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What is this Course About

� Often in follow-up studies different types of outcomes are collected

� Explicit outcomes

◃ multiple longitudinal responses (e.g., markers, blood values)

◃ time-to-event(s) of particular interest (e.g., death, relapse)

� Implicit outcomes

◃ missing data

◃ random visit times
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What is this Course About (cont’d)

� Methods for the separate analysis of such outcomes are well established in the
literature

� Survival data:

◃ Cox model, accelerated failure time models, . . .

� Longitudinal data

◃ mixed effects models, GEE, marginal models, . . .
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What is this Course About (cont’d)

Purpose of this course is to present

Joint Modeling Techniques for Deriving Predictions
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Learning Objectives

� After this course the participants will

◃ be familiarized with the joint modeling framework,

◃ know how predictions are derived from joint models

◃ know how to evaluate the accuracy of these predictions, and

◃ be able to fit joint models and derive predictions in R
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Part I

Introduction
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1.1 Motivating Longitudinal Studies

� AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine
therapy (AZT) (Abrams et al., NEJM, 1994)

� The aim of this study was to compare the efficacy and safety of two alternative
antiretroviral drugs, didanosine (ddI) and zalcitabine (ddC)

� Outcomes of interest:

◃ time to death

◃ randomized treatment: 230 patients ddI and 237 ddC

◃ CD4 cell count measurements at baseline, 2, 6, 12 and 18 months
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

� Research Questions:

◃ How strong is the association between CD4 cell count and the risk of death?

◃ Is CD4 cell count a good biomarker?

* if treatment improves CD4 cell count, does it also improve survival?
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1.1 Motivating Longitudinal Studies (cont’d)

� PBC: Primary Biliary Cirrhosis:

◃ a chronic, fatal but rare liver disease

◃ characterized by inflammatory destruction of the small bile ducts within the liver

� Outcomes of interest:

◃ time to death or liver transplantation

◃ randomized treatment: 158 patients received D-penicillamine and 154 placebo

◃ longitudinal bilirubin levels, cholesterol, prothrombin time (continuous)

◃ longitudinal ascites, hepatomegaly, edema (categorical)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

� Research Questions:

◃ How strong is the association between bilirubin and the risk of death?

◃ How the observed serum bilirubin levels could be utilized to provide predictions of
survival probabilities?

◃ Can bilirubin discriminate between patients of low and high risk?
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1.2 Research Questions

� Depending on the questions of interest, different types of statistical analysis are
required

� We will distinguish between two general types of analysis

◃ separate analysis per outcome

◃ joint analysis of outcomes

� Focus on each outcome separately

◃ does treatment affect survival?

◃ are the average longitudinal evolutions different between males and females?

◃ . . .
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1.2 Research Questions (cont’d)

� Focus on multiple outcomes

◃ Complex effect estimation: how strong is the association between the
longitudinal evolution of CD4 cell counts and the hazard of death?

* endogenous vs. exogenous time-varying covariates

◃ Handling implicit outcomes: focus on longitudinal outcomes but with dropout
or random visit times

* missing not at random vs. missing at random
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Part II

Review of Linear Mixed and Cox Models
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2.1 Linear Mixed Models

� Repeated evaluations of the same outcome in each subject over time

◃ CD4 cell count in HIV-infected patients

◃ serum bilirubin in PBC patients

Measurements on the same subject are expected to
be (positively) correlated

� Standard statistical tools, such as the t-test and linear regression that assume
independent observations, not optimal for longitudinal data analysis
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2.1 Linear Mixed Models (cont’d)

Random effects approach: Each subject in the population has her own
subject-specific mean response profile over time
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2.1 Linear Mixed Models (cont’d)
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2.1 Linear Mixed Models (cont’d)

� The profile of each subject over time can be described by a linear model

yij = β̃i0 + β̃i1tij + εij, εij ∼ N (0, σ2),

where

◃ yij the jth response of the ith subject

◃ β̃i0 is the intercept and β̃i1 the slope for subject i

� Assumption: Subjects are randomly sampled from a population ⇒ subject-specific
regression coefficients are also sampled from a population of regression coefficients

