Dynamic Predictions for Longitudinal and Event Time Outcomes with Applications in R

Dimitris Rizopoulos¹ and **Christos Thomadakis**²

¹Erasmus University Medical Center, Rotterdam, the Netherlands ²Medical School, National and Kapodistrian University of Athens, Greece

45th Annual Conference of the International Society for Clinical Biostatistics July 21, 2024, Thessaloniki, Greece

Contents

I	Introduction	1
	1.1 Motivating Longitudinal Studies	2
	1.2 Research Questions	10

	Review of Linear Mixed and Cox Models	12
	2.1 Linear Mixed Models	13
	2.2 Relative Risk Models	20
	2.3 Time-Varying Covariates	24

III The Basic Joint Model 28 3.1 Joint Modeling Framework 29 3.2 Bayesian Estimation 36 3.3 A Comparison with the TD Cox 38 3.4 Joint Models in R 41

IV Joint Model Extensions 44 4.1 Functional Forms 4.5 45 4.2 Multiple Longitudinal Markers 59 4.3 Competing Risks 73

Dynamic Predictions V 97 5.6 Discrimination with Competing Risks \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 155166 Closing VI

6.3 Medical Papers with Joint Modeling	179
VII Practicals	181
7.1 R Practical: Dynamic Predictions	182
7.2 R Practical: Dynamic Predictions CIFs	189

- Often in follow-up studies different types of outcomes are collected
- Explicit outcomes
 - ▷ multiple longitudinal responses (e.g., markers, blood values)
 - ▷ time-to-event(s) of particular interest (e.g., death, relapse)
- Implicit outcomes
 - \triangleright missing data
 - \triangleright random visit times

- Methods for the separate analysis of such outcomes are well established in the literature
- Survival data:
 - ▷ Cox model, accelerated failure time models, ...
- Longitudinal data
 - ▷ mixed effects models, GEE, marginal models, ...

Purpose of this course is to present

Joint Modeling Techniques for Deriving Predictions

- After this course the participants will
 - \triangleright be familiarized with the joint modeling framework,
 - \triangleright know how predictions are derived from joint models
 - \triangleright know how to evaluate the accuracy of these predictions, and
 - \triangleright be able to fit joint models and derive predictions in R

- Joint modeling sources*
 - ▷ Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data, with Applications in R. Boca Raton: Chapman & Hall/CRC.
 - Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G. (2009).
 Longitudinal Data Analysis. Handbooks of Modern Statistical Methods. Boca Raton: Chapman & Hall/CRC, Chapter 15.
 - ▷ Wu, L. (2009). Mixed Effects Models for Complex Data. Boca Raton: Chapman & Hall/CRC, Chapter 8.
 - ▷ Ibrahim, J., Chen, M.-H. and Sinha, D. (2001). Bayesian Survival Analysis. New York: Springer-Verlag, Chapter 7.

* extra references of papers using joint modeling available at pp. 171–178.

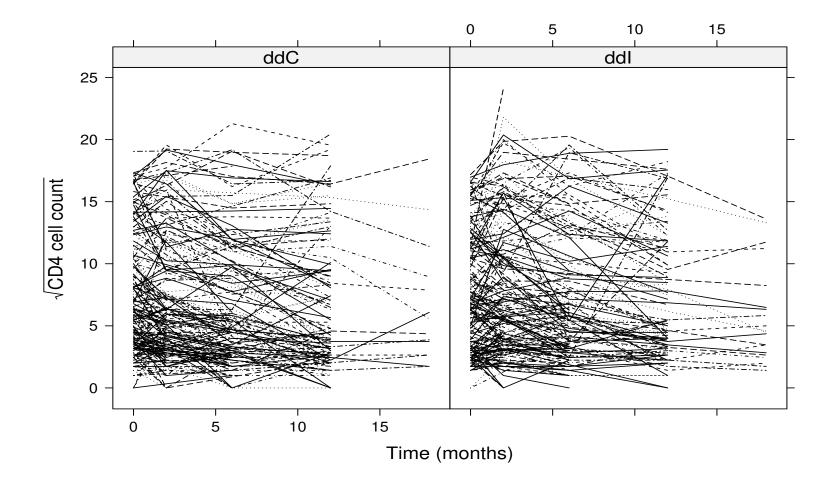
- Useful material for package JMbayes2
 - > a website with several examples: https://drizopoulos.github.io/JMbayes2/
- Useful material for package JM can be found in the web sites:
 - > https://jmr.r-forge.r-project.org [R code used in the book]
 - \triangleright https://www.drizopoulos.com/ \rightarrow Software [additional R script files]

- Other software packages capable of fitting joint models
 - in R: JMbayes (by Rizopoulos), joineR (by Philipson et al.), joineRML (by Hickey et al.), function stan_jm() in rstanarm (by Brilleman), jm_bamlss() in bamlss (Koehler et al.), lcmm (by Proust-Lima et al.)
 - b in SAS: %JM macro (by Garcia-Hernandez and Rizopoulos http://www.jm-macro.com/), %JMFit macro (by Zhang et al.)
 - ▷ in **STATA**: **stjm** and **merlin** (by Crowther)

Part I Introduction

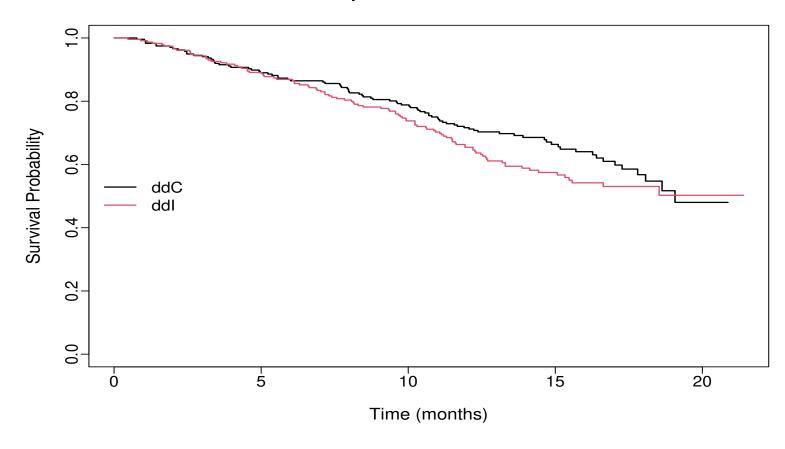
- AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine therapy (AZT) (Abrams et al., NEJM, 1994)
- The aim of this study was to compare the efficacy and safety of two alternative antiretroviral drugs, didanosine (ddl) and zalcitabine (ddC)
- Outcomes of interest:
 - \triangleright time to death
 - \triangleright randomized treatment: 230 patients ddl and 237 ddC
 - \triangleright CD4 cell count measurements at baseline, 2, 6, 12 and 18 months

1.1 Motivating Longitudinal Studies (cont'd)



1.1 Motivating Longitudinal Studies (cont'd)

Kaplan-Meier Estimate

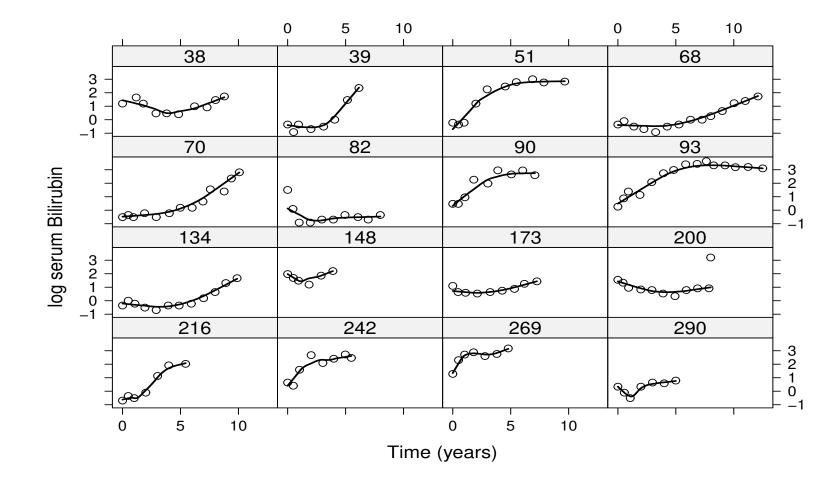


• Research Questions:

- ▷ How strong is the association between CD4 cell count and the risk of death?
- ▷ Is CD4 cell count a good biomarker?
 - * if treatment improves CD4 cell count, does it also improve survival?

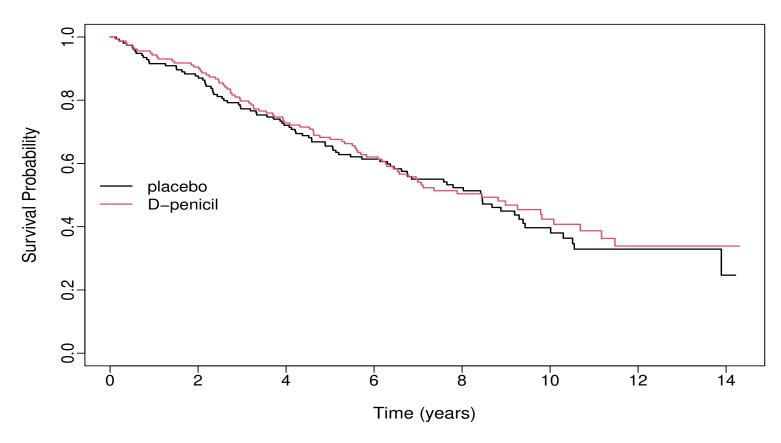
- PBC: Primary Biliary Cirrhosis:
 - \triangleright a chronic, fatal but rare liver disease
 - > characterized by inflammatory destruction of the small bile ducts within the liver
- Outcomes of interest:
 - \triangleright time to death or liver transplantation
 - ▷ randomized treatment: 158 patients received D-penicillamine and 154 placebo
 - ▷ longitudinal bilirubin levels, cholesterol, prothrombin time (continuous)
 - > longitudinal ascites, hepatomegaly, edema (categorical)

1.1 Motivating Longitudinal Studies (cont'd)



1.1 Motivating Longitudinal Studies (cont'd)

Kaplan-Meier Estimate



• Research Questions:

- ▷ How strong is the association between bilirubin and the risk of death?
- b How the observed serum bilirubin levels could be utilized to provide predictions of survival probabilities?
- ▷ Can bilirubin discriminate between patients of low and high risk?

- Depending on the questions of interest, different types of statistical analysis are required
- We will distinguish between two general types of analysis
 - ▷ separate analysis per outcome
 - ▷ joint analysis of outcomes
- Focus on each outcome separately
 - > does treatment affect survival?
 - ▷ are the average longitudinal evolutions different between males and females?

▷...

- Focus on multiple outcomes
 - Complex effect estimation: how strong is the association between the longitudinal evolution of CD4 cell counts and the hazard of death?
 - * *endogenous* vs. exogenous time-varying covariates
 - Handling implicit outcomes: focus on longitudinal outcomes but with dropout or random visit times
 - * missing not at random vs. missing at random

Part II

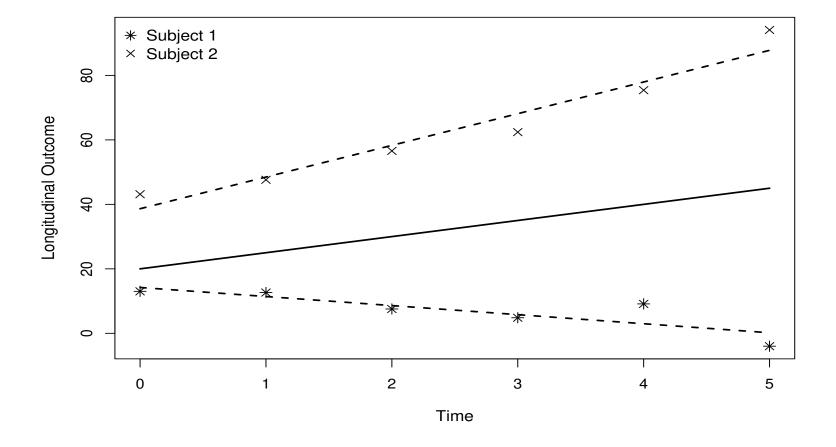
Review of Linear Mixed and Cox Models

- Repeated evaluations of the same outcome in each subject over time
 - \triangleright CD4 cell count in HIV-infected patients
 - \triangleright serum bilirubin in PBC patients

Measurements on the same subject are expected to be (positively) correlated

• Standard statistical tools, such as the *t*-test and linear regression that assume independent observations, not optimal for longitudinal data analysis

Random effects approach: Each subject in the population has her own subject-specific mean response profile over time



• The profile of each subject over time can be described by a linear model

$$y_{ij} = \tilde{\beta}_{i0} + \tilde{\beta}_{i1}t_{ij} + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2),$$

where

 $\triangleright y_{ij}$ the *j*th response of the *i*th subject $\triangleright \tilde{\beta}_{i0}$ is the intercept and $\tilde{\beta}_{i1}$ the slope for subject *i*

 Assumption: Subjects are randomly sampled from a population ⇒ subject-specific regression coefficients are also sampled from a population of regression coefficients

$$\tilde{\beta}_i \sim \mathcal{N}(\beta, D)$$

• We can reformulate the model as

$$y_{ij} = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})t_{ij} + \varepsilon_{ij},$$

where

 \triangleright βs are known as the *fixed effects*

 \triangleright b_i s are known as the *random effects*

• In accordance for the random effects we assume

$$b_i = \begin{bmatrix} b_{i0} \\ b_{i1} \end{bmatrix} \sim \mathcal{N}(0, D)$$

• Put in a general form

$$\begin{cases} y_i = X_i\beta + Z_ib_i + \varepsilon_i, \\\\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_{n_i}), \end{cases}$$

with

- $\triangleright X$ design matrix for the fixed effects β
- $\triangleright Z \text{ design matrix for the random effects } b_i$ $\triangleright b_i \perp \perp \varepsilon_i$

