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Chapter 1

Extensions of Joint Models
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.. Erasmus MC
1.1 Parameterizations

e The standard joint model
‘

hi(t | Mu(t)) = ho(t) exp{y "w; + am; (1)},

vit) = m(t) + &)
=z ()3 + 2 ()b + &i(t),

where M, (t) = {m,;(s),0 < s < t}
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Erasmus MC
1.1 Parameterizations (cont’d) '
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Erasmus MC
1.1 Parameterizations (cont’d) '

e The standard joint model

/

hi(t | Mi(t)) = ho(t) exp{~"w; + am;(1)},

yi(t) = m;(l) + &i(t)
=z ()8 + 2 ()b + &i(?),

\

where M, (t) = {m;(s),0 < s < t}

Is this the only option? Is this the most
optimal choice?
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Eraspmus MC

1.1 Parameterizations (cont’d)

e Note: Inappropriate modeling of time-dependent covariates may result in surprising

results

e Example:

Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to

test the effect of cigarette smoking on survival of patients who underwent coronary
artery surgery

> the estimated effect of current cigarette smoking was positive on survival although
not significant (i.e., patients who smoked had higher probability of survival)

> most of those who had died were smokers but many stopped smoking at the last
follow-up before their death
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Erasmus Mic
1.1 Parameterizations (cont’d) '

We need to carefully consider the functional form of
time-dependent covariates

e Let's see some possibilities. . .
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Erasmus MC
1.1 Parameterizations (cont’d) '

e Lagged Effects: The hazard for an event at t is associated with the level of the
marker at a previous time point:

hi(t | M) = ho(t) exp{y "w; + ami(t})},

where

. = max(t — c,0)

Tutorial 1V: Dynamic Predictions from Joint Models: April 15, 2016



Erasmus MC
1.1 Parameterizations (cont’d) '
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Erasmus MC
1.1 Parameterizations (cont’d) '

e [ime-dependent Slopes: The hazard for an event at ¢ is associated with both the
current value and the slope of the trajectory at ¢ (Ye et al., 2008, Biometrics):

hi(t | Mi(t)) = ho(t) exp{y " w; + cxm,(t) + aomi(t)},

where

mi(t) = Sl (15 + = ()b
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1.1 Parameterizations (cont’d)

Erasmus Mic
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Erasmus MC
1.1 Parameterizations (cont’d) '

e Cumulative Effects: The hazard for an event at ¢ is associated with the whole area
under the trajectory up to t:

0t | M(0) = oty {s w4 m(s) ds )

e Area under the longitudinal trajectory taken as a summary of M;(t)
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1.1 Parameterizations (cont’d)

Erasmus MC
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Erasmus MC
1.1 Parameterizations (cont’d) '

o Weighted Cumulative Effects (convolution): The hazard for an event at t is
associated with the area under the weighted trajectory up to t:

bt | M) = halt) oy T+ [ ot - symi(s) ds ),

where w(-) an appropriately chosen weight function, e.g.,
> Gaussian density
> Student’s-t density

> ...
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Erasmus MC
1.1 Parameterizations (cont’d) '

e Random Effects: The hazard for an event at ¢ is associated only with the random
effects of the longitudinal model:

hi<t | ./\/lz(t» = h()(t) exp(*yTwi + OéTby;>

e Features:
> avoids numerical integration for the survival function

> interpretation of o more difficult, especially in high-dimensional random-effects
settings
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Erasmus MC
1.1 Parameterizations (cont’d) '

e [Example:| Sensitivity of inferences for the longitudinal process to the choice of the
parameterization for the AIDS data

e \We use the same mixed model as before, i.e.,

yi(t) = my(t) + &i(t)

= Bo+ it + Bof{t X dAL;} + big + byt + &(t)

and the following four survival submodels
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1.1 Parameterizations (cont’d)

Erasmus MC

e Model | (current value)

hi(t) = ho(t) exp{yddl; + aumi(t)}

e Model Il (current value + current slope)
hi(t) = ho(t) exp{yddI; + aym;(t) + asm;(t)},

where

> mi(t) = B1 + BoddI; + by
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1.1 Parameterizations (cont’d)

Erasmus MC

e Model Il (random slope)

hz<t) = ho(t) exp{vddli -+ Oégbﬂ}
e Model IV (area)

hi(t) = ho(t) exp{fyddlz-—koq /0 tmi(s) ds},

where

> fot mz(s) ds = Bot + %tQ + %{tQ X ddIZ‘} + bz'()t + %tQ
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1.1 Parameterizations (cont’d)

Erasmus Mic
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Erasmus MC
1.1 Parameterizations (cont’d) '

e There are noticeable differences between the parameterizations

> especially in the slope parameters

e Therefore, a sensitivity analysis should not stop at the standard joint model
parameterization but also consider alternative association structures
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Eraspmus MC

