rubin (1976, Biometrika) has introduced three mechanisms
- Missing Completely At Random (MCAR): The probability that responses are missing is unrelated to both y_i^o and y_i^m

$$p(r_i \mid y_i^o, y_i^m) = p(r_i)$$

• Examples

- subjects go out of the study after providing a pre-determined number of measurements
- ▷ laboratory measurements are lost due to equipment malfunction

• Missing At Random (MAR): The probability that responses are missing is related to y_i^o , but is unrelated to y_i^m

$$p(r_i \mid y_i^o, y_i^m) = p(r_i \mid y_i^o)$$

• Examples

b study protocol requires patients whose response value exceeds a threshold to be removed from the study

> physicians give rescue medication to patients who do not respond to treatment

• Missing Not At Random (MNAR): The probability that responses are missing is related to y_i^m , and possibly also to y_i^o

$$p(r_i \mid \underline{y_i^m}) \quad \text{or} \quad p(r_i \mid \underline{y_i^o}, \underline{y_i^m})$$

• Examples

in studies on drug addicts, people who return to drugs are less likely than others to report their status

in longitudinal studies for quality-of-life, patients may fail to complete the questionnaire at occasions when their quality-of-life is compromised

- Features of MNAR
 - The observed data cannot be considered a random sample from the target population
 - \triangleright Only procedures that explicitly model the joint distribution $\{y_i^o, y_i^m, r_i\}$ provide valid inferences \Rightarrow analyses which are valid under MAR will not be valid under MNAR

We cannot tell from the data at hand whether the missing data mechanism is MAR or MNAR

Note: We can distinguish between MCAR and MAR

Chapter 3 Relative Risk Models

- The most important characteristic that distinguishes the analysis of time-to-event outcomes from other areas in statistics is **Censoring**
 - ▷ the event time of interest is not fully observed for all subjects under study
- Implications of censoring:
 - ▷ standard tools, such as the sample average, the *t*-test, and linear regression cannot be used
 - b inferences may be sensitive to misspecification of the distribution of the event times

- Several types of censoring:
 - ▷ Location of the true event time wrt the censoring time: *right*, *left* & *interval*
 - Probabilistic relation between the true event time & the censoring time: informative & non-informative (similar to MNAR and MAR)

Here we focus on non-informative right censoring

• <u>Note</u>: Survival times may often be truncated; analysis of truncated samples requires similar calculations as censoring

- Notation (*i* denotes the subject)
 - $\triangleright T_i^*$ 'true' time-to-event

 $\triangleright C_i$ the censoring time (e.g., the end of the study or a random censoring time)

• Available data for each subject

 \triangleright observed event time: $T_i = \min(T_i^*, C_i)$

 \triangleright event indicator: $\delta_i = 1$ if event; $\delta_i = 0$ if censored

Our aim is to make valid inferences for T_i^* but using only $\{T_i, \delta_i\}$

• **Relative Risk Models** assume a multiplicative effect of covariates on the hazard scale, i.e.,

$$h_i(t) = h_0(t) \exp(\gamma_1 w_{i1} + \gamma_2 w_{i2} + \ldots + \gamma_p w_{ip}) \Rightarrow$$

$$\log h_{i}(t) = \log h_{0}(t) + \gamma_{1}w_{i1} + \gamma_{2}w_{i2} + \ldots + \gamma_{p}w_{ip},$$

where

 $\triangleright h_i(t)$ denotes the hazard for an event for patient i at time t $\triangleright h_0(t)$ denotes the baseline hazard $\triangleright w_{i1}, \ldots, w_{ip}$ a set of covariates

- **Cox Model:** We make no assumptions for the baseline hazard function
- Parameter estimates and standard errors are based on the log partial likelihood function

$$p\ell(\gamma) = \sum_{i=1}^{n} \delta_i \Big[\gamma^\top w_i - \log \Big\{ \sum_{j: T_j \ge T_i} \exp(\gamma^\top w_j) \Big\} \Big],$$

where only patients who had an event contribute

• Example: For the PBC dataset were interested in the treatment effect while correcting for sex and age effects

$$h_i(t) = h_0(t) \exp(\gamma_1 D - penic_i + \gamma_2 Female_i + \gamma_3 Age_i)$$