- Interpretation:
 - $\triangleright \beta_j$ denotes the change in the average y_i when x_j is increased by one unit
 - $> b_i$ are interpreted in terms of how a subset of the regression parameters for the *i*th subject deviates from those in the population
- Advantageous feature: population + subject-specific predictions
 - $\rhd\beta$ describes mean response changes in the population
 - $\triangleright \beta + b_i$ describes individual response trajectories

- The characteristic that distinguishes the analysis of time-to-event outcomes from other areas in statistics is **Censoring**
 - ▷ the event time of interest is not fully observed for all subjects under study
- Implications of censoring:
 - ▷ standard tools, such as the sample average, the *t*-test, and linear regression cannot be used
 - b inferences may be sensitive to misspecification of the distribution of the event times

- Notation (*i* denotes the subject)
 - $\triangleright T_i^*$ 'true' time-to-event
 - $\triangleright C_i$ the censoring time (e.g., the end of the study or a random censoring time)
- Available data for each subject
 - \triangleright observed event time: $T_i = \min(T_i^*, C_i)$
 - \triangleright event indicator: $\delta_i = 1$ if event; $\delta_i = 0$ if censored

Our aim is to make valid inferences for T_i^* but using only $\{T_i, \delta_i\}$

• **Relative Risk Models** assume a multiplicative effect of covariates on the hazard scale, i.e.,

$$h_i(t) = h_0(t) \exp(\gamma_1 w_{i1} + \gamma_2 w_{i2} + \ldots + \gamma_p w_{ip}) \Rightarrow$$

$$\log h_i(t) = \log h_0(t) + \gamma_1 w_{i1} + \gamma_2 w_{i2} + \ldots + \gamma_p w_{ip},$$

where

 $\triangleright h_i(t)$ denotes the hazard of an event for patient i at time t $\triangleright h_0(t)$ denotes the baseline hazard $\triangleright w_{i1}, \ldots, w_{ip}$ a set of covariates

- Cox Model: No assumptions for the baseline hazard function
- Parameter estimates and standard errors are based on the log partial likelihood function

$$p\ell(\gamma) = \sum_{i=1}^{n} \delta_i \Big[\gamma^\top w_i - \log \Big\{ \sum_{j:T_j \ge T_i} \exp(\gamma^\top w_j) \Big\} \Big],$$

where only patients who had an event contribute

- Often interest in the association between a time-varying covariate and the risk of an event
 - ▷ treatment changes with time (e.g., dose)
 - ▷ time-dependent exposure (e.g., smoking, diet)
 - ▷ markers of disease or patient condition (e.g., blood pressure, PSA levels)
 - $\triangleright \dots$
- Example: In the PBC study, are the longitudinal bilirubin measurements associated with the hazard of death?

• There are two types of time-varying covariates

(Kalbfleisch & Prentice, The Stat. Anal. of Failure Time Data, 2002)

 \triangleright External (aka exogenous): the value of the covariate at time point t is not affected by the occurrence of an event at time point u, with t > u

▷ Internal (aka endogenous): not External

• This is a difficult concept and we will try to explain it with an example...

- Example: A study on the time until an asthma attack for a group of patients
- We have two time-varying covariates: Pollution levels & a biomarker for asthma
- \bullet Say a patient had an asthma attack at a particular time point u
 - \triangleright Pollution levels
 - * will the pollution levels at time t > u be affected by the fact that the patient had an attack at $u? \Rightarrow No$
 - ▷ Biomarker
 - * will the biomarker level at time t > u be affected by the fact that the patient had an attack at $u? \Rightarrow Yes$

- It is **important** to distinguish between these two types of time-varying covariates, because the type of covariate dictates the appropriate type of analysis
- The extended Cox model is only valid for exogenous time-varying covariates

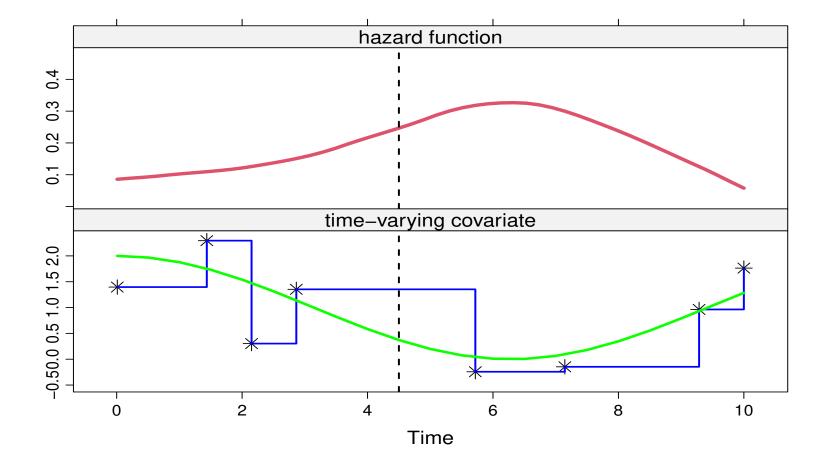
Treating endogenous covariates as exogenous may produce spurious results!

Part III The Basic Joint Model

• To account for the special features of endogenous covariates a new class of models has been developed

Joint Models for Longitudinal and Time-to-Event Data

- Intuitive idea behind these models
 - 1. use an appropriate model to describe the evolution of the covariate/marker over time for each patient
 - 2. the estimated evolutions are then used in a Cox model
- Feature: covariate level's are **not** assumed constant between visits



• Some notation

- $\triangleright T_i^*$: True event time for patient *i*
- $\triangleright T_i$: Observed event time for patient *i*
- $\triangleright \delta_i$: Event indicator, i.e., equals 1 for true events
- $\triangleright y_i$: Longitudinal covariate
- We will formulate the joint model in 3 steps in particular, ...

- Step 1: Let's assume that we know $m_i(t)$, i.e., the *true* & *unobserved* value of the covariate at time t
- Then, we can define a standard relative risk model

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\},\$$

where

- $\triangleright \mathcal{M}_i(t) = \{ \underline{m_i(s)}, 0 \le s < t \}$ longitudinal history
- $\triangleright \alpha$ quantifies the association between the time-varying covariate and the risk of an event
- $\triangleright w_i$ baseline covariates

- Step 2: From the observed longitudinal data $y_i(t)$ reconstruct the covariate history for each subject
- Mixed effects model (we focus, for now, on continuous covariates)

$$y_i(t) = \mathbf{m}_i(t) + \varepsilon_i(t)$$

= $x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$

where

$$\triangleright x_i(t)$$
 and β : Fixed-effects part
 $\triangleright z_i(t)$ and b_i : Random-effects part, $b_i \sim \mathcal{N}(0, D)$

- Step 3: The two processes are associated \Rightarrow define a model for their joint distribution
- Joint Models for such joint distributions are of the following form (Tsiatis & Davidian, Stat. Sinica, 2004)

$$p(y_i, T_i, \delta_i) = \int p(y_i \mid b_i) \{ h(T_i \mid b_i)^{\delta_i} S(T_i \mid b_i) \} p(b_i) db_i,$$

where

 $\triangleright b_i$ a vector of random effects that explains the interdependencies $\triangleright p(\cdot)$ density function; $S(\cdot)$ survival function

- Key assumption: Full Conditional Independence ⇒ random effects explain all interdependencies
 - ▷ the longitudinal outcome is independent of the time-to-event outcome
 - b the repeated measurements in the longitudinal outcome are independent of each other

$$p(y_i, T_i, \delta_i \mid b_i) = p(y_i \mid b_i) p(T_i, \delta_i \mid b_i)$$
$$p(y_i \mid b_i) = \prod_j p(y_{ij} \mid b_i)$$

- Under the Bayesian paradigm, both θ and $\{b_i, i = 1, \dots, n\}$ are regarded as parameters
- Inference via the full posterior distribution

$$p(\theta, b \mid T, \delta, y) = \frac{\prod_{i} p(T_{i}, \delta_{i} \mid b_{i}, \theta) \ p(y_{i} \mid b_{i}, \theta) \ p(b_{i}, \theta) \ p(\theta)}{\prod_{i} p(T_{i}, \delta_{i}, y_{i})}$$

$$\propto \prod_{i=1}^{n} \left\{ p(T_i, \delta_i \mid b_i, \theta) \ p(y_i \mid b_i, \theta) \ p(b_i, \theta) \right\} \ p(\theta)$$

- Inference via sampling from the posterior
 - Markov Chain Monte Carlo
 - ▷ Hamiltonian Monte Carlo
- Model comparison: Information Criteria for Predictive Accuracy
 - ▷ Deviance information criterion (DIC)
 - ▷ Watanabe-Akaike information criterion (WAIC)
 - ▷ log pseudo-marginal likelihood (LPML)

• Example: To illustrate the virtues of joint modeling, we compare it with the standard time-dependent Cox model for the AIDS data

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) \\ = \beta_0 + \beta_1 t + \beta_2 \{t \times dd I_i\} + b_{i0} + b_{i1} t + \varepsilon_i(t), \qquad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \end{cases}$$
$$h_i(t) = h_0(t) \exp\{\gamma dd I_i + \alpha m_i(t)\}, \end{cases}$$

	JM	Cox
	\log HR (std.err)	\log HR (std.err)
Treat	0.33(0.2)	$0.31 \ (0.15)$
$CD4^{1/2}$	-0.29(0.04)	-0.19(0.02)

• Clearly, there is a considerable effect of ignoring the measurement error, especially for the CD4 cell counts

• A unit decrease in CD4 $^{1/2}$, results in a

▷ Joint Model: 1.33-fold increase in risk (95% CI: 1.24; 1.43)

- ▷ **Time-Dependent Cox**: 1.21-fold increase in risk (95% CI: 1.16; 1.27)
- Which one to believe?
 - ▷ a lot of theoretical and simulation work has shown that the Cox model underestimates the true association size of endogenous time-varying covariates

R> Joint models are fitted using function jm() from package JMbayes2, e.g.,

CoxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id)</pre>

jointFit <- jm(CoxFit, lmeFit, time_var = "obstime")</pre>

summary(jointFit)

R> The data frame given in lme() should be in the long format, while the data frame given to coxph() should have one line per subject*

 \triangleright the ordering of the subjects needs to be the same

- R> The scale of the time variables in the mixed and Cox models need to be the sameb i.e., both in months, or both in years, etc.
- **R>** Argument time_var specifies the time variable in the linear mixed model

* Unless you want to include exogenous time-varying covariates or handle competing risks

R> Useful functions

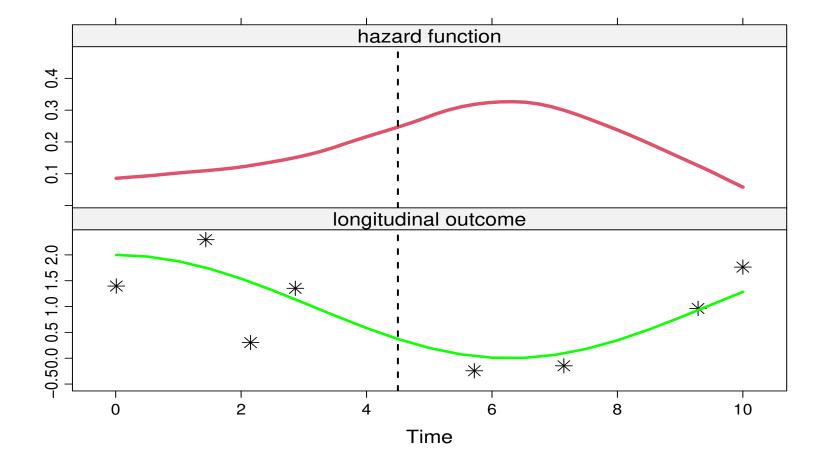
- > summary(): summarizes the fitted model
- > compare_jm(): compares fitted models using DIC and WAIC
- > coef(), fixef(), ranef(): extract estimated coefficients and random effects
- > traceplot() & ggtraceplot: produces traceplots
- > densplot() & ggdensityplot(): produces density plots
- > predict(): calculates predictions

Part IV Joint Model Extensions

• The standard joint model

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$



• The standard joint model

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$

Is this the only option? Is this the most optimal choice?

- <u>Note</u>: Inappropriate modeling of time-varying covariates may result in surprising results
- Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to test the effect of cigarette smoking on survival of patients who underwent coronary artery surgery
 - b the estimated effect of current cigarette smoking was positive on survival although not significant (i.e., patient who smoked had higher probability of survival)
 - b most of those who had died were smokers but many stopped smoking at the last follow-up before their death

We need to carefully consider the functional form of time-varying covariates

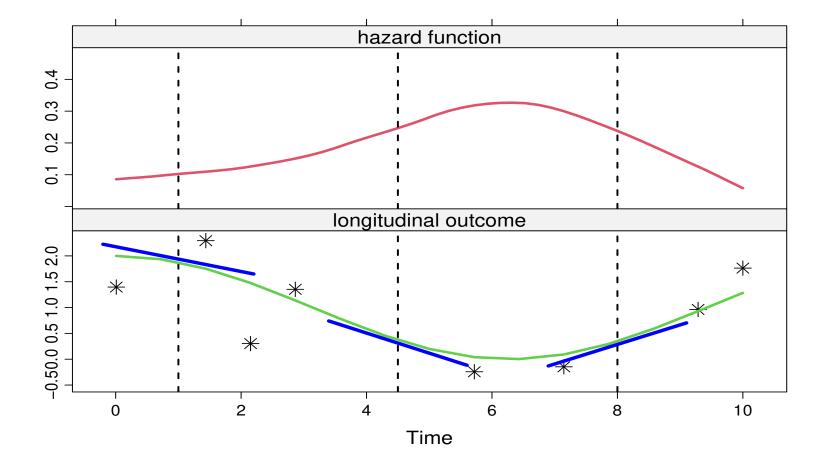
• Let's see some possibilities...