1.2 Multiple Longitudinal Markers

e So far we have concentrated on a single continuous marker

e But very often we may have several markers we wish to study, some of which could
be categorical

e Example:| In the PBC dataset we have used serum bilirubin as the most important
marker, but during follow-up several other markers have been recorded

> serum cholesterol (continuous)
> edema (3 categories)
> ascites (2 categories)

> ...
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Erasmus MC

1.2 Multiple Longitudinal Markers (cont’d)

We need to extend the basic joint model!

e To handle multiple longitudinal markers of different types we use Generalized Linear
Mixed Models

> We assume Y1, ..., Y, for each subject, each one having a distribution in the
exponential family, with expected value

mij(t) = BElyi;(t) | bij) = g; {x (085 + 2,5(6)bis},

with g(-) denoting a link function

Tutorial 1V: Dynamic Predictions from Joint Models: April 15, 2016 22



Eraspmus MC

1.2 Multiple Longitudinal Markers (cont’d)

> Correlation between the outcomes is built by assuming a multivariate normal
distribution for the random effects

e The expected value of each longitudinal marker is incorporated in the linear predictor
of the survival submodel

J
hilt) = hot)exp{n wi+ 3 ajmi(t)}

j=1
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Eraspmus MC

1.3 Multiple Failure Times

e Often multiple failure times are recorded
> competing risks

> recurrent events

e [Example:| In the PBC dataset =- competing risks

> Some patients received a liver transplantation

> So far we have used the composite event, i.e. death or transplantation whatever
comes first

> When interest only is on one type of event, the other should be considered as a
competing risk
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Erasmus MC

1.3 Multiple Failure Times (cont’d)

e Joint models with competing risks:

(

yz<t) = mz(t) -+ €i(t) = x;(t)ﬁ + Zz—r(t)bz -+ 8@(75),

/N
>
QL
7N
~
N———
|

= hij(t) exp{,] w; + agm;(t)},

Wi (t) = h (t) exp{y,wi + anmi(t)},

where
> h{(t) hazard function for death

> h;"(t) hazard function for transplantation
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Eraspmus MC

1.3 Multiple Failure Times (cont’d)

e Multiple Failure Times: recurrent events

e [Example:| In the PBC dataset = recurrent events

> Patients showed irregular visiting patterns

> So far, when we fitted the joint model we assumed that the visiting process is
non-informative

> If this assumption is violated, we should also model this process in order to obtain
valid inferences
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Erasmus MC

1.3 Multiple Failure Times (cont’d)

e Joint model with recurrent (visiting process) & terminal events

2

yz(t) = ml(t) —+ 82'(?5) = I;r(t)ﬁ + Z;(t)bz -+ €¢<t),

4 7i(t) = ro(t) exp{, wyi + ymy(t) + v, },

hi(t) = ho(t) exp{, wni + apmi(t) + (v, },

with
> r;(t) hazard function for the recurrent events
> h;(t) hazard function for the terminal event

> v, frailty term accounting for the correlation in the recurrent events
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. . . Erasmus MC
1.4 Extensions & Parameterizations

e Features of multivariate joint models

> using Cl is straightforward to extend joint models to multiple longitudinal
outcomes of different types, and multiple failure times

> computationally much more intensive due to requirement for high dimensional
numerical integrations with respect to the random effects

Tutorial 1V: Dynamic Predictions from Joint Models: April 15, 2016 28



Eraspmus MC

1.4 Extensions & Parameterizations (cont’d)

e Note: In the previous extensions of joint models, i.e.,
> multiple longitudinal markers
> multiple failure times

we used the default parameterization that includes the current value term m;() in
the linear predictor of the survival submodel(s)

Nonetheless, all the other parameterizations we have seen
earlier are also applicable
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Chapter 2

Dynamic Predictions, Discrimination & Calibration
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Erasmus MC

2.1 Survival Probabilities: Definitions

e Nowadays there is great interest for prognostic models and their application to
personalized medicine

e Examples are numerous

> cancer research, cardiovascular diseases, HIV research, . ..