	Value	HR	Std.Err.	z-value	p-value
γ_1	-0.138	0.871	0.156	-0.882	0.378
γ_2	-0.493	0.611	0.207	-2.379	0.017
γ_3	0.021	1.022	0.008	2.784	0.005

- Often interest in the association between a time-dependent covariate and the risk for an event
 - ▷ treatment changes with time (e.g., dose)
 - ▷ time-dependent exposure (e.g., smoking, diet)
 - ▷ markers of disease or patient condition (e.g., blood pressure, PSA levels)
 - ▷...
- Example: In the PBC study, are the longitudinal bilirubin measurements associated with the hazard for death?

- To answer our questions of interest we need to postulate a model that relates
 - \triangleright the serum bilirubin with
 - \triangleright the time-to-death
- The association between **baseline** marker levels and the risk for death can be estimated with standard statistical tools (e.g., Cox regression)
- When we move to the time-dependent setting, a more **careful consideration** is required

- There are two types of time-dependent covariates (Kalbfleisch and Prentice, 2002, Section 6.3)
 - \triangleright Exogenous (aka external): the future path of the covariate up to any time t > s is not affected by the occurrence of an event at time point s, i.e.,

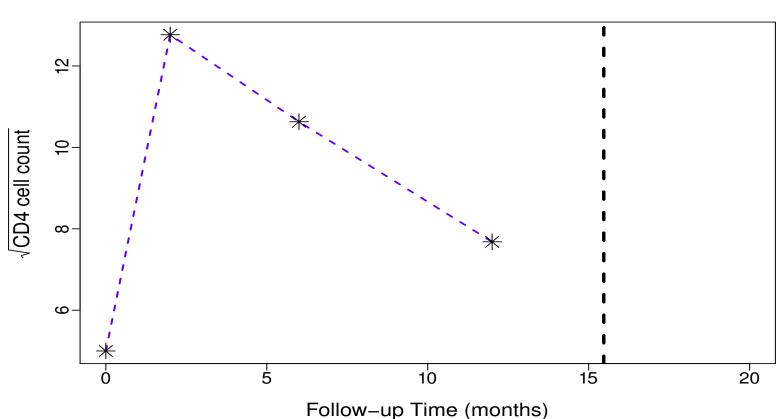
 $\Pr\{\mathcal{Y}_i(t) \mid \mathcal{Y}_i(s), T_i^* \ge s\} = \Pr\{\mathcal{Y}_i(t) \mid \mathcal{Y}_i(s), T_i^* = s\},\$

where $0 < s \le t$ and $\mathcal{Y}_{i}(t) = \{y_{i}(s), 0 \le s < t\}$

Endogenous (aka internal): not Exogenous

- It is **very important** to distinguish between these two types of time-dependent covariates, because the type of covariate dictates the appropriate type of analysis
- In our motivating examples all time-varying covariates are Biomarkers ⇒ These are always endogenous covariates
 - ▷ measured with error (i.e., biological variation)
 - ▷ the complete history is not available
 - ▷ existence directly related to failure status

3.3 Time Dependent Covariates (cont'd)



Subject 127

• The Cox model presented earlier can be extended to handle time-dependent covariates using the counting process formulation

$$h_i(t \mid \mathcal{Y}_i(t), w_i) = h_0(t) R_i(t) \exp\{\gamma^\top w_i + \alpha y_i(t)\},\$$

where

- $> N_i(t)$ is a counting process which counts the number of events for subject i by time t,
- $\triangleright h_i(t)$ denotes the intensity process for $N_i(t)$,
- $\triangleright R_i(t)$ denotes the at risk process ('1' if subject *i* still at risk at *t*), and
- $\triangleright y_i(t)$ denotes the value of the time-varying covariate at t

• Interpretation:

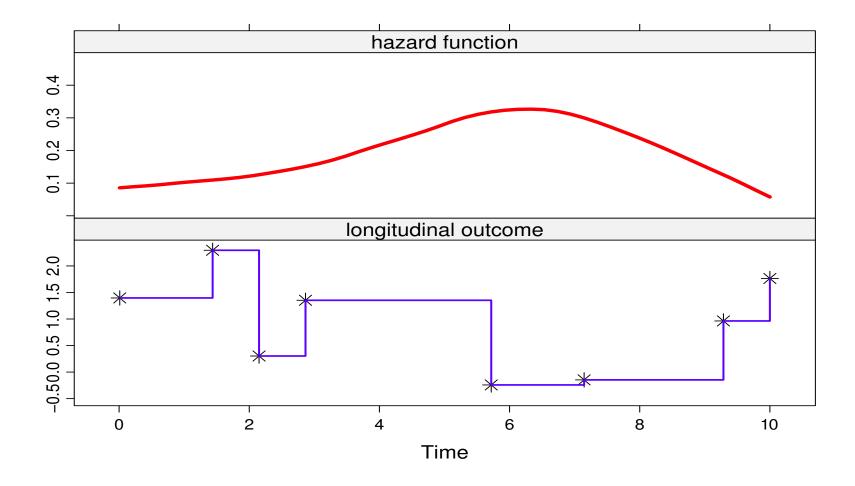
$$h_i(t \mid \mathcal{Y}_i(t), w_i) = h_0(t) R_i(t) \exp\{\gamma^\top w_i + \alpha y_i(t)\}$$

 $exp(\alpha)$ denotes the relative increase in the risk for an event at time t that results from one unit increase in $y_i(t)$ at the same time point

• Parameters are estimated based on the log-partial likelihood function

$$p\ell(\gamma,\alpha) = \sum_{i=1}^{n} \int_{0}^{\infty} \left\{ R_{i}(t) \exp\{\gamma^{\top} w_{i} + \alpha y_{i}(t)\} - \log\left[\sum_{j} R_{j}(t) \exp\{\gamma^{\top} w_{j} + \alpha y_{j}(t)\}\right] \right\} dN_{i}(t)$$

- How does the extended Cox model handle time-varying covariates?
 - ▷ assumes no measurement error
 - ▷ step-function path
 - \triangleright existence of the covariate is not related to failure status



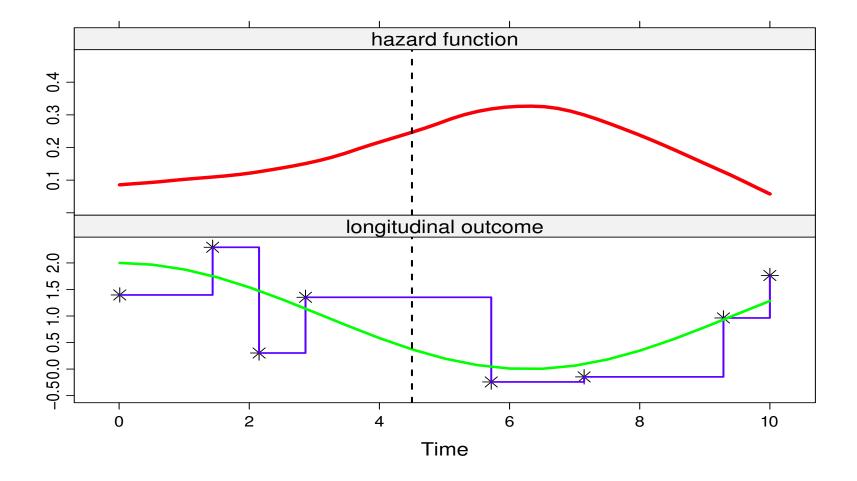
• Therefore, the extended Cox model is only valid for exogenous time-dependent covariates

Treating endogenous covariates as exogenous may produce spurious results! Chapter 4 The Basic Joint Model

• To account for the special features of endogenous covariates a new class of models has been developed

Joint Models for Longitudinal and Time-to-Event Data

- Intuitive idea behind these models
 - 1. use an appropriate model to describe the evolution of the marker in time for each patient
 - 2. the estimated evolutions are then used in a Cox model
- Feature: Marker level's are **not** assumed constant between visits



• Some notation

- $\triangleright T_i^*$: True event time for patient *i*
- $\triangleright T_i$: Observed event time for patient *i*
- $\triangleright \delta_i$: Event indicator, i.e., equals 1 for true events
- $\triangleright y_i$: Longitudinal responses
- We will formulate the joint model in 3 steps in particular, ...

