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Chapter 1

Extensions of Joint Models
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1.1 Parameterizations

• The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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1.1 Parameterizations (cont’d)
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1.1 Parameterizations (cont’d)

• The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}

Is this the only option? Is this the most
optimal choice?
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1.1 Parameterizations (cont’d)

• Note: Inappropriate modeling of time-dependent covariates may result in surprising
results

• Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to
test the effect of cigarette smoking on survival of patients who underwent coronary
artery surgery

◃ the estimated effect of current cigarette smoking was positive on survival although
not significant (i.e., patients who smoked had higher probability of survival)

◃ most of those who had died were smokers but many stopped smoking at the last
follow-up before their death
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1.1 Parameterizations (cont’d)

We need to carefully consider the functional form of
time-dependent covariates

• Let’s see some possibilities. . .
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1.1 Parameterizations (cont’d)

• Lagged Effects: The hazard for an event at t is associated with the level of the
marker at a previous time point:

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t
c
+)},

where

tc+ = max(t− c, 0)
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1.1 Parameterizations (cont’d)
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1.1 Parameterizations (cont’d)

• Time-dependent Slopes: The hazard for an event at t is associated with both the
current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α1mi(t) + α2m
′
i(t)},

where

m′
i(t) =

d

dt
{x⊤i (t)β + z⊤i (t)bi}
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1.1 Parameterizations (cont’d)

Time

0.
1

0.
2

0.
3

0.
4

hazard function

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

0 2 4 6 8 10

longitudinal outcome

Tutorial IV: Dynamic Predictions from Joint Models: April 15, 2016 11



1.1 Parameterizations (cont’d)

• Cumulative Effects: The hazard for an event at t is associated with the whole area
under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

mi(s) ds
}

• Area under the longitudinal trajectory taken as a summary of Mi(t)
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1.1 Parameterizations (cont’d)
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1.1 Parameterizations (cont’d)

• Weighted Cumulative Effects (convolution): The hazard for an event at t is
associated with the area under the weighted trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

ϖ(t− s)mi(s) ds
}
,

where ϖ(·) an appropriately chosen weight function, e.g.,

◃ Gaussian density

◃ Student’s-t density

◃ . . .
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1.1 Parameterizations (cont’d)

• Random Effects: The hazard for an event at t is associated only with the random
effects of the longitudinal model:

hi(t | Mi(t)) = h0(t) exp(γ
⊤wi + α⊤bi)

• Features:

◃ avoids numerical integration for the survival function

◃ interpretation of α more difficult, especially in high-dimensional random-effects
settings
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1.1 Parameterizations (cont’d)

• Example: Sensitivity of inferences for the longitudinal process to the choice of the
parameterization for the AIDS data

• We use the same mixed model as before, i.e.,

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t)

and the following four survival submodels
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1.1 Parameterizations (cont’d)

• Model I (current value)

hi(t) = h0(t) exp{γddIi + α1mi(t)}

• Model II (current value + current slope)

hi(t) = h0(t) exp{γddIi + α1mi(t) + α2m
′
i(t)},

where

◃ m′
i(t) = β1 + β2ddIi + bi1
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1.1 Parameterizations (cont’d)

• Model III (random slope)

hi(t) = h0(t) exp{γddIi + α3bi1}

• Model IV (area)

hi(t) = h0(t) exp
{
γddIi + α4

∫ t

0

mi(s) ds
}
,

where

◃
∫ t

0 mi(s) ds = β0t +
β1
2 t

2 + β2
2 {t

2 × ddIi} + bi0t +
bi1
2 t

2
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1.1 Parameterizations (cont’d)

Value
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1.1 Parameterizations (cont’d)

• There are noticeable differences between the parameterizations

◃ especially in the slope parameters

• Therefore, a sensitivity analysis should not stop at the standard joint model
parameterization but also consider alternative association structures
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1.2 Multiple Longitudinal Markers

• So far we have concentrated on a single continuous marker

• But very often we may have several markers we wish to study, some of which could
be categorical

• Example: In the PBC dataset we have used serum bilirubin as the most important
marker, but during follow-up several other markers have been recorded

◃ serum cholesterol (continuous)

◃ edema (3 categories)

◃ ascites (2 categories)

◃ . . .
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1.2 Multiple Longitudinal Markers (cont’d)

We need to extend the basic joint model!