Physicians are interested in accurate prognostic tools that will
inform them about the future prospect of a patient in order to
adjust medical care
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Eraspmus MC

2.1 Survival Probabilities: Definitions (cont’d)

e We are interested in predicting survival probabilities for a new patient j that has
provided a set of serum bilirubin measurements up to a specific time point ¢

e Example:

We consider Patients 2 and 25 from the PBC dataset that have provided

us with 9 and 12 serum bilirubin measurements, respectively

> Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded

e WWe need to account for the endogenous nature of the marker

> providing measurements up to time point ¢ = the patient was still alive at time ¢
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2.1 Survival Probabilities: Definitions (cont’d)

Eraspmus MC
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Eraspmus MC

2.1 Survival Probabilities: Definitions (cont’d)

e More formally, for a new subject j we have available measurements up to time point ¢
Vi(t) = {y,(s),0 < s <t}
and we are interested in
mi(u | 1) = Pr{T; > u| T > £, ,(t), Du},

where
> where u > ¢, and

> D,, denotes the sample on which the joint model was fitted
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. _ . . Erasmus MC
2.2 Survival Probabilities: Estimation

e We assume that the joint model has been fitted to the data at hand

e Based on the fitted model we can estimate the conditional survival probabilities
(Rizopoulos, 2011, Biometrics)
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: -y .. Erasmus MC
2.2 Survival Probabilities: Estimation (cont’d)

e 7;(u | t) can be rewritten as

Si{u | Mj(u,b;,60);0}
Si{t | M;(t,b;,6);6}

mi(u | t) = p(b; | TF > t,Y;(t): 0) db;

e A naive estimator for 7;(u | t) can be constructed by plugging-in the MLEs and the
Empirical Bayes estimates

> this works relatively well in practice, but

> standard errors are difficult to compute
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: -y .. Erasmus MC
2.2 Survival Probabilities: Estimation (cont’d)

e It is convenient to proceed using a Bayesian formulation of the problem =-
mi(u | t) can be written as

Pprzuwﬁ>¢3Mw1%}:/ﬁqfﬁzuMﬁ>¢g¢@ﬂ}meu%yw

e \We have already seen the first part of the integrand

Pr{T} > u| T} >t V(t):0} =

[ Si{u [ M;(u, b, 0);60}
Si{t | Mj(t,b;,0);0}

p(bj [ T} > 1, Y;(t); 0) db,
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: -y .. Erasmus MC
2.2 Survival Probabilities: Estimation (cont’d)

e Provided that the sample size is sufficiently large, we can approximate the posterior
of the parameters by

{9 | Dn} ~ N<é77:[>a

where
> 0 are the MLEs, and

> H their asymptotic covariance matrix
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Eraspmus MC

2.2 Survival Probabilities: Estimation (cont’d)

e A Monte Carlo estimate of 7;(u | t) can be obtained using the following simulation
scheme:

AN AN

Step 1. draw 01Y) ~ N (0, H)

Step 2. drawb ~ {b; |T*>?fy](> )}

Step 3. computewg(u|t S{u!/\/l ub 00 /S{t]/\/l tb ())9(6)}
e Repeat Steps 1-3, / =1, ..., L times, where L denotes the number of Monte Carlo
samples
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: -y .. Erasmus MC
2.2 Survival Probabilities: Estimation (cont’d)

e Steps 1 and 3 are straightforward

e In Step 2 we need to sample from {b; | T > ¢, V;(t), 07}, which is nonstandard

> as n; increases, this posterior converges to a multivariate normal distribution
(Rizopoulos et al., Biometrika, 2008)

> we use a Metropolis-Hastings algorithm with multivariate ¢ proposals

Tutorial 1V: Dynamic Predictions from Joint Models: April 15, 2016 40



: -y .. Erasmus MC
2.2 Survival Probabilities: Estimation (cont’d)

e \[Example:| Dynamic predictions of survival probabilities for Patients 2 & 25 from the
PBC dataset: We fit the joint model

e Longitudinal submodel
> fixed effects: Linear & quadratic time, treatment and their interaction

> random effects: Intercept, linear & quadratic time effects

e Survival submodel
> treatment effect + underlying serum bilirubin level

> piecewise-constant baseline hazard in 7 intervals
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: -y .. Erasmus MC
2.2 Survival Probabilities: Estimation (cont’d)

e Based on the fitted joint model we estimate 7;(u | t) for Patients 2 and 25

e We use 500 Monte Carlo samples, and we took as estimate
7j(u | t) = median{7\"(u | t),0 = 1,..., L}

and calculated a corresponding 95% pointwise Cls
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2.2 Survival Probabilities: Estimation (cont’d)

Eraspmus MC
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2.2 Survival Probabilities: Estimation (cont’d)

Eraspmus MC
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2.2 Survival Probabilities: Estimation (cont’d)

Erasmus MC
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2.2 Survival Probabilities: Estimation (cont’d)

Erasmus MC
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2.2 Survival Probabilities: Estimation (cont’d)

Erasmus MC
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: -y .. Erasmus MC
2.2 Survival Probabilities: Estimation (cont’d)
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Erasmus MC

2.2 Survival Probabilities: Estimation (cont’d)

R> Individualized predictions of survival probabilities are computed by function
survfitJM() — for example, for Patient 2 from the PBC dataset we have

sfit <- survfitJM(jointFit, newdata = pbc2[pbc2$id == "2", ])
sfit
plot(sfit)

plot(sfit, include.y = TRUE)
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. « 4 . . Erasmus MC
2.3 Dynamic Predictions using Landmarking

e Dynamic predictions of survival probabilities can be also derived using a landmark
approach

e How this works?