• *Time-dependent Slopes:* The hazard of an event at t is associated with both the current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^{\top} w_i + \alpha_1 m_i(t) + \alpha_2 m'_i(t)\},\$$

where

$$m_i'(t) = \frac{d}{dt} \{ x_i^{\top}(t)\beta + z_i^{\top}(t)b_i \}$$



• The definition of the slope is

$$m'_i(t) = \lim_{\epsilon \to 0} \frac{m_i(t+\epsilon) - m_i(t)}{\epsilon}$$

the change in the longitudinal profile as ϵ approaches zero

- It can be challenging to interpret
 - \triangleright it is the 'current' slope

• *Time-dependent Slopes 2:* The hazard of an event at t is associated with the change of the trajectory the last year:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha \Delta m_i(t)\},\$$

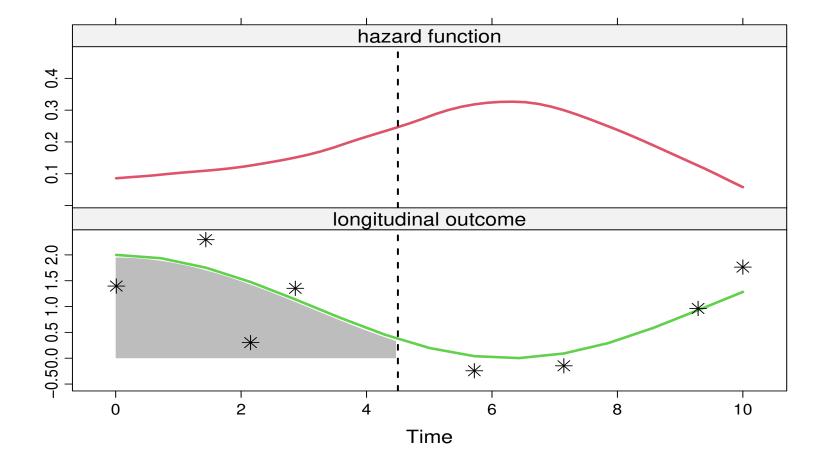
where

$$\Delta m_i(t) = m_i(t) - m_i(t-1)$$

• *Cumulative Effects:* The hazard of an event at t is associated with the whole area under the trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{\gamma^\top w_i + \alpha \int_0^t m_i(s) \ ds\right\}$$

• Area under the longitudinal trajectory taken as a summary of $\mathcal{M}_i(t)$



• *Cumulative Effects 2:* The hazard of an event at t is associated with the whole area under the trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{\gamma^\top w_i + \alpha \frac{\int_0^t m_i(s) \, ds}{t}\right\}$$

• We account for the observation period

R> In JMbayes2 the specification of functional forms is done via the functional_forms argument

▷ e.g., the following code includes the area and slope in the linear predictor, and the interaction of the former with sex

```
jm(CoxFit, lmeFit, time_var = "time",
   functional_forms = ~ area(y) + value(y) + area(y):sex)
```


- R> The area() function calculates the *Cumulative Effects 2* functional form, where the integral is divide by the length of the period
- R> The slope() function can be used for the *Time-dependent Slopes 2* functional form via

slope(..., eps = 1, direction = "back")

- So far we have concentrated on a single continuous longitudinal outcome
- But very often we may have several outcomes we wish to study, some of which could be categorical
- Example: In the PBC dataset we have used serum bilirubin as the most important marker, but during follow-up several other markers have been recorded
 - ▷ serum cholesterol (continuous)

```
▷ edema (3 categories)
```

```
▷ ascites (2 categories)
```

▷...

We need to extend the basic joint model!

- To handle multiple longitudinal outcomes of different types we use Generalized Linear Mixed Models
 - \triangleright We assume Y_{i1}, \ldots, Y_{iJ} for each subject, each one having a distribution in the exponential family, with expected value

$$m_{ij}(t) = E(y_{ij}(t) \mid b_{ij}) = g_j^{-1} \{ x_{ij}^{\top}(t) \beta_j + z_{ij}^{\top}(t) b_{ij} \},\$$

with $g(\cdot)$ denoting a link function

• Correlation between the longitudinal outcomes is captured by assuming a multivariate normal distribution for the random effects

$$b_i = \begin{bmatrix} b_{i1} \\ \vdots \\ b_{iJ} \end{bmatrix} \sim \mathcal{N}(0, D)$$

Two ways to include the longitudinal markers in the survival submodel
 conditional expected value

$$h_i(t) = h_0(t) \exp\{\gamma^{\top} w_i + \sum_{j=1}^J \alpha_j m_{ij}(t)\}$$

▷ or conditional linear predictor

$$\begin{cases} h_i(t) = h_0(t) \exp\left\{\gamma^{\top} w_i + \sum_{j=1}^J \alpha_j \eta_{ij}(t)\right\} \\\\ \eta_{ij} = x_{ij}^{\top}(t) \beta_j + z_{ij}^{\top}(t) b_{ij} \end{cases}$$

- Full Conditional Independence: Given the random effects
 - ▷ the repeated measurements in each outcome are independent,
 - \triangleright the longitudinal outcomes are independent of each other, and
 - Iongitudinal outcomes are independent of the time-to-event outcome

$$p(y_{ij} \mid b_{ij}) = \prod_{k=1}^{n_{ij}} p(y_{ij,k} \mid b_{ij})$$

$$p(y_i \mid b_i) = \prod_j p(y_{ij} \mid b_{ij})$$

$$p(y_i, T_i, \delta_i \mid b_i) = \prod_j p(y_{ij} \mid b_{ij}) p(T_i, \delta_i \mid b_i)$$

- Features of multivariate joint models
 - b using CI is straightforward to extend joint models to multiple longitudinal outcomes of different types
 - ▷ computationally much more intensive due to the high dimensional random effects

- Example: Multivariate joint model for the PBC dataset
 - ▷ log(ser Bilir): linear mixed-effects model
 - * fixed effects: intercept and linear time effect
 - * random effects: intercept and linear time effect
 - > spiders: mixed-effects logistic regression model
 - * fixed effects: intercept and linear time effect
 - * random effects: intercept

▷ time-to-death: relative risk model

* baseline covariates: drug and age

* Analysis I: conditional linear predictor

* Analysis II: conditional expected value

• Analysis I: conditional linear predictor

	Value	Std.Dev.	2.5%	97.5%
D-penicil	-0.071	0.234	-0.530	0.373
Age	0.064	0.009	0.046	0.082
value(logSB)	1.317	0.108	1.111	1.531
value(spiders)	0.070	0.048	-0.024	0.167

• Analysis II: conditional expected value

	Value	Std.Dev.	2.5%	97.5%
D-penicil	-0.080	0.234	-0.545	0.373
Age	0.063	0.009	0.045	0.081
value(logSB)	1.326	0.109	1.113	1.540
expit(value(spiders))	0.458	0.347	-0.228	1.134

R> To fit a multivariate joint model in **JMbayes2** we need first to fit a series of univariate mixed models.

▷ for non-Gaussian longitudinal data we use **GLMMadaptive**

• Arguments of mixed_model()

▷ **fixed**: formula for the response outcome and fixed effects

- ▷ random: formula for random effects
- > family: distribution of longitudinal outcome

 \triangleright data: dataset

- R> To fit a multivariate joint model, we use jm() as before but we now provide a list() of mixed models
 - ▷ an example for the PBC dataset using serum bilirubin (continuous) and spiders (binary)

```
lmmFit <- lme(log(serBilir) ~ year, data = pbc2, random = ~ year | id)</pre>
```

```
CoxFit <- coxph(Surv(years, status2) ~ drug + age, data = pbc2.id)</pre>
```

```
jm(CoxFit, list(lmmFit, melrFit), time_var = "year")
```


- **R>** The default in jm() is to include the conditional linear predictor $\eta_{ij}(t)$ in the survival submodel
 - b to include the conditional expected value, we can use the functional_forms
 argument, e.g.,

```
jm(CoxFit, list(lmmFit, melrFit), time_var = "year",
  functional_forms = ~ value(log(serBilir)) +
        vexpit(value(spiders)),
  n_iter = 20000L, n_burnin = 10000L)
```


R> Function jm() allows for various types of mixed models

▷ continuous: Student's t, beta, gamma, censored normal

▷ categorical: binomial, Poisson, negative binomial, beta binomial

For more info see $https://drizopoulos.github.io/JMbayes2/ \rightarrow Articles \rightarrow Non-Gaussian Mixed Models$

- Often multiple failure times are recorded
- **Competing risks:** Occurrence of one event either
 - \triangleright precludes the occurrence of other events or
 - > substantially alters the probability of observing the other events

- Example: In the PBC dataset \Rightarrow competing risks
 - ▷ some patients received a liver transplantation
 - ▷ so far we have used the composite event, i.e. death or transplantation whatever comes first
 - b when interest only is on one type of event, the other should be considered as a competing risk
- Example: In HIV studies
 - \triangleright death while in care
 - ▷ disengagement from care

- Example: Alzheimer's disease studies
 - \triangleright dementia
 - ▷ death without dementia

- In principle, competing-risk data can be analyzed through either
 - ▷ cause-specific hazards
 - ▷ cumulative incidence functions (CIFs)

• Let

 $\triangleright T_i^* = \min(T_{i1}^*, \dots, T_{iK}^*) \text{ be the survival time}$ $\triangleright \delta_i^* \in \{1, \dots, K\} \text{ be the failure cause}$

• **Cause-specific hazards**: the rate of failure from a particular cause at a specific time point given that the individual has survived up to that point:

$$h_{ik}(t) = \lim_{dt \to 0} \frac{P(t < T_i^* \le t + dt, \delta_i^* = k \mid T_i^* > t)}{dt}$$

• Proportional cause-specific hazards are usually applied in practice

$$h_{ik}(t) = h_{0k}(t) \exp(x_{ik}^{\top} \beta_k)$$

where

 $\triangleright x_{ik}$ baseline covariates (possibly cause-specific)

 $\triangleright \beta_k \log$ cause-specific hazard ratios

• If right-censoring occurs

 $\triangleright T_i = \min(T_{i1}^*, \dots, T_{iK}^*, C_i)$, with C_i denoting the censoring time $\triangleright \delta_i \in \{0, 1, \dots, K\}$, with 0 corresponding to censoring

• The likelihood becomes a product over failure causes

$$p(T_i, \delta_i) = \prod_{k=1}^{K} h_{ik}(T_i)^{I(\delta_i = k)} \exp\left\{-\sum_{k=1}^{K} \int_0^{T_i} h_{ik}(u) du\right\}$$

Standard (e.g., Cox) models for each cause can be fitted separately by treating the other failure causes as non-informative right censoring!

R> To fit cause-specific hazard models, e.g., through coxph(), we just treat events from other causes as right-censored

Death

CoxFitDeath <- coxph(Surv(years, status == "dead") ~ drug + age, data = pbc2.id)
n= 312, number of events= 140</pre>

coef exp(coef)se(coef)z Pr(>|z|)drugD-penicil -0.1620710.8503800.172501-0.9400.347age0.0457181.0467800.0084875.3877.16e-08 ***

R> To fit cause-specific hazard models, e.g., through coxph(), we just treat events from other causes as right-censored

Transplantation

The effect of age has an opposite direction!

Cumulative incidence function (CIF) The probability of occurrence of a specific cause over time

$$F_{ik}(t) = \Pr(T_i^* \le t, \delta_i^* = k) = \int_0^t h_{ik}(u) \exp\left\{-\sum_{k=1}^K \int_0^u h_{ik}(s) \, ds\right\} \, du$$

- Complex function of cause-specific hazards
- Semi-parametric modeling of sub-distribution hazards, $\lambda_{ik}(t)$, proposed by Fine & Gray (1999) is typically performed for the event of interest as

$$F_{ik}(t) = 1 - \exp\left\{-\int_0^t \lambda_{ik}(u)du\right\}$$

there is an 1-1 relationship between $F_{ik}(t)$ and $\lambda_{ik}(t)$

R> Proportional sub-distribution hazard models, for each event type, can be fitted through function crr() of package cmprsk

 \triangleright For <u>death</u>

- Aetiological-type research questions \rightarrow cause-specific hazards
- \bullet Prognosis of a disease and prediction purposes \rightarrow CIF

- Most of the research in joint modeling was initially focused on a single event
- Joint modeling of longitudinal data and competing-risk survival data has also gained attention
- Example: In the PBC dataset \Rightarrow competing risks

⊳ death

▷ liver transplantation

• Joint models with competing risks:

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) = x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \\ h_i^d(t) = h_0^d(t)\exp\{\gamma_d^{\top}w_i + \alpha_d m_i(t)\}, \\ h_i^{tr}(t) = h_0^{tr}(t)\exp\{\gamma_{tr}^{\top}w_i + \alpha_{tr} m_i(t)\}, \end{cases}$$

where

$$> h_i^d(t)$$
 hazard function for death
 $> h_i^{tr}(t)$ hazard function for transplantation

• When two markers are used:

$$\begin{aligned} y_{i1}(t) &= m_{i1}(t) + \varepsilon_{i1}(t) = x_{i1}^{\top}(t)\beta_1 + z_{i1}^{\top}(t)b_{i1} + \varepsilon_{i1}(t), \\ y_{i2}(t) &= m_{i2}(t) + \varepsilon_{i2}(t) = x_{i2}^{\top}(t)\beta_2 + z_{i2}^{\top}(t)b_{i2} + \varepsilon_{i2}(t), \\ h_i^d(t) &= h_0^d(t)\exp\{\gamma_d^{\top}w_i + \alpha_{d1}m_{i1}(t) + \alpha_{d2}m_{i2}(t)\}, \\ h_i^{tr}(t) &= h_0^{tr}(t)\exp\{\gamma_{tr}^{\top}w_i + \alpha_{tr1}m_{i1}(t) + \alpha_{tr2}m_{i2}(t)\}, \end{aligned}$$

• In the estimation, the only difference is in the construction of the likelihood part for the event process

$$p(T_i, \delta_i \mid b_i; \theta) = \prod_{k=1}^K \left[h_{0k}(T_i) \exp\{\gamma_k^\top w_i + \alpha_k m_i(T_i)\} \right]^{I(\delta_i = k)}$$
$$\times \exp\left(-\sum_{k=1}^K \int_0^{T_i} h_{0k}(s) \exp\{\gamma_k^\top w_i + \alpha_k m_i(s)\} \ ds\right),$$

with

 $\triangleright T_i = \min(T_{i1}^*, \ldots, T_{iK}^*, C_i)$, with C_i denoting the censoring time $\triangleright \delta_i \in \{0, 1, \ldots, K\}$, with 0 corresponding to censoring

• This is different than in standard Cox models

We cannot fit a cause-specific hazard joint model by treating events from other causes as censored!