• To handle multiple longitudinal markers of different types we use Generalized Linear
Mixed Models

◃ We assume Yi1, . . . , YiJ for each subject, each one having a distribution in the
exponential family, with expected value

mij(t) = E(yij(t) | bij) = g−1
j {x⊤ij(t)βj + z⊤ij(t)bij},

with g(·) denoting a link function

Tutorial IV: Dynamic Predictions from Joint Models: April 15, 2016 22



1.2 Multiple Longitudinal Markers (cont’d)

◃ Correlation between the outcomes is built by assuming a multivariate normal
distribution for the random effects

bi = (b⊤i1, . . . , b
⊤
iJ)

⊤ ∼ N (0, D)

• The expected value of each longitudinal marker is incorporated in the linear predictor
of the survival submodel

hi(t) = h0(t) exp
{
γ⊤wi +

J∑
j=1

αjmij(t)
}
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1.3 Multiple Failure Times

• Often multiple failure times are recorded

◃ competing risks

◃ recurrent events

• Example: In the PBC dataset ⇒ competing risks

◃ Some patients received a liver transplantation

◃ So far we have used the composite event, i.e. death or transplantation whatever
comes first

◃ When interest only is on one type of event, the other should be considered as a
competing risk
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1.3 Multiple Failure Times (cont’d)

• Joint models with competing risks:

yi(t) = mi(t) + εi(t) = x⊤i (t)β + z⊤i (t)bi + εi(t),

hd
i (t) = hd

0(t) exp{γ⊤
d wi + αdmi(t)},

htr
i (t) = htr

0 (t) exp{γ⊤
trwi + αtrmi(t)},

where

◃ hd
i (t) hazard function for death

◃ htr
i (t) hazard function for transplantation
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1.3 Multiple Failure Times (cont’d)

• Multiple Failure Times: recurrent events

• Example: In the PBC dataset ⇒ recurrent events

◃ Patients showed irregular visiting patterns

◃ So far, when we fitted the joint model we assumed that the visiting process is
non-informative

◃ If this assumption is violated, we should also model this process in order to obtain
valid inferences
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1.3 Multiple Failure Times (cont’d)

• Joint model with recurrent (visiting process) & terminal events

yi(t) = mi(t) + εi(t) = x⊤i (t)β + z⊤i (t)bi + εi(t),

ri(t) = r0(t) exp
{
γ⊤
r wri + αrmi(t) + vi

}
,

hi(t) = h0(t) exp
{
γ⊤
h whi + αhmi(t) + ζvi

}
,

with

◃ ri(t) hazard function for the recurrent events

◃ hi(t) hazard function for the terminal event

◃ vi frailty term accounting for the correlation in the recurrent events
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1.4 Extensions & Parameterizations

• Features of multivariate joint models

◃ using CI is straightforward to extend joint models to multiple longitudinal
outcomes of different types, and multiple failure times

◃ computationally much more intensive due to requirement for high dimensional
numerical integrations with respect to the random effects
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1.4 Extensions & Parameterizations (cont’d)

• Note: In the previous extensions of joint models, i.e.,

◃ multiple longitudinal markers

◃ multiple failure times

we used the default parameterization that includes the current value term mi(t) in
the linear predictor of the survival submodel(s)

Nonetheless, all the other parameterizations we have seen
earlier are also applicable
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Chapter 2

Dynamic Predictions, Discrimination & Calibration
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2.1 Survival Probabilities: Definitions

• Nowadays there is great interest for prognostic models and their application to
personalized medicine

• Examples are numerous

◃ cancer research, cardiovascular diseases, HIV research, . . .

Physicians are interested in accurate prognostic tools that will
inform them about the future prospect of a patient in order to

adjust medical care
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2.1 Survival Probabilities: Definitions (cont’d)

• We are interested in predicting survival probabilities for a new patient j that has
provided a set of serum bilirubin measurements up to a specific time point t

• Example: We consider Patients 2 and 25 from the PBC dataset that have provided
us with 9 and 12 serum bilirubin measurements, respectively

◃ Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded

• We need to account for the endogenous nature of the marker

◃ providing measurements up to time point t ⇒ the patient was still alive at time t
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2.1 Survival Probabilities: Definitions (cont’d)
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2.1 Survival Probabilities: Definitions (cont’d)

• More formally, for a new subject j we have available measurements up to time point t