> choose a landmark point ¢, e.g., for the future patient of interest the last time
point she was alive

> from the original dataset keep only the patients who were at risk at the landmark

> fit a Cox model to this dataset including the last available value of the biomarker
as baseline covariate

hilu—1t) = holu —t)exp{y w; +agi(t)}, u>t

Tutorial 1V: Dynamic Predictions from Joint Models: April 15, 2016 46



Eraspmus MC

2.3 Dyn. Predictions using Landmarking (cont’d)

> for the new patient compute her survival probability at u using the fitted Cox
model and the Breslow estimator

FEM (| 1) = exp | — Ho(w) exp{3 Tw; + ag;(1)},

where

> I(T; < u)o;
AP S ElTER TS
iER(t) EER(U) l l

and R(t) ={i:T; >t}
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Eraspmus MC

2.3 Dyn. Predictions using Landmarking (cont’d)

e Sometimes landmarking works, but not always!

e Main differences between landmarking and joint modeling

> Extrapolation:

* both require the level of the marker at ¢

* landmarking extrapolates the last biomarker value (Last Value Carried Forward
approach)

* joint modeling builds the subject-specific profile which extrapolates up to ¢

* from a biological point of view the joint modeling approach seems more logical
than landmarking
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2.3 Dyn. Predictions using Landmarking (cont’d)

Eraspmus MC
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Erasmus MC

2.3 Dyn. Predictions using Landmarking (cont’d)

e Main differences between landmarking and joint modeling

> Implicit processes:

Landmarking

Joint Modeling

* MCAR missing data long. process

* non-informative visiting process

* non-informative censoring

* MAR missing data long. process

* visiting process allowed to depend on
long. history

* censoring allowed to depend on

long. history

Tutorial 1V: Dynamic Predictions from Joint Models: April 15, 2016

49



. . < s Erasmus MC
2.4 Longitudinal Responses: Definitions

e In some occasions it may be also of interest to predict the longitudinal outcome

e We can proceed in the same manner as for the survival probabilities: We have
available measurements up to time point ¢

Y;(t) = {y;(s),0 < s <t}
and we are interested in

wi(u|t)=E{y;(u) | TS > t,Y;(t), Dy}, u>t
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" _ Erasmus MC
2.4 Longitudinal Responses: Definitions (cont’d)

e To estimate w;(u | t) we can follow a similar approach as for 7;(u | t) — Namely,
w;(u | t) is written as:

E{y(w) | T} > £.9,0.D.} = [ E{uw) | T > t.3,(0).D,:6} p(6 | D,) df
e With the first part of the integrand given by:

E{y;(u) | Tr > t,Vi(t),Dn; 0} =

- /{x}(u)ﬁ + 2] (Wb} p(by | T} > t,V(t); 6) db
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2.4 Longitudinal Responses: Estimation (cont’d)

Eraspmus MC

e A similar Monte Carlo simulation scheme:

N AN

Step 1. draw 6() ~ N (6, H)
Step 2. draw b)) ~ {b; | T7 > t,V;(1), 0"}

Step 3. compute wﬁg)(u | 1) = x;(u)ﬂ(@ 4+ zT(u)b(.g)

from:

J J

W | ) ~ N{xT(u)ﬁ(@ + 2,

J

e, 107}

e Note:| Prediction intervals can be easily computed by replacing Step 3 with a draw
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" L. Erasmus MC
2.4 Longitudinal Responses: Estimation (cont’d)

e [Example:| Dynamic predictions of serum bilirubin for Patients 2 & 25 from the PBC
dataset: We fit the joint model

e Longitudinal submodel
> fixed effects: Linear & quadratic time, treatment and their interaction

> random effects: Intercept, linear & quadratic time effects

e Survival submodel
> treatment effect + underlying serum bilirubin level

> piecewise-constant baseline hazard in 7 intervals
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2.4 Longitudinal Responses: Estimation (cont’d)

e Based on the fitted joint model we estimate w;(u | ) for Patients 2 and 25

e Point estimates

Gj(u | t) =z] (w)B + 2] (u)b;,

where ﬁ: MLEs & Z;j: empirical Bayes estimates

e 95% pointwise Cls

> simulation scheme: 2.5% and 97.5% percentiles of 500 Monte Carlo samples of
(€) "
w; (u | 1)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)
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2.4 Longitudinal Responses: Estimation (cont’d)

R> Individualized predictions for the longitudinal outcome are computed by function
predict () — for example, for Patient 2 from the PBC dataset we have function

1fit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],
type = "Subject", interval = "conf", returnData = TRUE)