- Example: Competing risks analysis for the PBC dataset
 - ⊳ log(ser Bilir): linear mixed-effects model
 - * fixed effects: intercept, drug, linear time, interaction drug with time
 - * random effects: intercept and linear time
 - b time to death or transplantation: relative risk model
 - * competing risks: transplantation and death
 - * baseline covariates: drug *different* per competing risk
 - * time-varying: current value log ser Bilir *different* per competing risk

	Value	Std.Dev.	2.5%	97.5%
D-penicil	-0.439	0.522	-1.472	0.555
D-penicil:dead	0.528	0.529	-0.490	1.596
value(logSB)	1.266	0.180	0.941	1.615
value(logSB):dead	-0.014	0.183	-0.372	0.305

R> Function jm() can fit joint models with competing risks

First, the survival data have to be prepared in the competing risks long format using function crisk_setup(), e.g.,

pbc2.id[pbc2.id\$id %in% c(1,2,5), c("id", "years", "status")]

	id	years	status
1	1	1.095170	dead
2	2	14.152338	alive
5	5	4.120578	transplanted

	id	years	status	CR	status2
1	1	1.095170	dead	dead	1
1.1	1	1.095170	dead	transplanted	0
2	2	14.152338	alive	dead	0
2.1	2	14.152338	alive	transplanted	0
5	5	4.120578	transplanted	dead	0
5.1	5	4.120578	transplanted	transplanted	1

R> To fit the joint model, we first fit the linear mixed and relative risk models as before
 ▷ for the latter we use the data in the competing risks long and put the event-type variable as strata

R> Then the joint model is fitted with the code

```
jm(CoxFit_CR, lmeFit_CR, time_var = "year",
functional_forms = ~ value(log(serBilir)):CR)
```

For more info see https://drizopoulos.github.io/JMbayes2/ \rightarrow Articles \rightarrow Competing Risks

R> Function jm() can also fit joint models with multi-state processes

- b this requires an analogous construction of a long dataset for multi-state models, and
- ▷ fitting a stratified Cox model

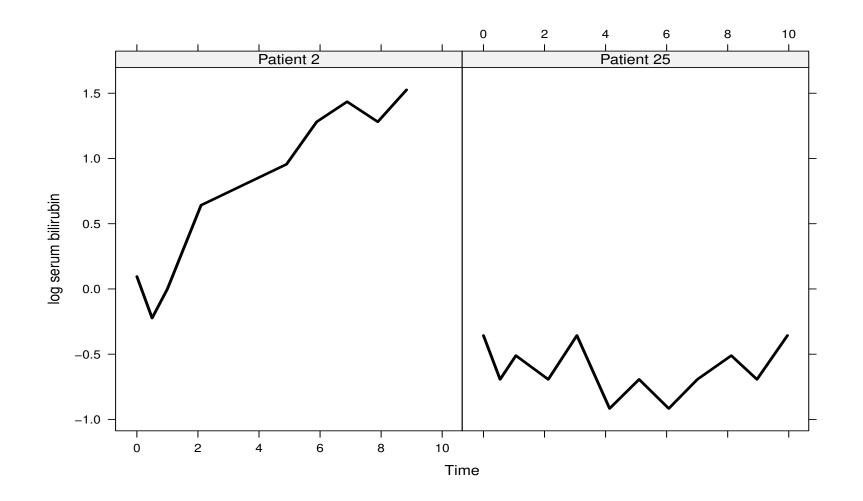
For more info see https://drizopoulos.github.io/JMbayes2/ → Articles → Multi-State Processes

Part V Dynamic Predictions

- Nowadays there is great interest for prognostic models and their application to personalized medicine
- Examples are numerous
 - ▷ cancer research, cardiovascular diseases, HIV research, ...

Physicians are interested in accurate prognostic tools to facilitate medical decision-making

- We want to obtain survival probabilities for a new patient j with longitudinal measurements up to time t
- Example: Patients 2 and 25 from the PBC dataset have 9 and 12 serum bilirubin measurements, respectively
 - Dynamic Prediction survival probabilities are dynamically updated as additional longitudinal information is recorded
- We need to account for the endogenous nature of the covariate
 - \triangleright providing measurements up to time point $t \Rightarrow$ the patient was still alive at time t



 \bullet For a new subject j, we have available measurements up to t

$$\mathcal{Y}_j(t) = \{y_j(s), 0 \le s \le t\}$$

and we are interested in

$$\pi_j(u \mid t) = \mathsf{Pr}\big\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\big\},\$$

where

 \triangleright where u > t

 $\triangleright \mathcal{D}_n$ denotes the training sample

- We assume that the joint model has been fitted to the data at hand
- Based on the fitted model, we can estimate the conditional survival probabilities (Rizopoulos, 2011, Biometrics)

- It is convenient to proceed using a Bayesian formulation of the problem $\Rightarrow \pi_j(u \mid t)$ can be written as

$$\mathsf{Pr}\big\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\big\} = \int \mathsf{Pr}\big\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \theta\big\} \ p(\theta \mid \mathcal{D}_n) \ d\theta$$

• The first part of the integrand takes the form

$$\Pr\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \theta\} =$$
$$= \int \frac{S_j\{u \mid \mathcal{M}_j(u, \mathbf{b}_j, \theta), \theta\}}{S_j\{t \mid \mathcal{M}_j(t, \mathbf{b}_j, \theta), \theta\}} p(\mathbf{b}_j \mid T_j^* > t, \mathcal{Y}_j(t), \theta) \ db_j$$

• A Monte Carlo estimate of $\pi_j(u \mid t)$ can be obtained using the following simulation scheme:

Step 1. draw $\theta^{(\ell)} \sim [\theta \mid \mathcal{D}_n]$

Step 2. draw $b_j^{(\ell)} \sim [b_j \mid T_j^* > t, \mathcal{Y}_j(t), \theta^{(\ell)}]$

Step 3. compute $\pi_j^{(\ell)}(u \mid t) = S_j \{ u \mid \mathcal{M}_j(u, \mathbf{b}_j^{(\ell)}, \boldsymbol{\theta}^{(\ell)}), \boldsymbol{\theta}^{(\ell)} \} / S_j \{ t \mid \mathcal{M}_j(t, \mathbf{b}_j^{(\ell)}, \boldsymbol{\theta}^{(\ell)}), \boldsymbol{\theta}^{(\ell)} \}$

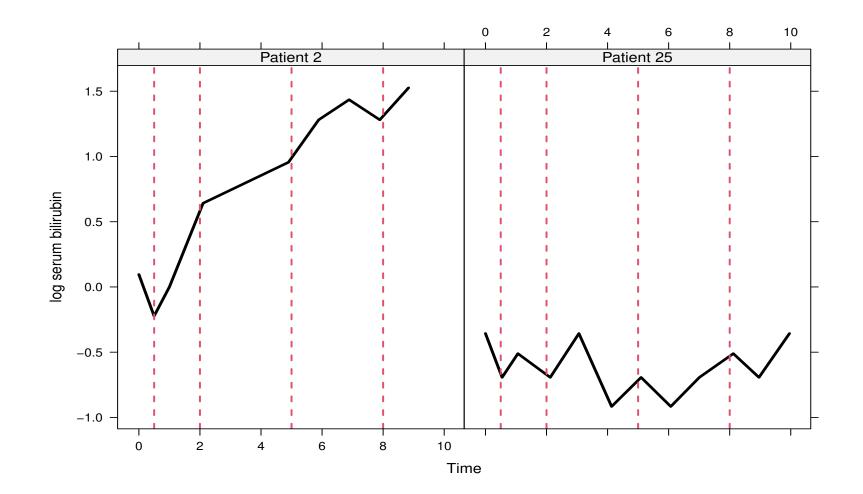
• Repeat Steps 1–3, $\ell = 1, \ldots, L$ times, where L denotes the number of Monte Carlo samples

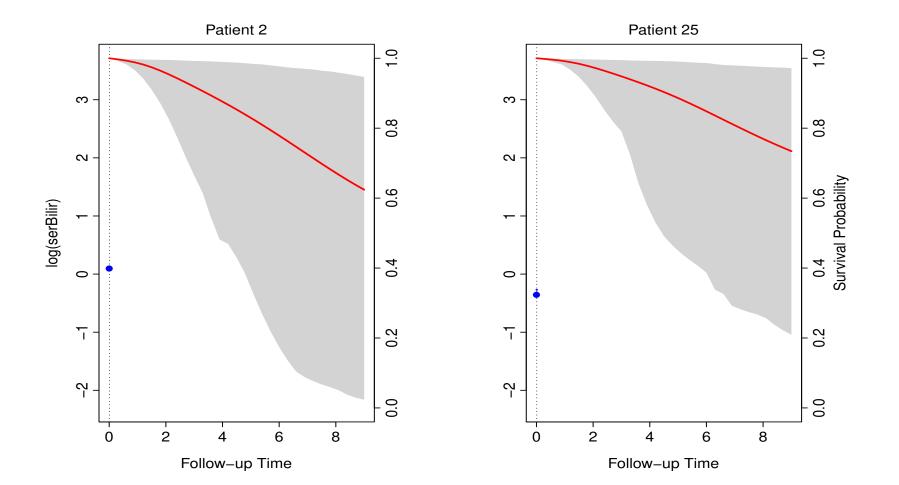
- Example: Dynamic predictions of survival probabilities for Patients 2 & 25 from the PBC dataset: We fit the joint model
- Longitudinal submodel
 - ▷ fixed effects: intercept & natural cubic splines of time with 3 d.f., sex, and interaction of the time effect with sex
 - ▷ random effects: intercept, natural cubic splines of time with 3 d.f.
- Survival submodel
 - \triangleright sex effect + *underlying* serum bilirubin level

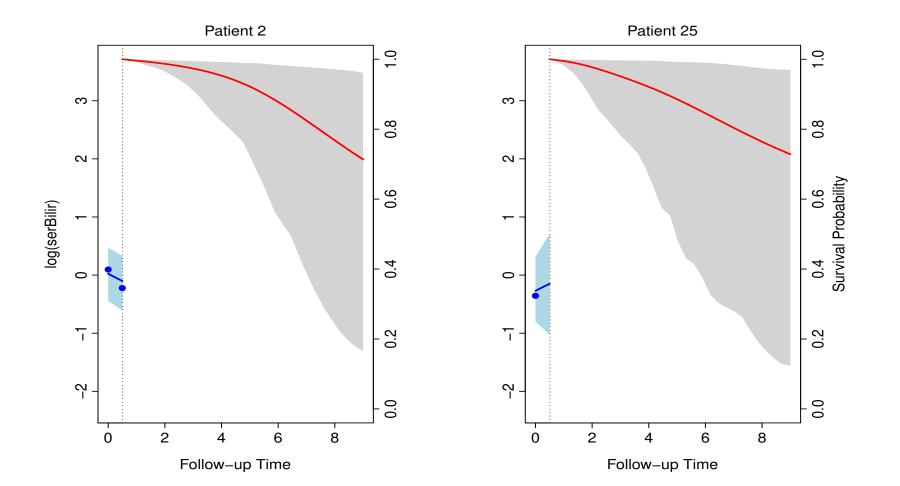
- Based on the fitted joint model we estimate $\pi_j(u \mid t)$ for Patients 2 and 25
- We use 500 Monte Carlo samples, and we took as estimate

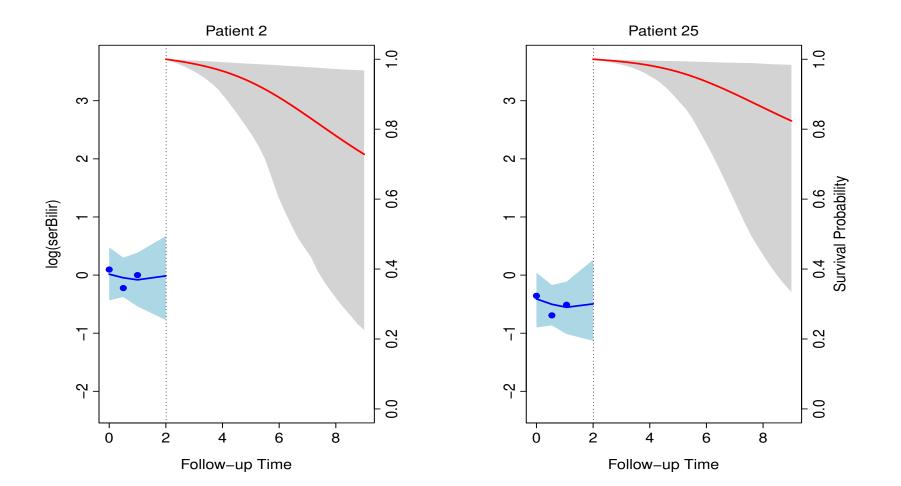
$$\hat{\pi}_j(u \mid t) = \text{mean}\{\pi_j^{(\ell)}(u \mid t), \ell = 1, \dots, L\}$$