Yj(t) = {yj(s), 0 ≤ s ≤ t}

and we are interested in

πj(u | t) = Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
,

where

◃ where u > t, and

◃ Dn denotes the sample on which the joint model was fitted
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2.2 Survival Probabilities: Estimation

• We assume that the joint model has been fitted to the data at hand

• Based on the fitted model we can estimate the conditional survival probabilities
(Rizopoulos, 2011, Biometrics)
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2.2 Survival Probabilities: Estimation (cont’d)

• πj(u | t) can be rewritten as

πj(u | t) =

∫
Sj

{
u | Mj(u, bj, θ); θ

}
Sj

{
t | Mj(t, bj, θ); θ

} p(bj | T ∗
j > t,Yj(t); θ) dbj

• A naive estimator for πj(u | t) can be constructed by plugging-in the MLEs and the
Empirical Bayes estimates

π̃j(u | t) =
Sj

{
u | Mj(u, b̂j, θ̂); θ̂

}
Sj

{
t | Mj(t, b̂j, θ̂); θ̂

}
◃ this works relatively well in practice, but

◃ standard errors are difficult to compute
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2.2 Survival Probabilities: Estimation (cont’d)

• It is convenient to proceed using a Bayesian formulation of the problem ⇒
πj(u | t) can be written as

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
=

∫
Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
p(θ | Dn) dθ

• We have already seen the first part of the integrand

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
=

=

∫
Sj

{
u | Mj(u, bj, θ); θ

}
Sj

{
t | Mj(t, bj, θ); θ

} p(bj | T ∗
j > t,Yj(t); θ) dbj
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2.2 Survival Probabilities: Estimation (cont’d)

• Provided that the sample size is sufficiently large, we can approximate the posterior
of the parameters by

{θ | Dn} ∼ N (θ̂, Ĥ),

where

◃ θ̂ are the MLEs, and

◃ Ĥ their asymptotic covariance matrix
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2.2 Survival Probabilities: Estimation (cont’d)

• A Monte Carlo estimate of πj(u | t) can be obtained using the following simulation
scheme:

Step 1. draw θ(ℓ) ∼ N (θ̂, Ĥ)

Step 2. draw b
(ℓ)
j ∼ {bj | T ∗

j > t,Yj(t), θ
(ℓ)}

Step 3. compute π
(ℓ)
j (u | t) = Sj

{
u | Mj(u, b

(ℓ)
j , θ(ℓ)); θ(ℓ)

}/
Sj

{
t | Mj(t, b

(ℓ)
j , θ(ℓ)); θ(ℓ)

}
• Repeat Steps 1–3, ℓ = 1, . . . , L times, where L denotes the number of Monte Carlo
samples
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2.2 Survival Probabilities: Estimation (cont’d)

• Steps 1 and 3 are straightforward

• In Step 2 we need to sample from {bj | T ∗
j > t,Yj(t), θ

(ℓ)}, which is nonstandard

◃ as ni increases, this posterior converges to a multivariate normal distribution
(Rizopoulos et al., Biometrika, 2008)

◃ we use a Metropolis-Hastings algorithm with multivariate t proposals
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2.2 Survival Probabilities: Estimation (cont’d)

• Example: Dynamic predictions of survival probabilities for Patients 2 & 25 from the
PBC dataset: We fit the joint model

• Longitudinal submodel

◃ fixed effects: Linear & quadratic time, treatment and their interaction

◃ random effects: Intercept, linear & quadratic time effects

• Survival submodel

◃ treatment effect + underlying serum bilirubin level

◃ piecewise-constant baseline hazard in 7 intervals
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2.2 Survival Probabilities: Estimation (cont’d)

• Based on the fitted joint model we estimate πj(u | t) for Patients 2 and 25

• We use 500 Monte Carlo samples, and we took as estimate

π̂j(u | t) = median{π(ℓ)
j (u | t), ℓ = 1, . . . , L}

and calculated a corresponding 95% pointwise CIs
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2.2 Survival Probabilities: Estimation (cont’d)
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2.2 Survival Probabilities: Estimation (cont’d)
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2.2 Survival Probabilities: Estimation (cont’d)
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2.2 Survival Probabilities: Estimation (cont’d)
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2.2 Survival Probabilities: Estimation (cont’d)
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2.2 Survival Probabilities: Estimation (cont’d)
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2.2 Survival Probabilities: Estimation (cont’d)
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2.2 Survival Probabilities: Estimation (cont’d)

R> Individualized predictions of survival probabilities are computed by function
survfitJM() – for example, for Patient 2 from the PBC dataset we have

sfit <- survfitJM(jointFit, newdata = pbc2[pbc2$id == "2", ])

sfit

plot(sfit)

plot(sfit, include.y = TRUE)
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2.3 Dynamic Predictions using Landmarking

• Dynamic predictions of survival probabilities can be also derived using a landmark
approach

• How this works?