β̃i ∼ N (β,D)
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2.1 Linear Mixed Models (cont’d)

� We can reformulate the model as

yij = (β0 + bi0) + (β1 + bi1)tij + εij,

where

◃ βs are known as the fixed effects

◃ bis are known as the random effects

� In accordance for the random effects we assume

bi =

bi0
bi1

 ∼ N (0, D)
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2.1 Linear Mixed Models (cont’d)

� Put in a general form
yi = Xiβ + Zibi + εi,

bi ∼ N (0, D), εi ∼ N (0, σ2Ini),

with

◃ X design matrix for the fixed effects β

◃ Z design matrix for the random effects bi

◃ bi ⊥⊥ εi

Dynamic Risk Predictions from Joint Models: July 21, 2024, ISCB 45 18



2.1 Linear Mixed Models (cont’d)

� Interpretation:

◃ βj denotes the change in the average yi when xj is increased by one unit

◃ bi are interpreted in terms of how a subset of the regression parameters for the ith
subject deviates from those in the population

� Advantageous feature: population + subject-specific predictions

◃ β describes mean response changes in the population

◃ β + bi describes individual response trajectories
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2.2 Relative Risk Models

� The characteristic that distinguishes the analysis of time-to-event outcomes from
other areas in statistics is Censoring

◃ the event time of interest is not fully observed for all subjects under study

� Implications of censoring:

◃ standard tools, such as the sample average, the t-test, and linear regression
cannot be used

◃ inferences may be sensitive to misspecification of the distribution of the event
times
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2.2 Relative Risk Models (cont’d)

� Notation (i denotes the subject)

◃ T ∗
i ‘true’ time-to-event

◃ Ci the censoring time (e.g., the end of the study or a random censoring time)

� Available data for each subject

◃ observed event time: Ti = min(T ∗
i , Ci)

◃ event indicator: δi = 1 if event; δi = 0 if censored

Our aim is to make valid inferences for T ∗
i but using

only {Ti, δi}
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2.2 Relative Risk Models (cont’d)

� Relative Risk Models assume a multiplicative effect of covariates on the hazard
scale, i.e.,

hi(t) = h0(t) exp(γ1wi1 + γ2wi2 + . . . + γpwip) ⇒

log hi(t) = log h0(t) + γ1wi1 + γ2wi2 + . . . + γpwip,

where

◃ hi(t) denotes the hazard of an event for patient i at time t

◃ h0(t) denotes the baseline hazard

◃ wi1, . . . , wip a set of covariates
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2.2 Relative Risk Models (cont’d)

� Cox Model: No assumptions for the baseline hazard function

� Parameter estimates and standard errors are based on the log partial likelihood
function

pℓ(γ) =

n∑
i=1

δi

[
γ⊤wi − log

{ ∑
j:Tj≥Ti

exp(γ⊤wj)
}]

,

where only patients who had an event contribute
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2.3 Time-Varying Covariates

� Often interest in the association between a time-varying covariate and the risk of an
event

◃ treatment changes with time (e.g., dose)

◃ time-dependent exposure (e.g., smoking, diet)

◃ markers of disease or patient condition (e.g., blood pressure, PSA levels)

◃ . . .

� Example: In the PBC study, are the longitudinal bilirubin measurements associated
with the hazard of death?
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2.3 Time-Varying Covariates (cont’d)

� There are two types of time-varying covariates
(Kalbfleisch & Prentice, The Stat. Anal. of Failure Time Data, 2002)

◃ External (aka exogenous): the value of the covariate at time point t is not
affected by the occurrence of an event at time point u, with t > u

◃ Internal (aka endogenous): not External

� This is a difficult concept and we will try to explain it with an example. . .
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2.3 Time-Varying Covariates (cont’d)

� Example: A study on the time until an asthma attack for a group of patients

� We have two time-varying covariates: Pollution levels & a biomarker for asthma

� Say a patient had an asthma attack at a particular time point u

◃ Pollution levels

* will the pollution levels at time t > u be affected by the fact that the patient
had an attack at u? ⇒ No

◃ Biomarker

* will the biomarker level at time t > u be affected by the fact that the patient
had an attack at u? ⇒ Yes
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2.3 Time-Varying Covariates (cont’d)