1fit

xyplot(pred + low + upp ~ year, data = 1fit, type = "1",
1ty = ¢(1,2,2), col = c(2,1,1), lwd = 2)
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2.4 Longitudinal Responses: Estimation (cont’d)
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R> Web interface using the shiny package
library(shiny)

runApp(file.path(.Library, "JMbayes/demo"))
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2.5 Importance of the Parameterization

e All previous predictions were based on the standard joint model
‘

hi(t | Mu(t)) = ho(t) exp{y "w; + am; (1)},

vit) = m(t) + &)
=z ()3 + 2 ()b + &i(t),

where M, (t) = {m,;(s),0 < s < t}
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2.5 Importance of the Parameterization (cont’d)

e \We have seen earlier that there are several alternative parameterizations (see Section 5.1)

e Relevant questions:
> Does the assumed parameterization affect predictions?

> Which parameterization is the most optimal?

e |[Example:) We compare predictions for the longitudinal and survival outcomes under
different parameterizations for Patient 51 from the PBC study
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2.5 Importance of the Parameterization (cont’d)
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2.5 Importance of the Parameterization (cont’d)

e Predictions based on five joint models for the PBC dataset
> the same longitudinal submodel as before, and

> relative risk submodels:

hi(t) = ho(t) exp{yD-pnc; + a;m;(t)},

hi(t) = ho(t) exp{yD-pnc; + aam;(t)},

hl<t) = ho(t> GXP{VD_pnCZ' -+ &1mi(t> + O@m;(t)}a
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2.5 Importance of the Parameterization (cont’d)
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hi(t) = ho(t) exp{vD—pncZ- + ag /Ot mi(s)ds},

hi(t) = holt) eXp{’yD—pnCH—Oq /O t ¢(t—s)mi(3)ds},

where ¢(-) standard normal pdf
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2.5 Importance of the Parameterization (cont’d)
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2.5 Importance of the Parameterization (cont’d)
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2.5 Importance of the Parameterization (cont’d)

e The chosen parameterization can influence the derived predictions

> especially for the survival outcome

e My current work: How to optimally choose parameterization?

> per subject (personalized medicine)

e Quite promising results from the Bayesian approach using Bayesian Model Averaging
techniques

> it can be done with package JMbayes,
> it falls a bit outside the scope of this course, but

> | can provide information if interested. . .
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2.6 Model Discrimination

e Often clinical interest lies in the predictive performance of a marker

> this could be useful in medical practice if the marker alone offers good enough
discrimination

e Hence, often we are also interested in the discriminative capability of the whole
model incorporating the baseline covariates as well

> especially when no single prognostic factor can accurately enough discriminate
between patients
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2.6 Model Discrimination (cont’d)

e We assume the following setting
> using the available longitudinal data up to time ¢, YV;(t) = {y,(s),0 < s <t}

> we are interested in events in the medically relevant interval (¢,1 + At]

e Based on the fitted joint model and for a particular threshold value ¢ € [0, 1], we can
term a subject as a case if

W](t—l—At‘t)SC
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2.6 Model Discrimination (cont’d)

e Following, we can define sensitivity
Pr{mj(t+ At | t) < c| T} € (t,t + At]},
specificity
Pr{mj(t + At | t) > c | T} >t + At},
and the corresponding AUC

AUC(t, At)
= Prim(t+ At [ t) <m(t+ At | ) | {T7 € (t,t+ At]} N {T} >t + At}
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2.6 Model Discrimination (cont’d)

e Estimation of AUC(#, At) can be based on similar arguments as Harrell's C' index

AUC(t, At) = AUC, (¢, At) + AUC,(t, At)

where
R nOSY Tt A1) < wi(t+ A E)Y x T{OW (¢
AUC1<t,At> _ Zz—l Z]—l,];&z { (n n| ) ]((1) ‘ )} { 1] ( )}’
Zizl ijl;j;«éz’ ]{sz (t)}
with

OW(t) = [Ty e (tt+ Ay N {6 = 1}] N {T; > t + At}

tj
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2.6 Model Discrimination (cont’d)

e And
_ S S T+ A ) < e+ At 8} x IO () x K
AUC,(t, At) = ’ ——— 5 — ,
D e Zj:1;j7éz‘ [{Qij (1)} x K
with
Ot = [{Tr € (t,t + Ay N {6 = 0} N {T; > t + At}
and

AN

K=1—-mt+At| T}
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2.6 Model Discrimination (cont’d)

R> For a fitted joint model AGC(t, At) is calculated by function aucJM() - for the
PBC dataset

# AUC(t = 7, Delta t = 2)
aucJM(jointFit, newdata = pbc2, Tstart = 7, Dt = 2)
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2.7 Calibration

e \We have covered discrimination, i.e.,

> how well can the longitudinal biomarker(s) discriminate between subject of low
and high risk for the event

e Another relevant measure for quantifying predictive ability is calibration, i.e.,