◃ choose a landmark point t, e.g., for the future patient of interest the last time
point she was alive

◃ from the original dataset keep only the patients who were at risk at the landmark

◃ fit a Cox model to this dataset including the last available value of the biomarker
as baseline covariate

hi(u− t) = h0(u− t) exp
{
γ⊤wi + αỹi(t)

}
, u > t
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2.3 Dyn. Predictions using Landmarking (cont’d)

◃ for the new patient compute her survival probability at u using the fitted Cox
model and the Breslow estimator

π̂LM
j (u | t) = exp

[
−Ĥ0(u) exp{γ̂⊤wj + α̂ỹj(t)}

]
,

where

Ĥ0(u) =
∑
i∈R(t)

I(Ti ≤ u)δi∑
ℓ∈R(u) exp{γ̂⊤wℓ + α̂ỹℓ(t)}

,

and R(t) = {i : Ti > t}
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2.3 Dyn. Predictions using Landmarking (cont’d)

• Sometimes landmarking works, but not always!

• Main differences between landmarking and joint modeling

◃ Extrapolation:

* both require the level of the marker at t

* landmarking extrapolates the last biomarker value (Last Value Carried Forward
approach)

* joint modeling builds the subject-specific profile which extrapolates up to t

* from a biological point of view the joint modeling approach seems more logical
than landmarking
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2.3 Dyn. Predictions using Landmarking (cont’d)
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2.3 Dyn. Predictions using Landmarking (cont’d)

• Main differences between landmarking and joint modeling

◃ Implicit processes:

Landmarking Joint Modeling
* MCAR missing data long. process * MAR missing data long. process

* non-informative visiting process * visiting process allowed to depend on
long. history

* non-informative censoring * censoring allowed to depend on
long. history
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2.4 Longitudinal Responses: Definitions

• In some occasions it may be also of interest to predict the longitudinal outcome

• We can proceed in the same manner as for the survival probabilities: We have
available measurements up to time point t

Yj(t) = {yj(s), 0 ≤ s ≤ t}

and we are interested in

ωj(u | t) = E
{
yj(u) | T ∗

j > t,Yj(t),Dn

}
, u > t
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2.4 Longitudinal Responses: Definitions (cont’d)

• To estimate ωj(u | t) we can follow a similar approach as for πj(u | t) – Namely,
ωj(u | t) is written as:

E
{
yj(u) | T ∗

j > t,Yj(t),Dn

}
=

∫
E
{
yj(u) | T ∗

j > t,Yj(t),Dn; θ
}
p(θ | Dn) dθ

• With the first part of the integrand given by:

E
{
yj(u) | T ∗

j > t,Yj(t),Dn; θ
}
=

=

∫
{x⊤j (u)β + z⊤j (u)bj} p(bj | T ∗

j > t,Yj(t); θ) dbj
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2.4 Longitudinal Responses: Estimation (cont’d)

• A similar Monte Carlo simulation scheme:

Step 1. draw θ(ℓ) ∼ N (θ̂, Ĥ)

Step 2. draw b
(ℓ)
j ∼ {bj | T ∗

j > t,Yj(t), θ
(ℓ)}

Step 3. compute ω
(ℓ)
j (u | t) = x⊤j (u)β

(ℓ) + z⊤j (u)b
(ℓ)
j

• Note: Prediction intervals can be easily computed by replacing Step 3 with a draw
from:

ω
(ℓ)
j (u | t) ∼ N

{
x⊤j (u)β

(ℓ) + z⊤j (u)b
(ℓ)
j , [σ2](ℓ)

}
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2.4 Longitudinal Responses: Estimation (cont’d)

• Example: Dynamic predictions of serum bilirubin for Patients 2 & 25 from the PBC
dataset: We fit the joint model