- Step 1: Let's assume that we know $m_i(t)$, i.e., the *true* & *unobserved* value of the marker at time t
- Then, we can define a standard relative risk model

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\},\$$

where

- $\triangleright \mathcal{M}_i(t) = \{ m_i(s), 0 \le s < t \}$ longitudinal history
- $\triangleright \alpha$ quantifies the strength of the association between the marker and the risk for an event
- $\triangleright w_i$ baseline covariates

- Step 2: From the observed longitudinal response $y_i(t)$ reconstruct the covariate history for each subject
- Mixed effects model (we focus, for now, on continuous markers)

$$y_i(t) = \mathbf{m}_i(t) + \varepsilon_i(t)$$

= $x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$

where

 $\triangleright x_i(t)$ and β : Fixed-effects part $\triangleright z_i(t)$ and b_i : Random-effects part, $b_i \sim \mathcal{N}(0, D)$

- Step 3: The two processes are associated \Rightarrow define a model for their joint distribution
- Joint Models for such joint distributions are of the following form (Tsiatis & Davidian, Stat. Sinica, 2004)

$$p(y_i, T_i, \delta_i) = \int p(y_i \mid b_i) \{ h(T_i \mid b_i)^{\delta_i} S(T_i \mid b_i) \} p(b_i) db_i,$$

where

 $\triangleright b_i$ a vector of random effects that explains the interdependencies $\triangleright p(\cdot)$ density function; $S(\cdot)$ survival function

- Key assumption: Full Conditional Independence ⇒ random effects explain all interdependencies
 - ▷ the longitudinal outcome is independent of the time-to-event outcome
 - b the repeated measurements in the longitudinal outcome are independent of each other

$$p(y_i, T_i, \delta_i \mid b_i) = p(y_i \mid b_i) p(T_i, \delta_i \mid b_i)$$
$$p(y_i \mid b_i) = \prod_j p(y_{ij} \mid b_i)$$

Caveat: CI is difficult to be tested

- The censoring and visiting^{*} processes are assumed non-informative:
- Decision to withdraw from the study or appear for the next visit
 - may depend on observed past history (baseline covariates + observed longitudinal responses)
 - no additional dependence on underlying, latent subject characteristics associated with prognosis

*The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which longitudinal measurements are collected.

• The survival function, which is a part of the likelihood of the model, depends on the whole longitudinal history

$$S_i(t \mid b_i) = \exp\left(-\int_0^t h_0(s) \exp\{\gamma^\top w_i + \alpha m_i(s)\} ds\right)$$

Therefore, care in the definition of the design matrices of the mixed model
 ▷ when subjects have nonlinear profiles ⇒

 \triangleright use splines or polynomials to model them flexibly

• Assumptions for the baseline hazard function $h_0(t)$

 \triangleright parametric \Rightarrow possibly restrictive

 \triangleright unspecified \Rightarrow within JM framework underestimates standard errors

ullet It is advisable to use parametric but flexible models for $h_0(t)$

 \triangleright splines

$$\log h_0(t) = \gamma_{h_0,0} + \sum_{q=1}^Q \gamma_{h_0,q} B_q(t,v),$$

where

- * $B_q(t,v)$ denotes the q-th basis function of a B-spline with knots v_1,\ldots,v_Q
- * γ_{h_0} a vector of spline coefficients