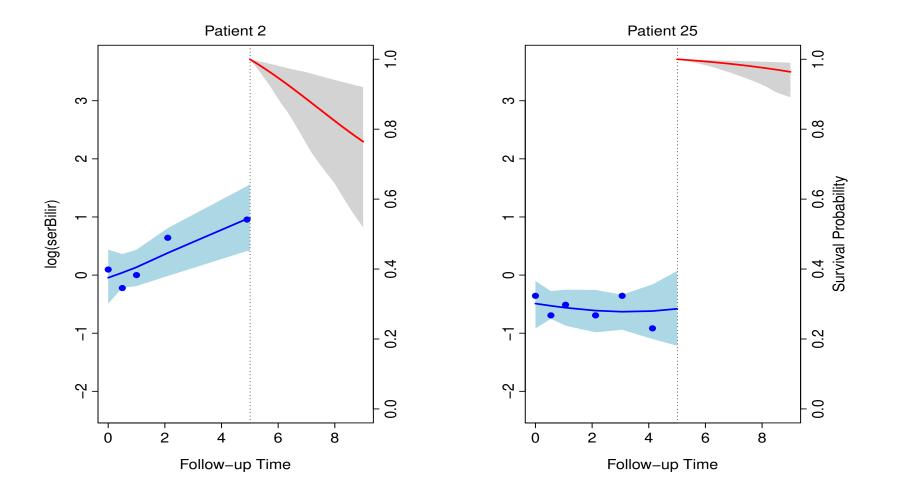
and calculated a corresponding 95% pointwise CIs

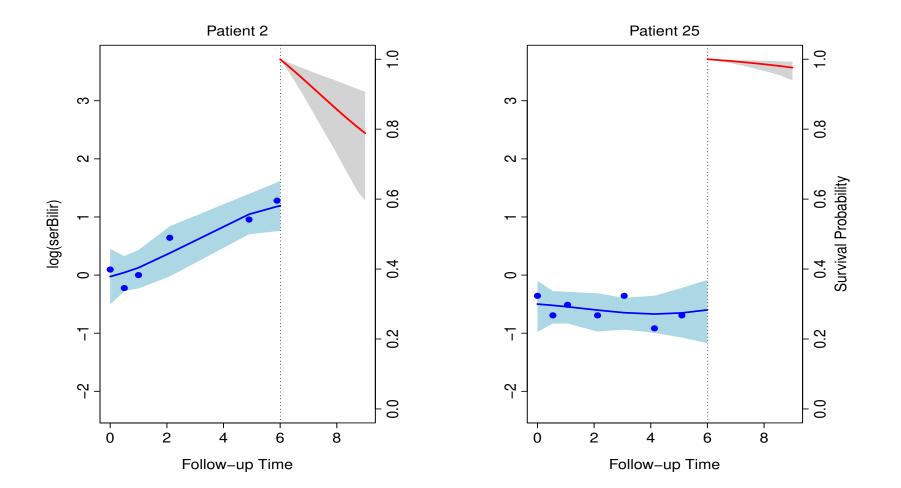


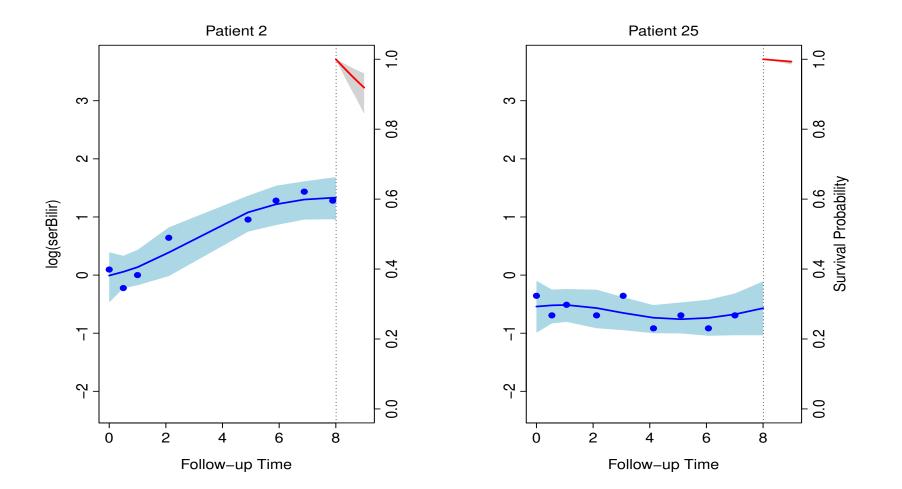












R> Individualized predictions of survival probabilities are computed by function predict() – for example, for Patient 2 from the PBC dataset we have

sfit

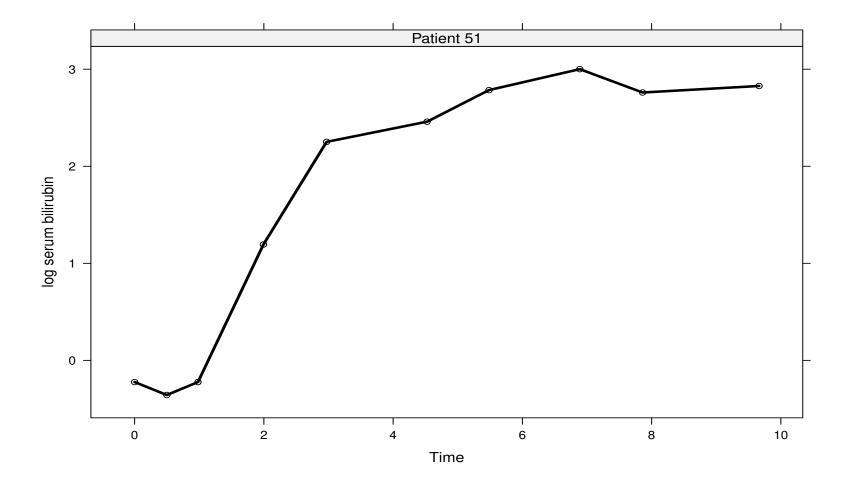
plot(sfit)

• All previous predictions were based on the standard joint model

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$

- We have seen earlier that there are several alternative functional forms (see Section 5.1)
- Relevant questions:
 - ▷ Does the assumed functional form affect predictions?
 - ▷ Which functional form is the most optimal?
- Example: We compare predictions for the longitudinal and survival outcomes under different parameterizations for Patient 51 from the PBC study



- Predictions based on five joint models for the PBC dataset
 - \triangleright the same longitudinal submodel as before, and
 - \triangleright relative risk submodels:

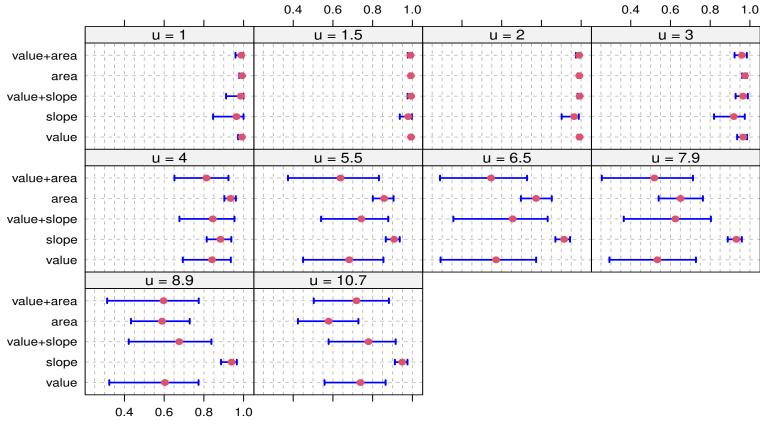
 $h_i(t) = h_0(t) \exp\{\gamma \mathsf{D}-\mathsf{pnc}_i + \alpha_1 m_i(t)\},\$

$$h_i(t) = h_0(t) \exp\{\gamma \mathbf{D} - \mathbf{pnc}_i + \alpha_2 m'_i(t)\},\$$

$$h_i(t) = h_0(t) \exp\{\gamma \mathtt{D-pnc}_i + \alpha_1 m_i(t) + \alpha_2 m'_i(t)\}$$

$$h_i(t) = h_0(t) \exp\left\{\gamma \mathsf{D-pnc}_i + \alpha_3 \frac{\int_0^t m_i(s) ds}{t}\right\},\$$

$$h_i(t) = h_0(t) \exp\left\{\gamma \mathsf{D-pnc}_i + \alpha_1 m_i(t) + \alpha_3 \frac{\int_0^t m_i(s) ds}{t}\right\},\$$



1yr-window Predictions

Survival Probability

The chosen functional form can influence the derived predictions

• We compare the models using the information criteria

	DIC	WAIC	LPML
area	4276.422	4568.705	-2713.276
value	4261.051	4574.446	-2763.496
value + area	4268.458	4604.367	-2639.927
value + slope	4274.964	4644.614	-2666.901
slope	4519.831	4891.027	-2896.365

• We continue with the area functional form

- We have seen how to calculate predictions of conditional survival probabilities
 b however, to use these predictions in practice we need to evaluate their accuracy
- Predictive accuracy measures
 - \triangleright Discrimination: sensitivity, specificity, ROC and AUC
 - > Calibration: comparison between predicted and observed probabilities
 - ▷ Overall: combination of discrimination and calibration

• To assess the discriminative power of the model, we assume the following setting \triangleright using the available longitudinal data up to time t,

 \triangleright we are interested in events occurring in a medically-relevant interval $(t, t + \Delta t]$

• Based on the fitted joint model and for a particular threshold value $c \in [0, 1]$, we can term subject j a **case** if

 $\pi_j(t + \Delta t \mid t) \le c$

• Following, we can define sensitivity

$$\mathsf{SN}_t^{\Delta t}(c) = \Pr\{\pi_j(t + \Delta t \mid t) \le c \mid T_j^* \in (t, t + \Delta t]\},\$$

specificity

$$\mathsf{SP}_t^{\Delta t}(c) = \Pr\{\pi_j(t + \Delta t \mid t) > c \mid T_j^* > t + \Delta t\},\$$

and the corresponding $\ensuremath{\mathsf{AUC}}$

$$\mathsf{AUC}_t^{\Delta t} = \Pr\left[\pi_i(t + \Delta t \mid t) < \pi_j(t + \Delta t \mid t) \mid \{T_i^* \in (t, t + \Delta t]\} \cap \{T_j^* > t + \Delta t\}\right]$$

- To estimate the sensitivity, specificity and the AUC, we need to account for censoring
- Two main approaches
 - ▷ model-based weights
 - inverse probability of censoring weighting (IPCW)
 (using Kaplan-Meier or other non-parametric estimators)

• IPCW

> *Advantage:* it provides unbiased estimates even when the model is misspecified

▷ *Disadvantage:* it requires that the model for the weights is correct

* in settings where joint models are used, challenging because censoring may depend on the longitudinal outcomes in a complex manner

- Model-based Weights
 - Advantage: it allows censoring to depend on the longitudinal history (in any possible manner)
 - > *Disadvantage:* it requires that the model is well calibrated

Because censoring often depends on the longitudinal history, we opt for model-based weights

• For the $\mathcal{R}(t)$ subjects at risk at time t (i.e., $T_i > t$), sensitivity is estimated as

$$\widehat{\mathsf{SN}}_{t}^{\Delta t}(c) = \frac{\sum_{i:T_{i} \ge t} I\{\widehat{\pi}_{i}(t + \Delta t \mid t) \le c\} \times \Omega_{i}}{\sum_{i:T_{i} \ge t} \Omega_{i}},$$

where

$$\Omega_i = \begin{cases} 1, & \text{if } T_i \leq t + \Delta t \text{ and } \delta_i = 1\\ 1 - \hat{\pi}_i (t + \Delta t \mid T_i), & \text{if } T_i \leq t + \Delta t \text{ and } \delta_i = 0 \end{cases}$$

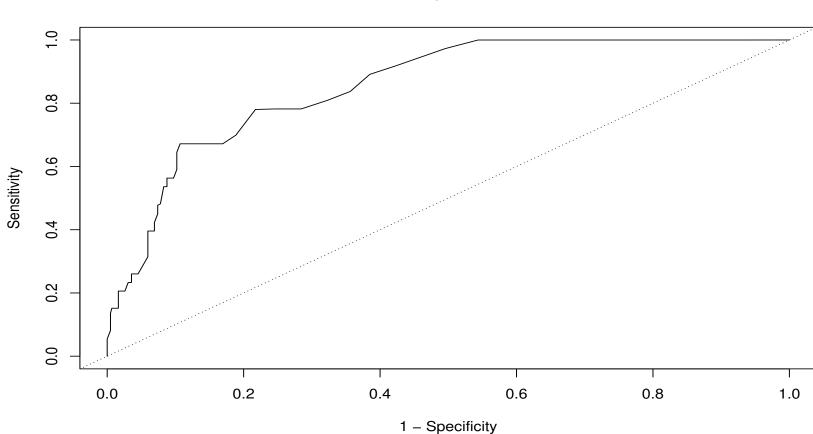
• And specificity as

$$\widehat{\mathsf{SP}}_{t}^{\Delta t}(c) = \frac{\sum_{i:T_{i} \ge t} I\{\widehat{\pi}_{i}(t + \Delta t \mid t) > c\} \times \Phi_{i}}{\sum_{i:T_{i} \ge t} \Phi_{i}},$$