• Longitudinal submodel

◃ fixed effects: Linear & quadratic time, treatment and their interaction

◃ random effects: Intercept, linear & quadratic time effects

• Survival submodel

◃ treatment effect + underlying serum bilirubin level

◃ piecewise-constant baseline hazard in 7 intervals
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2.4 Longitudinal Responses: Estimation (cont’d)

• Based on the fitted joint model we estimate ωj(u | t) for Patients 2 and 25

• Point estimates

ω̂j(u | t) = x⊤j (u)β̂ + z⊤j (u)b̂j,

where β̂: MLEs & b̂j: empirical Bayes estimates

• 95% pointwise CIs

◃ simulation scheme: 2.5% and 97.5% percentiles of 500 Monte Carlo samples of

ω
(ℓ)
j (u | t)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)

R> Individualized predictions for the longitudinal outcome are computed by function
predict() – for example, for Patient 2 from the PBC dataset we have function

lfit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],

type = "Subject", interval = "conf", returnData = TRUE)

lfit

xyplot(pred + low + upp ~ year, data = lfit, type = "l",

lty = c(1,2,2), col = c(2,1,1), lwd = 2)
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2.4 Longitudinal Responses: Estimation (cont’d)

R> Web interface using the shiny package

library(shiny)

runApp(file.path(.Library, "JMbayes/demo"))
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2.5 Importance of the Parameterization

• All previous predictions were based on the standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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2.5 Importance of the Parameterization (cont’d)

• We have seen earlier that there are several alternative parameterizations (see Section 5.1)

• Relevant questions:

◃ Does the assumed parameterization affect predictions?

◃ Which parameterization is the most optimal?

• Example: We compare predictions for the longitudinal and survival outcomes under
different parameterizations for Patient 51 from the PBC study
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2.5 Importance of the Parameterization (cont’d)
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2.5 Importance of the Parameterization (cont’d)

• Predictions based on five joint models for the PBC dataset

◃ the same longitudinal submodel as before, and

◃ relative risk submodels:

hi(t) = h0(t) exp{γD-pnci + α1mi(t)},

hi(t) = h0(t) exp{γD-pnci + α2m
′
i(t)},

hi(t) = h0(t) exp{γD-pnci + α1mi(t) + α2m
′
i(t)},
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2.5 Importance of the Parameterization (cont’d)

hi(t) = h0(t) exp
{
γD-pnci + α3

∫ t

0

mi(s)ds
}
,

hi(t) = h0(t) exp
{
γD-pnci + α4

∫ t

0

ϕ(t− s)mi(s)ds
}
,

where ϕ(·) standard normal pdf
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2.5 Importance of the Parameterization (cont’d)

Longitudinal Outcome

Predicted log serum bilirubin

Value

Slope

Value+Slope

Area

weighted Area

u = 1

−1 0 1 2 3 4

u = 1.5 u = 2

−1 0 1 2 3 4

u = 3

Value

Slope

Value+Slope

Area

weighted Area

u = 4 u = 5.5 u = 6.5 u = 7.9

Value

Slope

Value+Slope

Area

weighted Area

−1 0 1 2 3 4

u = 8.9 u = 10.7
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2.5 Importance of the Parameterization (cont’d)

Survival Outcome

Survival Probability

Value

Slope

Value+Slope

Area

weighted Area

u = 1

0.2 0.4 0.6 0.8 1.0

u = 1.5 u = 2

0.2 0.4 0.6 0.8 1.0

u = 3

Value

Slope

Value+Slope

Area

weighted Area

u = 4 u = 5.5 u = 6.5 u = 7.9

Value

Slope

Value+Slope

Area

weighted Area

0.2 0.4 0.6 0.8 1.0

u = 8.9 u = 10.7
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2.5 Importance of the Parameterization (cont’d)

• The chosen parameterization can influence the derived predictions

◃ especially for the survival outcome

• My current work: How to optimally choose parameterization?