- It is advisable to use parametric but flexible models for $h_0(t)$
 - > step-functions: piecewise-constant baseline hazard often works satisfactorily

$$h_0(t) = \sum_{q=1}^Q \xi_q I(v_{q-1} < t \le v_q),$$

where $0 = v_0 < v_1 < \cdots < v_Q$ denotes a split of the time scale

- Mainly maximum likelihood but also Bayesian approaches
- The log-likelihood contribution for subject *i*:

$$\ell_i(\theta) = \log \int \left\{ \prod_{j=1}^{n_i} p(y_{ij} \mid b_i; \theta) \right\} \left\{ h(T_i \mid b_i; \theta)^{\delta_i} S_i(T_i \mid b_i; \theta) \right\} p(b_i; \theta) \ db_i,$$

where

$$S_i(t \mid b_i; \theta) = \exp\left(-\int_0^t h_0(s; \theta) \exp\{\gamma^\top w_i + \alpha m_i(s)\} ds\right)$$

- \bullet Both integrals do not have, in general, a closed-form solution \Rightarrow need to be approximated numerically
- Standard numerical integration algorithms
 - ▷ Gaussian quadrature
 - ⊳ Monte Carlo
 - ▷...
- More difficult is the integral with respect to b_i because it can be of high dimension
 - ▷ Laplace approximations
 - > pseudo-adaptive Gaussian quadrature rules

• To maximize the approximated log-likelihood

$$\ell(\theta) = \sum_{i=1}^{n} \log \int p(y_i \mid b_i; \theta) \left\{ h(T_i \mid b_i; \theta)^{\delta_i} S_i(T_i \mid b_i; \theta) \right\} p(b_i; \theta) \ db_i,$$

we need to employ an optimization algorithm

- Standard choices
 - \triangleright EM (treating b_i as missing data)
 - ▷ Newton-type
 - ▷ hybrids (start with EM and continue with quasi-Newton)

• Example: To illustrate the virtues of joint modeling, we compare it with the standard time-dependent Cox model for the AIDS data

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) \\ = \beta_0 + \beta_1 t + \beta_2 \{t \times dd I_i\} + b_{i0} + b_{i1} t + \varepsilon_i(t), \qquad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \\ h_i(t) = h_0(t) \exp\{\gamma dd I_i + \alpha m_i(t)\}, \end{cases}$$

where

 $\triangleright h_0(t)$ is assumed piecewise-constant

	JM	Cox
	\log HR (std.err)	\log HR (std.err)
Treat	0.33(0.16)	$0.31 \ (0.15)$
$CD4^{1/2}$	-0.29(0.04)	-0.19(0.02)

• Clearly, there is a considerable effect of ignoring the measurement error, especially for the CD4 cell counts

- A unit decrease in CD4 $^{1/2}$, results in a
 - ▷ Joint Model: 1.3-fold increase in risk (95% CI: 1.24; 1.43)
 - ▷ **Time-Dependent Cox**: 1.2-fold increase in risk (95% CI: 1.16; 1.27)
- Which one to believe?
 - b a lot of theoretical and simulation work has shown that the Cox model underestimates the true association size of markers

R> Joint models are fitted using function jointModel() from package JM. This function accepts as main arguments a linear mixed model and a Cox PH model based on which it fits the corresponding joint model

```
lmeFit <- lme(CD4 ~ obstime + obstime:drug,
    random = ~ obstime | patient, data = aids)
```

```
coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)</pre>
```

```
jointFit <- jointModel(lmeFit, coxFit, timeVar = "obstime",
    method = "piecewise-PH-aGH")
```

```
summary(jointFit)
```


R> The data frame given in lme() should be in the long format, while the data frame given to coxph() should have one line per subject*

▷ the ordering of the subjects needs to be the same

- R> In the call to coxph() you need to set x = TRUE (or model = TRUE) such that the design matrix used in the Cox model is returned in the object fit
- **R>** Argument timeVar specifies the time variable in the linear mixed model

^{*} Unless you want to include exogenous time-varying covariates or handle competing risks

R> Argument method specifies the type of relative risk model and the type of numerical integration algorithm – the syntax is as follows:

<baseline hazard>-parameterization>-<numerical integration>

Available options are:

- > "piecewise-PH-GH": PH model with piecewise-constant baseline hazard
- ▷ "spline-PH-GH": PH model with B-spline-approximated log baseline hazard
- ▷ "weibull-PH-GH": PH model with Weibull baseline hazard
- ▷ "weibull-AFT-GH": AFT model with Weibull baseline hazard
- ▷ "Cox-PH-GH": PH model with unspecified baseline hazard

GH stands for standard Gauss-Hermite; using aGH invokes the pseudo-adaptive Gauss-Hermite rule

R> Joint models under the Bayesian approach are fitted using function jointModelBayes() from package JMbayes. This function works in a very similar manner as function jointModel(), e.g.,

lmeFit <- lme(CD4 ~ obstime + obstime:drug, random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)</pre>

jointFitBayes <- jointModelBayes(lmeFit, coxFit, timeVar = "obstime")
summary(jointFitBayes)</pre>

R> JMbayes is more flexible (in some respects):

 \triangleright directly implements the MCMC

 \triangleright allows for categorical longitudinal data as well

 \triangleright allows for general transformation functions

▷ penalized B-splines for the baseline hazard function

▷...

- **R>** In both packages methods are available for the majority of the standard generic functions + extras
 - > summary(), anova(), vcov(), logLik()
 - > coef(), fixef(), ranef()
 - > fitted(), residuals()
 - ▷ plot()
 - > xtable() (you need to load package xtable first)

- So far we have attacked the problem from the survival point of view
- However, often, we may be also interested on the longitudinal outcome
- Issue: When patients experience the event, they dropout from the study
 > a direct connection with the missing data field

- To show this connection more clearly
 - $\triangleright T_i^*$: true time-to-event
 - $\triangleright y_i^o$: longitudinal measurements before T_i^*
 - $\triangleright y_i^m$: longitudinal measurements after T_i^*
- Important to realize that the model we postulate for the longitudinal responses is for the complete vector $\{y_i^o, y_i^m\}$

b implicit assumptions about missingness

• Missing data mechanism:

$$p(T_i^* \mid y_i^o, y_i^m) = \int p(T_i^* \mid b_i) \ p(b_i \mid y_i^o, y_i^m) \ db_i$$

still depends on y_i^m , which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show different longitudinal evolutions than patients who do not

• Joint models belong to the class of *Shared Parameter Models*

$$p(y_{i}^{o}, y_{i}^{m}, T_{i}^{*}) = \int p(y_{i}^{o}, y_{i}^{m} \mid b_{i}) \ p(T_{i}^{*} \mid b_{i}) \ p(b_{i}) db_{i}$$

the association between the longitudinal and missingness processes is explained by the *shared* random effects b_i

- The other two well-known frameworks for MNAR data are
 - \triangleright Selection models

$$p(y_i^o, y_i^m, T_i^*) = p(y_i^o, y_i^m) \ p(T_i^* \mid y_i^o, y_i^m)$$

▷ Pattern mixture models:

$$p(y_i^o, y_i^m, T_i^*) = p(y_i^o, y_i^m \mid T_i^*) \; p(T_i^*)$$

• These two model families are primarily applied with discrete dropout times and cannot be easily extended to continuous time

- Example: In the AIDS data the association parameter α was highly significant, suggesting nonrandom dropout
- A comparison between
 - $\triangleright \mathsf{ linear mixed-effects model} \Rightarrow \mathsf{MAR}$
 - $\triangleright \text{ joint model} \Rightarrow \mathsf{MNAR}$
 - is warranted
- MAR assumes that missingness depends only on the observed data

$$p(T^*_i \mid y^o_i, y^m_i) = p(T^*_i \mid y^o_i)$$

	LMM (MAR)	JM (MNAR)
	value (s.e.)	value (s.e)
Inter	7.19 (0.22)	7.22 (0.22)
Time	-0.16 (0.02)	-0.19 (0.02)
Treat:Time	0.03 (0.03)	0.01 (0.03)

• Minimal sensitivity in parameter estimates & standard errors

 \Rightarrow Warning: This does not mean that this is always the case!

The End of Tutorial I!