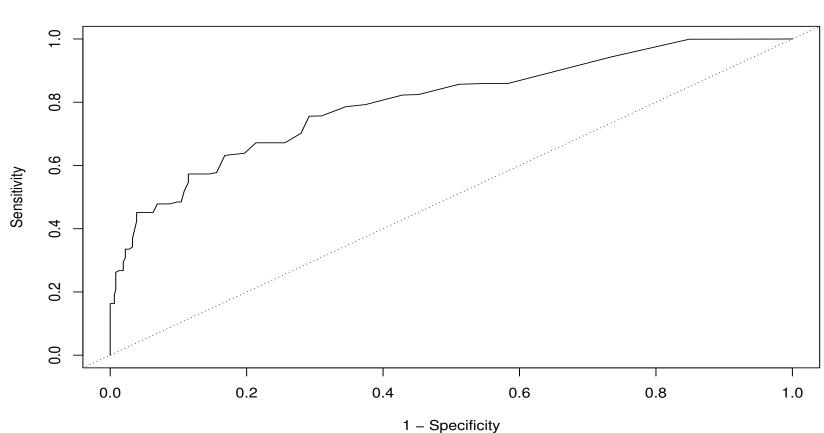
where

$$\Phi_i = \begin{cases} 1, & \text{if } T_i > t + \Delta t \\ \hat{\pi}_i(t + \Delta t \mid T_i), & \text{if } T_i \leq t + \Delta t \text{ and } \delta_i = 0 \end{cases}$$

- Example: For the joint model fitted to the PBC dataset we have seen earlier
 we estimate dynamic sensitivity, specificity and the ROC curve
 at follow-up times t = 3, 5, and 7
 - \triangleright for $\Delta t = 2$

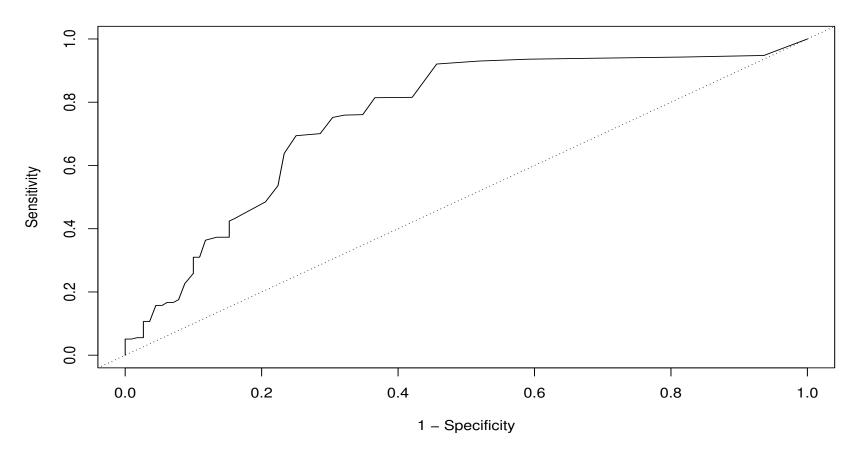


 $t = 3, \Delta t = 2$



 $t = 5, \Delta t = 2$

 $t = 7, \Delta t = 2$



• The corresponding AUCs are

Time	AUC	
t = 3	0.86	
t=5	0.80	
t=7	0.76	

R> For a fitted joint model, we calculate the ROC curve and the corresponding AUC with the syntax

```
# model-based weights
roc <- tvROC(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)</pre>
```

roc

plot(roc)

tvAUC(roc)

- We have covered *discrimination*
 - calibration assessed via calibration plots
- In standard survival analysis there are measures that combine the two concepts into one metric
 - ▷ the most-well know measure that achieves that is the *Brier score*

- In the joint modeling framework, we need to take into account the dynamic nature of the longitudinal marker
- The expected quadratic error of prediction (Brier score) has the form

$$\mathsf{PE}(t + \Delta t \mid t) = E\left[\{N_i(t + \Delta t) - \pi_i(t + \Delta t \mid t)\}^2\right]$$

where

$$\triangleright N_i(t) = I(T_i^* > t)$$
 is the "true" event status at time t

• An estimator for $\mathsf{PE}(t+\Delta t \mid t)$ that accounts for censoring

$$\begin{aligned} \widehat{\mathsf{PE}}(t + \Delta t \mid t) &= \{\mathcal{R}(t)\}^{-1} \sum_{i:T_i \ge t} I(t + \Delta t > u) \{1 - \hat{\pi}_i(t + \Delta t \mid t)\}^2 \\ &+ \delta_i I(T_i < t + \Delta t) \{0 - \hat{\pi}_i(t + \Delta t \mid t)\}^2 \\ &+ (1 - \delta_i) I(T_i < t + \Delta t) \left[\hat{\pi}_i(t + \Delta t \mid T_i) \{1 - \hat{\pi}_i(t + \Delta t \mid t)\}^2 \\ &+ \{1 - \hat{\pi}_i(t + \Delta t \mid T_i)\} \{0 - \hat{\pi}_i(t + \Delta t \mid t)\}^2 \right] \end{aligned}$$

where

- $\triangleright \mathcal{R}(t)$ denotes the number of subjects at risk at t
- \triangleright red part: subjects still event-free at $t + \Delta t$

 \triangleright blue part: subjects who had the event before $t+\Delta t$

 \triangleright green part: subject censored before $t + \Delta t$

- The weights used to account for censoring are model-based
 - ▷ censoring is allowed to depend on the longitudinal history in any possible manner
 - \triangleright the model needs to be well specified

- Example: For the joint model fitted to the PBC dataset we have seen earlier
 > we estimate the dynamic Brier score
 - \triangleright at follow-up times t = 3, 5, and 7

 \triangleright for $\Delta t = 2$

• The estimated Brier scores are

Time	Brier Score
t = 3	0.10
t=5	0.11
t = 7	0.12

R> For a fitted joint model, we calculate the time-varying Brier score with the syntax

```
# model-based weights
predErr <- tvBrier(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)</pre>
```

predErr

- We have presented dynamic predictions for a single longitudinal outcome and one event
- Extensions:
 - ▷ multiple longitudinal outcomes
 - \triangleright competing risks

How can we account for the above?

• Suppose that for a new subject j, we have measurements from I multiple longitudinal outcomes up to time point t. The data for the ith marker

$$\mathcal{Y}_{ji}(t) = \{ y_{ji}(t_{jik}); 0 \le t_{jik} \le t, k = 1, 2, \dots, n_{ji} \}$$

with $\mathcal{Y}_j(t) = \{\mathcal{Y}_{j1}(t), \dots, \mathcal{Y}_{jI}(t)\}$

• In the competing risk setting we are interested in predicting the cause-specific **cumulative incidence probabilities**

$$\Pr\left\{t < T_j^* \le t + \Delta t, \delta_j^* = k \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\right\}$$

for k = 1, 2, ..., K.

• Similarly to the single event case, to account for variability in the model parameters

$$\Pr\left\{t < T_j^* \le t + \Delta t, \delta_j^* = k \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\right\}$$
$$= \int \Pr\left\{t < T_j^* \le t + \Delta t, \delta_j^* = k \mid T_j^* > t, \mathcal{Y}_j(t); \theta\right\} p(\theta \mid \mathcal{D}_n) d\theta$$

• The first part of the integrand is the cumulative incidence (risk) for the kth event given that the individual is event-free at time t

$$F_{kj}(t + \Delta t \mid t) = \Pr\left\{t < T_j^* \le t + \Delta t, \delta_j^* = k \mid T_j^* > t, \mathcal{Y}_j(t); \theta\right\} = \int \Pr\left\{t < T_j^* \le t + \Delta t, \delta_j^* = k \mid T_j^* > t, \mathcal{Y}_j(t), b_j; \theta\right\} p\{b_j \mid T_j^* > t, \mathcal{Y}_j(t); \theta\} db_j$$

where b_j represents the random effects for all longitudinal markers.

• A Monte Carlo estimate of $F_{kj}(t + \Delta t \mid t)$ can be obtained using the following simulation scheme:

Step 1. draw $\theta^{(l)} \sim [\theta \mid \mathcal{D}_n]$

Step 2. draw $b_j^{(l)} \sim [b_j \mid T_j^* > t, \mathcal{Y}_j(t); \theta]$

Step 3. compute

$$F_{kj}^{(l)}(t + \Delta t \mid t) = \Pr\left\{t < T_j^* \le t + \Delta t, \delta_j^* = k \mid T_j^* > t, \mathcal{Y}_j(t), \boldsymbol{b}_j^{(l)}; \boldsymbol{\theta}^{(l)}\right\}$$

• Repeat Steps 1-3, l = 1, ..., L times, where L denotes the number of Monte Carlo samples.

- Example: Dynamic predictions of survival probabilities for Patient 2 from the PBC dataset
- Longitudinal submodels
 - ⊳ log(ser Bilir)
 - * fixed effects: intercept, drug, linear and squared time, and interactions of linear and square time with drug
 - * random effects: intercept and linear and squared time
 - \triangleright prothrombin
 - * fixed effects: intercept, drug, linear time, interaction of time with drug
 - * random effects: intercept and linear and squared time

- Example: Dynamic predictions of survival probabilities for Patient 2 from the PBC dataset
- time to death or transplantation: relative risk model
 - ▷ competing risks: transplantation and death
 - ▷ baseline covariates: drug and age *different* per competing risk
 - b time-varying: current value log(ser Bilir) and prothrombin different per competing
 risk

R> Function jm() can fit joint models with multiple longitudinal outcomes and competing risks, with the survival data prepared in the competing risks long format using function crisk_setup(), e.g.,

pbc2.id[pbc2.id\$id %in% c(1,2,5), c("id", "years", "status")]

status	years	id	
dead	1.095170	1	1
alive	14.152338	2	2
transplanted	4.120578	5	5

	id	years	status	CR	status2
1	1	1.095170	dead	dead	1
1.1	1	1.095170	dead	transplanted	0
2	2	14.152338	alive	dead	0
2.1	2	14.152338	alive	transplanted	0
5	5	4.120578	transplanted	dead	0
5.1	5	4.120578	transplanted	transplanted	1

R> For the competing risk model we use the data in the competing risks long format and put the event-type variable CR as strata

R> We can create a list() for functional_forms for each longitudinal outcome to ensure an interaction with the event-type variable

```
# Functional forms
CR_forms <- list(
    "log(serBilir)" = ~ value(log(serBilir)):CR,
    "prothrombin" = ~ value(prothrombin):CR
)</pre>
```


R> We then fit two linear mixed models for log(ser Bilir) and prothrombin

R> The model is fitted using the code

```
# Fit the competing risk joint model
jFit_CR <- jm(CoxFit_CR, list(fm1, fm2), time_var = "year",
    functional_forms = CR_forms,
    n_iter = 25000L, n_burnin = 5000L, n_thin = 5L)</pre>
```


- R> Individualized predictions of survival probabilities are computed by function predict().
- R> In contrast to the case with a single event, two datasets (with longitudinal and event information, respectively) are required in a named list(). For example, for Patient 2 from the PBC dataset we have

```
ND_long <- pbc2[pbc2$id == 2, ]
ND_event <- pbc2.idCR[pbc2.idCR$id == 2, ]</pre>
```

```
ND <- list(newdataL = ND_long, newdataE = ND_event)
```

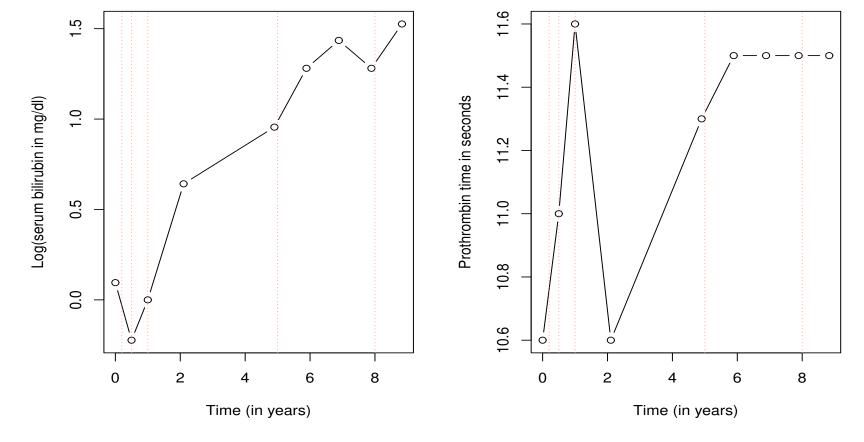

- R> Two datasets (with longitudinal and event information, respectively) are required in a named list(). For example, for Patient 2 from the PBC dataset we have
- R> plot() is used to depict the evolution of the longitudinal outcomes and the cumulative risk probabilities of the competing risks

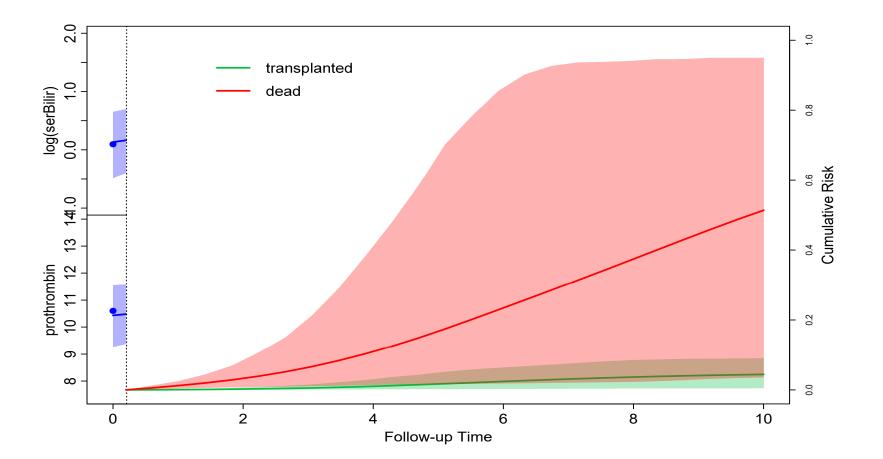
plot(predLong, predEvent, outcomes = 1:2)