◃ per subject (personalized medicine)

• Quite promising results from the Bayesian approach using Bayesian Model Averaging
techniques

◃ it can be done with package JMbayes,

◃ it falls a bit outside the scope of this course, but

◃ I can provide information if interested. . .
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2.6 Model Discrimination

• Often clinical interest lies in the predictive performance of a marker

◃ this could be useful in medical practice if the marker alone offers good enough
discrimination

• Hence, often we are also interested in the discriminative capability of the whole
model incorporating the baseline covariates as well

◃ especially when no single prognostic factor can accurately enough discriminate
between patients
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2.6 Model Discrimination (cont’d)

• We assume the following setting

◃ using the available longitudinal data up to time t, Yj(t) = {yj(s), 0 ≤ s ≤ t}

◃ we are interested in events in the medically relevant interval (t, t +∆t]

• Based on the fitted joint model and for a particular threshold value c ∈ [0, 1], we can
term a subject as a case if

πj(t +∆t | t) ≤ c
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2.6 Model Discrimination (cont’d)

• Following, we can define sensitivity

Pr
{
πj(t +∆t | t) ≤ c | T ∗

j ∈ (t, t +∆t]
}
,

specificity

Pr
{
πj(t +∆t | t) > c | T ∗

j > t +∆t
}
,

and the corresponding AUC

AUC(t,∆t)

= Pr
[
πi(t +∆t | t) < πj(t +∆t | t) | {T ∗

i ∈ (t, t +∆t]} ∩ {T ∗
j > t +∆t}

]

Tutorial IV: Dynamic Predictions from Joint Models: April 15, 2016 68



2.6 Model Discrimination (cont’d)

• Estimation of AUC(t,∆t) can be based on similar arguments as Harrell’s C index

AÛC(t,∆t) = AÛC1(t,∆t) + AÛC2(t,∆t)

where

AÛC1(t,∆t) =

∑n
i=1

∑n
j=1;j ̸=i I{π̂i(t +∆t | t) < π̂j(t +∆t | t)} × I{Ω(1)

ij (t)}∑n
i=1

∑n
j=1;j ̸=i I{Ω

(1)
ij (t)}

,

with

Ω
(1)
ij (t) =

[
{Ti ∈ (t, t +∆t]} ∩ {δi = 1}

]
∩ {Tj > t +∆t}
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2.6 Model Discrimination (cont’d)

• And

AÛC2(t,∆t) =

∑n
i=1

∑n
j=1;j ̸=i I{π̂i(t +∆t | t) < π̂j(t +∆t | t)} × I{Ω(2)

ij (t)} × K̂∑n
i=1

∑n
j=1;j ̸=i I{Ω

(2)
ij (t)} × K̂

,

with

Ω
(2)
ij (t) =

[
{Ti ∈ (t, t +∆t]} ∩ {δi = 0}

]
∩ {Tj > t +∆t}

and

K̂ = 1− π̂i(t +∆t | Ti)
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2.6 Model Discrimination (cont’d)

R> For a fitted joint model AÛC(t,∆t) is calculated by function aucJM() – for the
PBC dataset

# AUC(t = 7, Delta t = 2)

aucJM(jointFit, newdata = pbc2, Tstart = 7, Dt = 2)

Tutorial IV: Dynamic Predictions from Joint Models: April 15, 2016 71



2.7 Calibration

• We have covered discrimination, i.e.,

◃ how well can the longitudinal biomarker(s) discriminate between subject of low
and high risk for the event

• Another relevant measure for quantifying predictive ability is calibration, i.e.,

◃ how well can the longitudinal biomarker(s) accurately predict future events

• In standard survival analysis and on the latter front there has been a lot of work on
extensions of the Brier score (see Gerds and Schumacher, (2006) and references therein)
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2.7 Calibration (cont’d)

• In the joint modeling framework we need to take into account the dynamic nature of
the longitudinal marker

• The expected error of prediction has the form

PE(u | t) = E
[
L{Ni(u)− πi(u | t)}

]
where

◃ Ni(t) = I(T ∗
i > t) is the event status at time t

◃ L(·) denotes a loss function, such as the absolute or square loss
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2.7 Calibration (cont’d)

• An estimator for PE(u | t) that accounts for censoring has been proposed by
Henderson et al. (2002)

P̂E(u | t) = {R(t)}−1
∑
i:Ti≥t

I(Ti > u)L{1− π̂i(u | t)} + δiI(Ti < u)L{0− π̂i(u | t)}

+(1− δi)I(Ti < u)
[
π̂i(u | Ti)L{1− π̂i(u | t)} + {1− π̂i(u | Ti)}L{0− π̂i(u | t)}