> how well can the longitudinal biomarker(s) accurately predict future events

e In standard survival analysis and on the latter front there has been a lot of work on
extensions of the Brier score (see Gerds and Schumacher, (2006) and references therein)
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2.7 Calibration (cont’d)

e In the joint modeling framework we need to take into account the dynamic nature of
the longitudinal marker

e The expected error of prediction has the form

where
> N;(t) = I(TF > t) is the event status at time ¢

> L(-) denotes a loss function, such as the absolute or square loss
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2.7 Calibration (cont’d)

e An estimator for PE(u | t) that accounts for censoring has been proposed by
Henderson et al. (2002)

PE(u | ) = {R(} Y 1T, > w)L{1 — 7w | )} + & 1(T, < w)L{O0 — #(u | 1))

11>t

+(1 —0)I(T; < u) {Wz(u | )Ll —m(u | t)} + {1 — m(u | T;) L{O — 7;(u | 2)}

where
> R(t) denotes the number of subjects at risk at ¢
> red part: subjects still alive at u
> blue part: subjects who died before u

> green part: subject censored before u
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2.7 Calibration (cont’d)

R> For a fitted joint model ﬁE(u | t) is calculated by function prederrJM() — for the
PBC dataset

# PE(u=9 1|t =7)
prederrJM(jointFit, newdata = pbc2, Tstart = 7, Thoriz = 9)
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2.8 Landmarking vs JM: An Example

e We have earlier seen that the landmark approach also provides estimates of dynamic
survival probabilities 7;(u | ¢)

> we make here a comparison here with joint modeling for the PBC dataset

e Joint models:

> Longitudinal process:

y;(t) = P1Plcb; + [BoD-penc, + B3{Bi(t, \) x Plcb;} + B4{Bi(t, A) x D-penc,}
+ B5{ Ba(t, A) x Plcb;} + B6{Ba(t, \) x D-penc,}
+ B7{ Bs(t, \) x Plcb;} + Bs{ Bs(t, A\) x D-penc,}
+bio + b B1(t, X) + binBa(t, A) + bisBa(t, ) + €i(t),
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2.8 Landmarking vs JM: An Example (cont’d)

e Joint models:

> Survival process:
My = hi(t) = ho(t) exp{~yiD-penc; + 2Age; + vsFemale; + aym;(t)},
M, = hi(t) = ho(t) exp{~yiD-penc, + v2Age; + y3Female; + aym;(t) + aomi(t)},

/
Ms . hi(t) = ho(t) exp{%D—pencZ- + YoAge, + y3Female; + a1/ mi(s)ds},
0

My : hi(t) = ho(t) exp(11D-penc; + Y2Age; + Y3Female;
+ anbig + byt + asbis + aubis),
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2.8 Landmarking vs JM: An Example (cont’d)

e We focus on the interval [t = 7,u = 9] and we fit a series of Cox models to the
patients at risk at ¢ = 7 with corresponding association structures to the previous
joint models, i.e.,

Ms: hi(u—"T7)=ho(u—7) exp{%D—penci + vAge. + y3Female; + 0413]2-(7)},

Mg :  hi(u—T7) = ho(u — 7) exp{~y1D-penc, + 12Age; + 3Female;
+ o Bil(7) + aagi(7) },

M7 hi(u—T7)=hy(u—"7) exp{%D—pencz- + oAge, + y3Female;

7
+ oy Z yi(s)As},
s=0
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2.8 Landmarking vs JM: An Example (cont’d)

where

> ¢:(7) denotes the slope defined from the last two available measurements of each
patient

7
> Y y;(s)As denotes the area under the step function defined from the observed
s=0

square root aortic gradient measurements up to 7 years

e \We evaluate both discrimination and calibration

> calibration: ﬁE(QW) and |§E(9\7) using the absolute loss function
=

N A~ At=2
> discrimination: AUC(9|7) and C;,,, based on the interval |0, 10] years
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2.8 Landmarking vs JM: An Example (cont’d)
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PE(9|7) IPE9]7) AUC(9|7) Con
My JM value 0.201 0.118 0.787  0.854
My: JM value+slope 0.197 0.114 0.793  0.855
Ms: JM area 0.191 0.112 0.758  0.839
My: JM shared RE 0.191 0.108 0.807  0.840
My - Coxpps value 0.229 0.127 0.702 0.841
My : Coxp s value+slope  0.227 0.126 0.710 0.825
M : Coxyyy area 0.226 0.125 0.697 0.827

e For this particular dataset and comparing the same parameterization we observe that

joint modeling is better in terms of both calibration and discrimination
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2.9 Validation

e Validation of both discrimination and calibration measures can be achieved with
standard re-sampling techniques