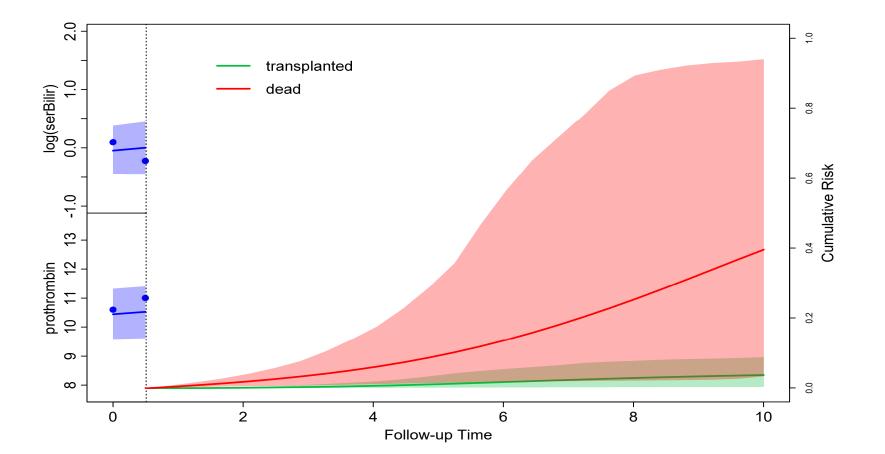
- Based on the fitted joint model we estimate $F_{kj}(t + \Delta t \mid t)$ for Patient 2
- We use 500 Monte Carlo samples, and we took as estimate

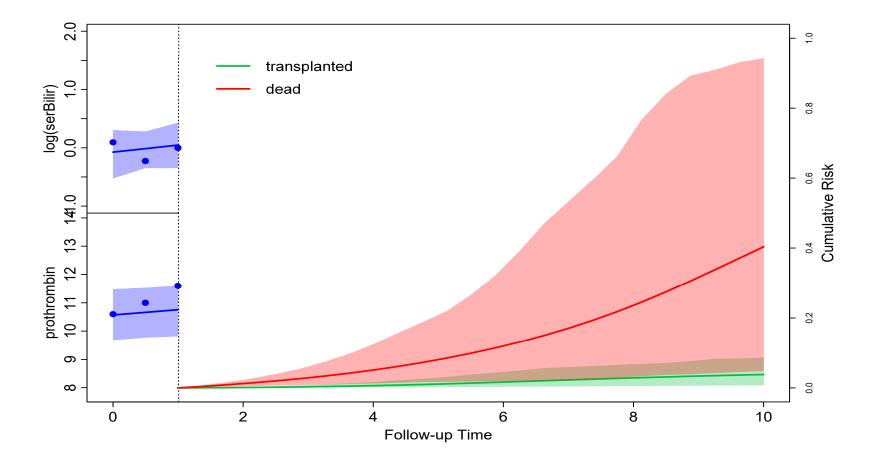
$$\hat{F}_{kj}(t + \Delta t \mid t) = \frac{1}{L} \sum_{l=1}^{L} F_{kj}^{(l)}(t + \Delta t \mid t)$$

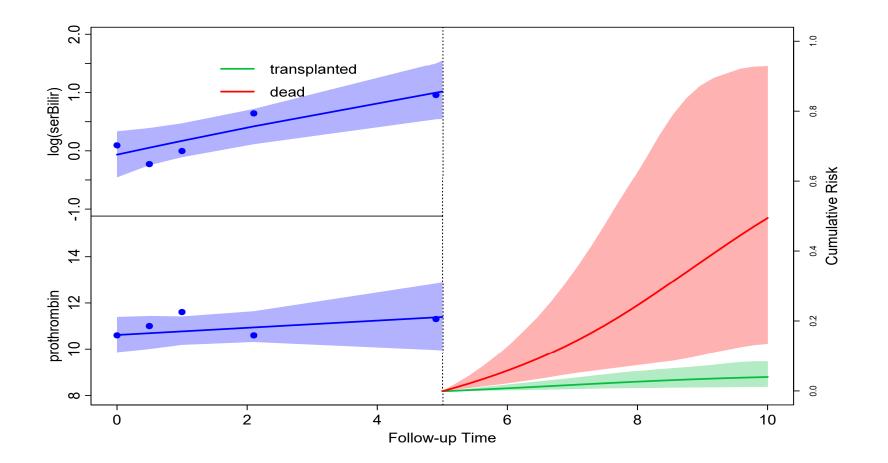
and calculated a corresponding 95% pointwise CIs

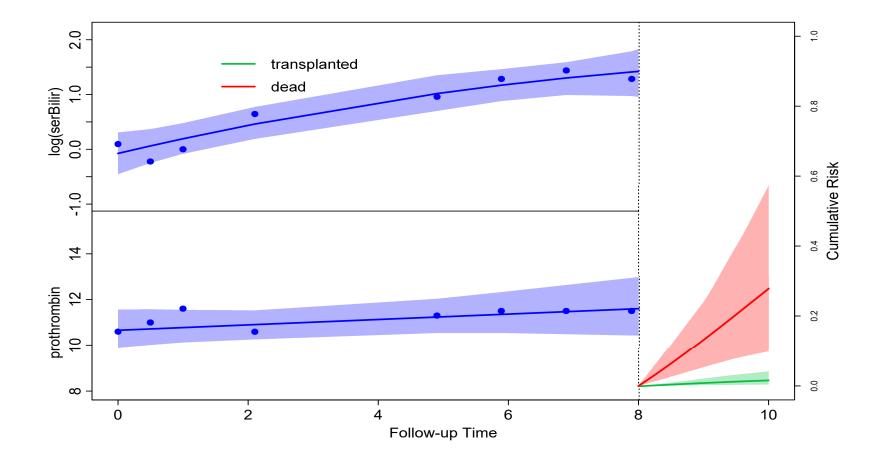












- We have seen how to calculate conditional cumulative incidence functions $F_{kj}(t + \Delta t \mid t)$ on the basis of a competing risk joint model
 - Similarly to the single event case, their accuracy can be evaluated through appropriately defined measures
- Predictive accuracy measures
 - \triangleright Discrimination: sensitivity, specificity, ROC and AUC
 - > Calibration: comparison between predicted and observed probabilities
 - ▷ Overall: combination of discrimination and calibration

- Without loss of generality, let us focus on the first event, $\delta_i^* = 1$ (main event)
- Definition of cases and controls is more challenging in the competing risk setting $\triangleright \text{Cases} \rightarrow \{T_j^* \in (t, t + \Delta t], \delta_j^* = 1\}$ $\triangleright \text{Controls} \rightarrow ??$

- As in the case of a single event, to assess the discriminative power of the model, we assume the following setting
 - \triangleright available longitudinal information from multiple markers up to time t,
 - \triangleright we are interested in events occurring in a medically-relevant interval $(t, t + \Delta t]$

• Based on a fitted joint model and for a specific threshold $c \in [0, 1]$, we can term a subject j a case if

$$F_{1j}(t + \Delta t \mid t) \ge c$$

• Definition of sensitivity should be clear

$$\mathsf{SN}_t^{\Delta t}(c) = \Pr\left\{F_{1j}(t + \Delta t \mid t) \ge c \mid T_j^* \in (t, t + \Delta t], \delta_j^* = 1\right\}$$

- **Controls** may be defined via several ways, but here we define controls as subjects who are not cases, i.e.,
 - \triangleright Event-free at $t+\Delta t$ or
 - \triangleright Experienced a competing event within $(t, t + \Delta t]$
- Definition of specificity

 $\mathsf{SP}_t^{\Delta t}(c) = \Pr\left[F_{1j}(t + \Delta t \mid t) \le c \mid \left\{T_j^* > t + \Delta t\right\} \cup \left\{T_j^* \in (t, t + \Delta t], \delta_j^* \ne 1\right\}\right]$

• The previous definitions of sensitivity and specificity give rise to the following definition of the AUC

$$\mathsf{AUC}_t^{\Delta t} = \Pr\left[F_{1i}(t + \Delta t \mid t) \ge F_{1j}(t + \Delta t \mid t) \\ \mid T_i^* \in (t, t + \Delta t], \delta_i^* = 1, \{T_j^* > t + \Delta t\} \cup \{T_j^* \in (t, t + \Delta t], \delta_j^* \neq 1\}\right]$$

• The probability of observing a pair of subjects (i, j) where subject i has higher cumulative risk for the main event compared to subject j, given that subject i is a case and subject j a control

- Subjects censored within $(t, t + \Delta t]$ have a **missing** status (cases or controls?)
- Blanche et al. (2013, 2014) derived IPCW estimators, accounting for missingness due to right censoring.
- Observed cases and controls were weighed by the probability of being observed

• Sensitivity can be estimated by

$$\widehat{\mathsf{SN}}_t^{\Delta t}(c) = \frac{\sum_{i=1}^n I\left\{\hat{F}_{1j}(t + \Delta t \mid t) \ge c\right\} I\left\{T_i \in (t, t + \Delta t], \delta_i = 1\right\} \times \Omega_i}{\sum_{i=1}^n I\left\{T_i \in (t, t + \Delta t], \delta_i = 1\right\} \times \Omega_i}$$

- \bullet Let $\hat{G}()$ be the Kaplan-Meier estimator of the survival function of the censoring distribution
- $\Omega_i = \frac{\hat{G}(T_i)}{\hat{G}(t)}$ denotes the estimated conditional probability of not being censored at T_i conditional on being uncensored at t
- Recall that $T_i = \min(T_i^*, C_i)$ and $\delta_i = \delta_i^* I(T_i^* \le C_i)$ represent the observed survival time and event type, respectively.

- \bullet Subjects censored before t are only used to estimate the weights
- Blanche et al. (2014) derived similar estimators for the specificity and the AUC
- This procedure is different than the one we used before (model-based weighting)
- Model-based weights and IPCW have advantages and disadvantages (see our previous discussion)

- As mentioned before, a metric that combines discrimination and calibration is the Brier score
- In competing risks, this is defined as

$$\mathsf{PE}(t + \Delta t \mid t) = E\left[\{F_{1j}(t + \Delta t \mid t) - T_i^* \in (t, t + \Delta t], \delta_i^* = 1\}^2 \mid T_i^* > t\right]$$

• Blanche et al. (2014) derived a similar IPCW estimator based on the Kaplan-Meier distribution of censoring

- **R>** Not currently implemented in package **JMbayes2**
- R> tvAUC() and tvBrier() will be extended soon to competing risks

Part VI Closing

• When we need joint models for longitudinal and survival outcomes?

to handle endogenous time-varying covariates in a survival analysis context
 to account for nonrandom dropout in a longitudinal data analysis context

• How joint models work?

- \triangleright a mixed model for the longitudinal outcome
- \triangleright a relative risk model for the event process
- \triangleright explain interrelationships with shared random effects

• Where to pay attention when defining joint models?

- > model flexibly the subject-specific evolutions for the longitudinal outcome
- \triangleright consider how to model the association structure between the two processes \Rightarrow Functional Forms

• Extensions

- b under the full conditional independence assumption we can easily extend the basic joint model
- ▷ multiple longitudinal outcomes and/or multiple failure times
- b though more computationally intensive

• Individualized predictions

- b joint models can provide subject-specific predictions for the longitudinal and survival outcomes
- ▷ these are dynamically updated as extra information is recorded for the subjects
- ▷ joint models constitute an excellent tool for personalized medicine

The End!

- Andrinopoulou, E.R., Rizopoulos, D., Takkenberg, J. and Lesaffre, E. (2014). Joint modeling of two longitudinal outcomes and competing risk data. *Statistics in Medicine*, to appear.
- Brown, E. and Ibrahim, J. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. *Biometrics* **59**, 221–228.
- Brown, E. Ibrahim, J. and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. *Biometrics* **61**, 64–73.
- Chi, Y.-Y. and Ibrahim, J. (2006). Joint models for multivariate longitudinal and multivariate survival data. *Biometrics* **62**, 432–445.
- DeGruttola, V. and Tu, X. (1994). Modeling progression of CD-4 lymphocyte count and its relationship to survival time. *Biometrics* **50**, 1003–1014.
- Elashoff, R., Li, G. and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. *Biometrics* **64**, 762–771.

- Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. *Statistics in Medicine* **15**, 1663–1685.
- Gerds, T. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. *Biometrical Journal* **48**, 1029–1040.
- Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. *Biometrics* **61**, 92–105.
- Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. *Biostatistics* **1**, 465–480.
- Henderson, R., Diggle, P. and Dobson, A. (2002). Identification and efficacy of longitudinal markers for survival. *Biostatistics* **3**, 33–50.
- Hsieh, F., Tseng, Y.-K. and Wang, J.-L. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. *Biometrics* **62**, 1037–1043.

- Lin, H., Turnbull, B., McCulloch, C. and Slate, E. (2002). Latent class models for joint analysis of longitudinal biomarker and event process: Application to longitudinal prostate-specific antigen readings and prostate cancer. *Journal of the American Statistical Association* **97**, 53–65.
- Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. *Journal of the Royal Statistical Society, Series C* **58**, 65–81.
- Proust-Lima, C., Joly, P., Dartigues, J. and Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. *Computational Statistics and Data Analysis* 53, 1142–1154.
- Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. *Biostatistics* **10**, 535–549.
- Rizopoulos, D. (2012). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. *Computational Statistics and Data Analysis* **56**, 491–501.
- Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. *Biometrics* **67**, 819–829.

- Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. *Journal of Statistical Software* **35** (9), 1–33.
- Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. *Statistics in Medicine* **30**, 1366–1380.
- Rizopoulos, D., Hatfield, L.A., Carlin, B.P. and Takkenberg, J.J.M. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. *Journal of the American Statistical Association* 109, 1385–1397.
- Rizopoulos, D., Murawska, M., Andrinopoulou, E.-R., Molenberghs, G., Takkenberg, J. and Lesaffre, E. (2013). Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. *Submitted*.
- Rizopoulos, D. and Lesaffre, E. (2014). Introduction to the special issue on joint modelling techniques. *Statistical Methods in Medical Research* **23**, 3–10.
- Rizopoulos, D., Verbeke, G. and Lesaffre, E. (2009). Fully exponential Laplace approximation for the joint modelling of survival and longitudinal data. *Journal of the Royal Statistical Society, Series B* **71**, 637–654.

- Rizopoulos, D., Verbeke, G., Lesaffre, E. and Vanrenterghem, Y. (2008). A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. *Biometrics* **64**, 611–619.
- Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2010). Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. *Biometrics* **66**, 20–29.
- Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. *Biometrika* **95**, 63–74.
- Rubin, D. (1976). Inference and missing data. Biometrika 63, 581-592.
- Song, X., Davidian, M. and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. *Biometrics* **58**, 742–753.
- Taylor, J., Park, Y., Ankerst, D., Proust-Lima, C., Williams, S., Kestin, L., Bae, K., Pickles, T., and Sandler, H. (2013). Real-time individual predictions of prostate cancer recurrence using joint models. *Biometrics*, **69**, 206–213.
- Tseng, Y.-K., Hsieh, F. and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. *Biometrika* **92**, 587–603.

- Tsiatis, A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. *Biometrika* **88**, 447–458.
- Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. *Statistica Sinica* **14**, 809–834.
- Tsiatis, A., DeGruttola, V., and Wulfsohn, M. (1995). Modeling the relationship of survival to longitudinal data measured with error: Applications to survival and CD4 counts in patients with AIDS. *Journal of the American Statistical Association* **90**, 27–37.
- Viviani, S., Alfó, M. and Rizopoulos, D. (2014). Generalized linear mixed joint model for longitudinal and survival outcomes. *Statistics and Computing*, **24**, 417–427.
- Viviani, S., Rizopoulos, D. and Alfó, M. (2014). Local sensitivity of shared parameter models to nonignorability of dropout. *Statistical Modelling* **14**, 205–228.
- Wang, Y. and Taylor, J. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. *Journal of the American Statistical Association* **96**, 895–905.

- Wu, M. and Bailey, K. (1988). Analysing changes in the presence of informative right censoring caused by death and withdrawal. *Statistics in Medicine* **7**, 337–346.
- Wu, M. and Bailey, K. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. *Biometrics* **45**, 939–955.
- Wu, M. and Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. *Biometrics* **44**, 175–188.
- Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. *Biometrics* **53**, 330–339.
- Xu, C., Baines, P. and Wang, J.-L. (2014). Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data. *Biostatistics*, to appear.
- Xu, J. and Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated measures and times to events. *Applied Statistics* **50**, 375–387.

- Ye, W., Lin, X., and Taylor, J. (2008). Semiparametric modeling of longitudinal measurements and time-to-event data a two stage regression calibration approach. *Biometrics* **64**, 1238–1246.
- Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. *Statistica Sinica* **14**, 835–862.
- Yu, M., Taylor, J. and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. *Journal of the American Statistical Association* **108**, 178–187.
- Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. *The Annals of Statistics* **33**, 2132–2163.
- Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. *Biometrics* **63**, 332–341.

- Andrinopoulou, E.R., Rizopoulos, D., Jin, R., Bogers, A., Lesaffre, E. and Takkenberg, J. (2012). An introduction to mixed models and joint modeling: Analysis of valve function over time. *Annals of Thoracic Surgery* **93**, 1765–1772.
- Andrinopoulou, E.R., Rizopoulos, D., Geleijnse, M., Lesaffre, E., Bogers, A. and Takkenberg, J. (2015). Dynamic prediction of outcome for patients with severe aortic stenosis: Application of joint models for longitudinal and time-to-event data. *BMC Cardiovascular Disorders*, to appear.
- Daher Abdi, D.Z., Essig, M., Rizopoulos, D., Le Meur, Y., Premaud, A., Woillard, J.-B., Rerolle, J.-P., Marquet, P. and Rousseau, A. (2013). Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant recipients using a joint modeling approach. *Pharmacological Research* **72**, 52–60.
- Ibrahim, J., Chu, H. and Chen, L.-M. (2010). Basic concepts and methods for joint models of longitudinal and survival data. *Journal of Clinical Oncology* **28**, 2796–2801.
- Nunez, J., Nunez, E., Rizopoulos, D., Minana, G., Bodi, V., Bondanza, L., Husser, O., Merlos, P., Santas, E., Pascual-Figal, D.,; Chorro, F. and Sanchis, J. (2014). Red blood cell distribution width is longitudinally associated with mortality and incident anemia in heart failure patients. *Circulation Journal* **78**, 410–418.
- Rizopoulos, D. and Takkenberg, J. (2014). Tools & Techniques: Dealing with time-varying covariates in survival analysis joint models versus Cox models. *EuroIntervention* **10**, 285–288.

- Thabut, G., Christie, J., Mal, H., Fournier, M., Brugiere, O., Leseche, G., Castier, Y. and Rizopoulos, D. (2013). Survival benefit of lung transplant for cystic fibrosis since lung-allocation-score implementation. *American Journal of Respiratory and Critical Care Medicine* 187, 1335–1340.
- van der Linde, D., Roos-Hesselink, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap, S., Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Takkenberg, J. (2013). Surgical outcome of discrete subaortic stenosis in adults: A multicenter study. *Circulation* **127**, 1184–1191.
- van der Linde, D., Takkenberg, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap, S., Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Roos-Hesselink, J. (2013). Natural history of discrete subaortic stenosis in adults: A multicenter study. *European Heart Journal* 34, 1548–1556.

Part VII Practicals

- We will work with the Liver Cirrhosis dataset
 - ▷ a placebo-controlled randomized trial on 488 liver cirrhosis patients
- Start R and load package JMbayes2, using library("JMbayes2")
- The longitudinal (long format) and survival information for the liver cirrhosis patients can be found in data frames prothro and prothros, respectively
 - \triangleright the variables that we will need are:

\triangleright prothro

- * id: patient id number
- * pro: prothrombin measurements
- * time: follow-up times in years
- * **treat**: randomized treatment

\triangleright prothros

- * Time: observed event times in years
- * death: event indicator with 0 = 'alive', and 1 = 'dead'
- * **treat**: randomized treatment

- We will fit the following joint model to the Liver Cirrhosis dataset
 - Iongitudinal submodel: linear subject-specific random slopes for prothrombin levels allowing for different average evolutions in the two treatment groups

$$egin{aligned} y_i(t) &= m_i(t) + arepsilon_i(t) \ m_i(t) &= eta_0 + eta_1 t + eta_2 \{ \texttt{Trt}_i imes t \} + b_{i0} + b_{i1} t \end{aligned}$$

▷ survival submodel: treatment effect & *true* effect of prothrobin

$$h_i(t) = h_0(t) \exp\{\gamma \operatorname{Trt}_i + \alpha m_i(t)\}$$

- T1: Fit the linear mixed model using lme(), the Cox model using coxph(), and the corresponding joint model using jm() (see pp.41-43)
- We are interested in producing predictions of survival probabilities for Patient 155
- T2: Extract the data of Patient 155 using the code

dataP155 <- prothro[prothro\$id == 155,]</pre>

- T3: Using the first measurement of Patient 155, and the fitted joint model calculate his conditional survival probabilities using function predict() and plot it using the plot method (see p.109)
 - ▷ set the Time variable equal to the time of the first measurement

 \triangleright set the death variable equal to 0

- T4: Combine the predictions in one plot
 - > save as the object Spred the survival predictions, and Lpred the longitudinal ones> use plot(Lpred, Spred)

- T5: Repeat the same procedure by including each time the next measurement of Patient 155 and see how his survival probabilities change over time as extra prothrombin measurements are recorded
 - ▷ first using only the first measurement,
 - b and following update the predictions after each new longitudinal measurement has been recorded
 - ▷ use a **for** loop to achieve this

• T6: Calculate the ROC and the corresponding AUC under the postulated model at year 3 and with a 1-year window (see p.130)

▷ using model-based weights and IPCW

T7: Calculate the prediction error for the same period (see p.137)
 ▷ using model-based weights and IPCW

- We will work with the Mayo Clinic Primary Biliary Cirrhosis Data
 - > A placebo-controlled randomized trial on 312 patients with primary biliary cirrhosis
- Start R and load package JMbayes2, using library("JMbayes2")
- The longitudinal (long format) and survival information for the primary biliary cirrhosis patients can be found in data frames pbc2 and pbc2.id, respectively
 - \triangleright the variables that we will need are:

• pbc2

- \triangleright id: patient id number
- ⊳ serBilir: serum bilirubin in mg/dl
- > prothrombin: prothrombin time in seconds
- ▷ year: measurement times (in years)
- ▷ drug: treatment group (placebo and D-penicil)
- pbc2.id
 - ▷ years: patient id number
 - \triangleright status2: a factor with levels alive, transplanted and dead
 - ▷ drug: treatment group (placebo and D-penicil)
 - ▷ age: at baseline (in years)

- We will fit the following joint model to the Mayo Clinic Primary Biliary Cirrhosis dataset
 - Longitudinal submodel for log(serBilir): linear and quadratic subject-specific random slopes for log bilirubin levels allowing for different average evolutions in the two treatment groups

$$y_{i1}(t) = m_{i1}(t) + \epsilon_{i1}(t)$$

$$m_{i1}(t) = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 \{ \text{Drug}_i \times t \} + \beta_4 \{ \text{Drug}_i \times t^2 \}$$

$$+ b_{i0} + b_{i1} t + b_{i0} t^2$$

Longitudinal submodel for prothrombin: linear subject-specific random slopes for prothrombin levels allowing for different average evolutions in the two treatment groups

$$y_{i2}(t) = m_{i2}(t) + \epsilon_{i2}(t)$$

$$m_{i2}(t) = \beta_0 + \beta_1 t + \beta_2 \{ \text{Drug}_i \times t \} + b_{i0} + b_{i1} t$$

- We will fit the following joint model to the Mayo Clinic Primary Biliary Cirrhosis dataset
 - ▷ Cause-specific hazard for death

$$h_i^{\mathbf{d}}(t) = h_0^{\mathbf{d}}(t) \exp\{\gamma_{\mathbf{d}1} \operatorname{Age}_i + \gamma_{\mathbf{d}2} \operatorname{Drug}_i + \alpha_{\mathbf{d}1} m_{i1}(t) + \alpha_{\mathbf{d}2} m_{i2}(t)\}$$

▷ Cause-specific hazard for transplantation

 $h_i^{tr}(t) = h_0^{tr}(t) \exp\{\gamma_{tr1} \operatorname{Age}_i + \gamma_{tr2} \operatorname{Drug}_i + \alpha_{tr1} m_{i1}(t) + \alpha_{tr2} m_{i2}(t)\}$

- T1: Fit the longitudinal models for log(serBilir) and prothrombin using lme()
 poly(year, 2) can automatically construct linear and quadratic slopes
- T2: Use crisk_setup to appropriately construct a competing risk format dataset
 - > specify the event type variable, the level corresponding to right censoring and a name for the strata variable to be constructed

- T3: Fit a coxph() model to the new dataset allowing for interaction with the event type
- Create a named list() for each longitudinal outcome to ensure an interaction with the event-type variable

```
CR_forms <- list(
   "log(serBilir)" = ~ value(log(serBilir)):CR,
   "prothrombin" = ~ value(prothrombin):CR
)</pre>
```


• T4: Fit the competing risk joint model for the two longitudinal markers using jm() by providing the objects from lme() and coxph()

> Use the argument functional forms to provide the list()

• T5: Extract the longitudinal and competing risk data of Patient 2 using the code

ND_long <- pbc2[pbc2\$id == 2,]
ND_event <- pbc2.idCR[pbc2.idCR\$id == 2,]</pre>

- T6: Use the first observation in the longitudinal data
 - \triangleright Set the years equal to 0.2
 - ▷ Set the status2 equal to 0 (event-free at 0.2 years)
 - > Combine the datasets in a named list()

ND <- list(newdataL = ND_long, newdataE = ND_event)</pre>

- Use predict() to calculate predictions for the cumulative risk probabilities and future longitudinal values for the two markers up to 10 years since baseline
 - * Use newdata = ND in predict() and process = "event" for cumulative risk predictions

- T7: Combine the predictions in one plot
 - Save as the object predEvent for the survival predictions, and predLong for the longitudinal ones
 - > Use plot(predLong, predEvent, outcomes = 1:2)
- T8: Plot the predictions about future longitudinal outcomes for the two markers

par(mfrow = c(1,2))
plot(predLong, outcomes = 1)
plot(predLong, outcomes = 2)

- Repeat the same procedure by keeping data of Patient 2 up to 0.2, 0.5, 1, 5, 8 years since baseline, respectively, and observe how their survival probabilities change over time as extra longitudinal measurements are recorded
 - \triangleright first keep data up to 0.2 years,
 - > and following update the predictions after new longitudinal information has been recorded
 - ▷ use a **for** loop to achieve this