]
where

◃ R(t) denotes the number of subjects at risk at t

◃ red part: subjects still alive at u

◃ blue part: subjects who died before u

◃ green part: subject censored before u
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2.7 Calibration (cont’d)

R> For a fitted joint model P̂E(u | t) is calculated by function prederrJM() – for the
PBC dataset

# PE(u = 9 | t = 7)

prederrJM(jointFit, newdata = pbc2, Tstart = 7, Thoriz = 9)
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2.8 Landmarking vs JM: An Example

• We have earlier seen that the landmark approach also provides estimates of dynamic
survival probabilities πj(u | t)
◃ we make here a comparison here with joint modeling for the PBC dataset

• Joint models:

◃ Longitudinal process:

yi(t) = β1Plcbi + β2D-penci + β3{B1(t, λ)× Plcbi} + β4{B1(t, λ)× D-penci}
+ β5{B2(t, λ)× Plcbi} + β6{B2(t, λ)× D-penci}
+ β7{B3(t, λ)× Plcbi} + β8{B3(t, λ)× D-penci}
+ bi0 + bi1B1(t, λ) + bi2B2(t, λ) + bi3B3(t, λ) + εi(t),
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2.8 Landmarking vs JM: An Example (cont’d)

• Joint models:

◃ Survival process:

M1 : hi(t) = h0(t) exp
{
γ1D-penci + γ2Agei + γ3Femalei + α1mi(t)

}
,

M2 : hi(t) = h0(t) exp
{
γ1D-penci + γ2Agei + γ3Femalei + α1mi(t) + α2m

′
i(t)

}
,

M3 : hi(t) = h0(t) exp
{
γ1D-penci + γ2Agei + γ3Femalei + α1

∫ t

0

mi(s)ds
}
,

M4 : hi(t) = h0(t) exp
(
γ1D-penci + γ2Agei + γ3Femalei

+ α1bi0 + α2bi1 + α3bi2 + α4bi3
)
,
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2.8 Landmarking vs JM: An Example (cont’d)

• We focus on the interval [t = 7, u = 9] and we fit a series of Cox models to the
patients at risk at t = 7 with corresponding association structures to the previous
joint models, i.e.,

M5 : hi(u− 7) = h0(u− 7) exp
{
γ1D-penci + γ2Agei + γ3Femalei + α1ỹi(7)

}
,

M6 : hi(u− 7) = h0(u− 7) exp
{
γ1D-penci + γ2Agei + γ3Femalei
+ α1ỹi(7) + α2ỹ

′
i(7)

}
,

M7 : hi(u− 7) = h0(u− 7) exp
{
γ1D-penci + γ2Agei + γ3Femalei

+ α1

7∑
s=0

yi(s)∆s
}
,
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2.8 Landmarking vs JM: An Example (cont’d)

where

◃ ỹ′i(7) denotes the slope defined from the last two available measurements of each
patient

◃
7∑

s=0
yi(s)∆s denotes the area under the step function defined from the observed

square root aortic gradient measurements up to 7 years

• We evaluate both discrimination and calibration

◃ calibration: P̂E(9|7) and IP̂E(9|7) using the absolute loss function

◃ discrimination: AÛC(9|7) and Ĉ
∆t=2

dyn based on the interval [0, 10] years
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2.8 Landmarking vs JM: An Example (cont’d)

P̂E(9|7) IP̂E(9|7) AÛC(9|7) Ĉ
∆t=2

dyn

M1: JM value 0.201 0.118 0.787 0.854

M2: JM value+slope 0.197 0.114 0.793 0.855

M3: JM area 0.191 0.112 0.758 0.839

M4: JM shared RE 0.191 0.108 0.807 0.840

M5 : CoxLM value 0.229 0.127 0.702 0.841

M6 : CoxLM value+slope 0.227 0.126 0.710 0.825

M7 : CoxLM area 0.226 0.125 0.697 0.827

• For this particular dataset and comparing the same parameterization we observe that
joint modeling is better in terms of both calibration and discrimination
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2.9 Validation

• Validation of both discrimination and calibration measures can be achieved with
standard re-sampling techniques

◃ cross-validation (leave-one-out or better 10-fold)

◃ Bootstrap

• In general time consuming because it requires fitting the joint model many times

◃ take advantage of parallel computing (e.g., using package parallel)

Tutorial IV: Dynamic Predictions from Joint Models: April 15, 2016 81



The End of Tutorial IV!
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