> cross-validation (leave-one-out or better 10-fold)

> Bootstrap

e In general time consuming because it requires fitting the joint model many times

> take advantage of parallel computing (e.g., using package parallel)
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The End of Tutorial 1V!
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2.10 Additional References

e Andrinopoulou, E.R., Rizopoulos, D., Takkenberg, J. and Lesaffre, E. (2014). Joint modeling of two longitudinal
outcomes and competing risk data. Statistics in Medicine, to appear.

e Brown, E. and Ibrahim, J. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival
data. Biometrics 59, 221-228.

e Brown, E. Ibrahim, J. and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and
survival. Biometrics 61, 64-73.

e Chi, Y.-Y. and lbrahim, J. (2006). Joint models for multivariate longitudinal and multivariate survival data.
Biometrics 62, 432—445.

e DeGruttola, V. and Tu, X. (1994). Modeling progression of CD-4 lymphocyte count and its relationship to survival
time. Biometrics 50, 1003-1014.

e Elashoff, R., Li, G. and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence
of multiple failure types. Biometrics 64, 762—771.
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2.10 Additional References (cont’d)

e Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured
covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685.

e Gerds, T. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models
with right-censored event times. Biometrical Journal 48, 1029-1040.

e Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105.

e Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data.
Biostatistics 1, 465-480.

e Henderson, R., Diggle, P. and Dobson, A. (2002). Identification and efficacy of longitudinal markers for survival.
Biostatistics 3, 33-50.

e Hsieh, F., Tseng, Y.-K. and Wang, J.-L. (2006). Joint modeling of survival and longitudinal data: Likelihood approach
revisited. Biometrics 62, 1037-1043.
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2.10 Additional References (cont’d)

e Lin, H., Turnbull, B., McCulloch, C. and Slate, E. (2002). Latent class models for joint analysis of longitudinal
biomarker and event process: Application to longitudinal prostate-specific antigen readings and prostate cancer.
Journal of the American Statistical Association 97, 53—65.

e Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the
presence of death, with application to a study on acquired immune deficiency syndrome. Journal of the Royal
Statistical Society, Series C 58, 65-81.

e Proust-Lima, C., Joly, P., Dartigues, J. and Jacgmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal
outcomes and a time-to-event: A nonlinear latent class approach. Computational Statistics and Data Analysis 53,
1142-1154.

e Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer
recurrence using repeated measures of posttreatment PSA: A joint modeling approach. Biostatistics 10, 535-549.

e Rizopoulos, D. (2012). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive
Gaussian quadrature rule. Computational Statistics and Data Analysis 56, 491-501.

e Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and
time-to-event data. Biometrics 67, 819-829.
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2.10 Additional References (cont’d)

e Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of
Statistical Software 35 (9), 1-33.

e Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric multivariate joint model for multiple longitudinal
outcomes and a time-to-event. Statistics in Medicine 30, 1366—1380.

e Rizopoulos, D., Hatfield, L.A., Carlin, B.P. and Takkenberg, J.J.M. (2014). Combining dynamic predictions from joint
models for longitudinal and time-to-event data using Bayesian model averaging. Journal of the American Statistical
Association 109, 1385-1397.

e Rizopoulos, D., Murawska, M., Andrinopoulou, E.-R., Molenberghs, G., Takkenberg, J. and Lesaffre, E. (2013).
Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking.
Submitted.

e Rizopoulos, D. and Lesaffre, E. (2014). Introduction to the special issue on joint modelling techniques. Statistical
Methods in Medical Research 23, 3-10.

e Rizopoulos, D., Verbeke, G. and Lesaffre, E. (2009). Fully exponential Laplace approximation for the joint modelling
of survival and longitudinal data. Journal of the Royal Statistical Society, Series B 71, 637—654.
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2.10 Additional References (cont’d)

e Rizopoulos, D., Verbeke, G., Lesaffre, E. and Vanrenterghem, Y. (2008). A two-part joint model for the analysis of
survival and longitudinal binary data with excess zeros. Biometrics 64, 611-619.

e Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2010). Multiple-imputation-based residuals and diagnostic plots for
joint models of longitudinal and survival outcomes. Biometrics 66, 20-29.

e Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2008). Shared parameter models under random effects
misspecification. Biometrika 95, 63—-74.

e Rubin, D. (1976). Inference and missing data. Biometrika 63, 581-592.

e Song, X., Davidian, M. and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal
and time-to-event data. Biometrics 58, 742—753.

e Taylor, J., Park, Y., Ankerst, D., Proust-Lima, C., Williams, S., Kestin, L., Bae, K., Pickles, T., and Sandler, H.
(2013). Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics, 69, 206-213.

e Tseng, Y.-K., Hsieh, F. and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data.
Biometrika 92, 587-603.
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2.10 Additional References (cont’d)

e Tsiatis, A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal

covariates measured with error. Biometrika 88, 447—458.

e Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica
Sinica 14, 809-834.

e Tsiatis, A., DeGruttola, V., and Wulfsohn, M. (1995). Modeling the relationship of survival to longitudinal data
measured with error: Applications to survival and CD4 counts in patients with AIDS. Journal of the American
Statistical Association 90, 27-37.

e Viviani, S., Alf6, M. and Rizopoulos, D. (2014). Generalized linear mixed joint model for longitudinal and survival
outcomes. Statistics and Computing, 24, 417-427.

e Viviani, S., Rizopoulos, D. and Alfé, M. (2014). Local sensitivity of shared parameter models to nonignorability of
dropout. Statistical Modelling 14, 205-228.

e Wang, Y. and Taylor, J. (2001). Jointly modeling longitudinal and event time data with application to acquired
immunodeficiency syndrome. Journal of the American Statistical Association 96, 895-905.
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2.10 Additional References (cont’d)

e Wu, M. and Bailey, K. (1988). Analysing changes in the presence of informative right censoring caused by death and
withdrawal. Statistics in Medicine T, 337-346.

e Wu, M. and Bailey, K. (1989). Estimation and comparison of changes in the presence of informative right censoring:
conditional linear model. Biometrics 45, 939-955.

e Wu, M. and Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring
by modeling the censoring process. Biometrics 44, 175-188.

e Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics
53, 330-339.

e Xu, C., Baines, P. and Wang, J.-L. (2014). Standard error estimation using the EM algorithm for the joint modeling
of survival and longitudinal data. Biostatistics, to appear.

e Xu, J. and Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated measures and times to events.
Applied Statistics 50, 375-387.
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2.10 Additional References (cont’d)

e Ye, W., Lin, X, and Taylor, J. (2008). Semiparametric modeling of longitudinal measurements and time-to-event data
a two stage regression calibration approach. Biometrics 64, 1238-1246.

e Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to
prostate cancer. Statistica Sinica 14, 835-862.

e Yu, M., Taylor, J. and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint
longitudinal-survival-cure model. Journal of the American Statistical Association 108, 178-187.

e Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimators in joint analysis of repeated
measurements and survival time. The Annals of Statistics 33, 2132-2163.

e Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. Biometrics 63, 332-341.
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e Andrinopoulou, E.R., Rizopoulos, D., Jin, R., Bogers, A., Lesaffre, E. and Takkenberg, J. (2012). An introduction to
mixed models and joint modeling: Analysis of valve function over time. Annals of Thoracic Surgery 93, 1765-1772.

e Andrinopoulou, E.R., Rizopoulos, D., Geleijnse, M., Lesaffre, E., Bogers, A. and Takkenberg, J. (2015). Dynamic
prediction of outcome for patients with severe aortic stenosis: Application of joint models for longitudinal and
time-to-event data. BMC Cardiovascular Disorders, to appear.

e Daher Abdi, D.Z., Essig, M., Rizopoulos, D., Le Meur, Y., Premaud, A., Woillard, J.-B., Rerolle, J.-P., Marquet, P.
and Rousseau, A. (2013). Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant
recipients using a joint modeling approach. Pharmacological Research 72, 52—60.

e |brahim, J., Chu, H. and Chen, L.-M. (2010). Basic concepts and methods for joint models of longitudinal and survival
data. Journal of Clinical Oncology 28, 2796-2801.

e Nunez, J., Nunez, E., Rizopoulos, D., Minana, G., Bodi, V., Bondanza, L., Husser, O., Merlos, P., Santas, E.,
Pascual-Figal, D.,; Chorro, F. and Sanchis, J. (2014). Red blood cell distribution width is longitudinally associated
with mortality and incident anemia in heart failure patients. Circulation Journal 78, 410—418.

e Rizopoulos, D. and Takkenberg, J. (2014). Tools & Techniques: Dealing with time-varying covariates in survival
analysis - joint models versus Cox models. Eurolntervention 10, 285-288.
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e Thabut, G., Christie, J., Mal, H., Fournier, M., Brugiere, O., Leseche, G., Castier, Y. and Rizopoulos, D. (2013).
Survival benefit of lung transplant for cystic fibrosis since lung-allocation-score implementation. American Journal of
Respiratory and Critical Care Medicine 187, 1335-1340.

e van der Linde, D., Roos-Hesselink, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap,
S., Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Takkenberg, J. (2013). Surgical outcome of discrete
subaortic stenosis in adults: A multicenter study. Circulation 127, 1184-1191.

e van der Linde, D., Takkenberg, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap, S.,
Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Roos-Hesselink, J. (2013). Natural history of discrete
subaortic stenosis in adults: A multicenter study. European Heart Journal 34, 1548-1556.
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