� It is important to distinguish between these two types of time-varying covariates,
because the type of covariate dictates the appropriate type of analysis

� The extended Cox model is only valid for exogenous time-varying covariates

Treating endogenous covariates as exogenous may
produce spurious results!
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Part III

The Basic Joint Model
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3.1 Joint Modeling Framework

� To account for the special features of endogenous covariates a new class of models
has been developed

Joint Models for Longitudinal and Time-to-Event Data

� Intuitive idea behind these models

1. use an appropriate model to describe the evolution of the covariate/marker over
time for each patient

2. the estimated evolutions are then used in a Cox model

� Feature: covariate level’s are not assumed constant between visits
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3.1 Joint Modeling Framework (cont’d)
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3.1 Joint Modeling Framework (cont’d)

� Some notation

◃ T ∗
i : True event time for patient i

◃ Ti: Observed event time for patient i

◃ δi: Event indicator, i.e., equals 1 for true events

◃ yi: Longitudinal covariate

� We will formulate the joint model in 3 steps – in particular, . . .
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3.1 Joint Modeling Framework (cont’d)

� Step 1: Let’s assume that we know mi(t), i.e., the true & unobserved value of the
covariate at time t

� Then, we can define a standard relative risk model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

where

◃ Mi(t) = {mi(s), 0 ≤ s < t} longitudinal history

◃ α quantifies the association between the time-varying covariate and the risk of an
event

◃ wi baseline covariates
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3.1 Joint Modeling Framework (cont’d)

� Step 2: From the observed longitudinal data yi(t) reconstruct the covariate history
for each subject

� Mixed effects model (we focus, for now, on continuous covariates)

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t), εi(t) ∼ N (0, σ2),

where

◃ xi(t) and β: Fixed-effects part

◃ zi(t) and bi: Random-effects part, bi ∼ N (0, D)
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3.1 Joint Modeling Framework (cont’d)

� Step 3: The two processes are associated ⇒ define a model for their joint
distribution

� Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

p(yi, Ti, δi) =

∫
p(yi | bi)

{
h(Ti | bi)δi S(Ti | bi)

}
p(bi) dbi,

where

◃ bi a vector of random effects that explains the interdependencies

◃ p(·) density function; S(·) survival function
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3.1 Joint Modeling Framework (cont’d)

� Key assumption: Full Conditional Independence ⇒ random effects explain all
interdependencies

◃ the longitudinal outcome is independent of the time-to-event outcome

◃ the repeated measurements in the longitudinal outcome are independent of each
other

p(yi, Ti, δi | bi) = p(yi | bi) p(Ti, δi | bi)

p(yi | bi) =
∏
j

p(yij | bi)
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3.2 Bayesian Estimation

� Under the Bayesian paradigm, both θ and {bi, i = 1, . . . , n} are regarded as
parameters

� Inference via the full posterior distribution

p(θ, b | T, δ, y) =

∏
i p(Ti, δi | bi, θ) p(yi | bi, θ) p(bi, θ) p(θ)∏

i p(Ti, δi, yi)

∝
n∏

i=1

{
p(Ti, δi | bi, θ) p(yi | bi, θ) p(bi, θ)

}
p(θ)
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3.2 Bayesian Estimation (cont’d)

� Inference via sampling from the posterior

◃ Markov Chain Monte Carlo

◃ Hamiltonian Monte Carlo

� Model comparison: Information Criteria for Predictive Accuracy

◃ Deviance information criterion (DIC)

◃ Watanabe-Akaike information criterion (WAIC)

◃ log pseudo-marginal likelihood (LPML)
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3.3 A Comparison with the TD Cox

� Example: To illustrate the virtues of joint modeling, we compare it with the standard
time-dependent Cox model for the AIDS data

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp{γddIi + αmi(t)},
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3.3 A Comparison with the TD Cox (cont’d)

JM Cox

log HR (std.err) log HR (std.err)

Treat 0.33 (0.2) 0.31 (0.15)

CD41/2 −0.29 (0.04) −0.19 (0.02)

� Clearly, there is a considerable effect of ignoring the measurement error, especially for
the CD4 cell counts
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3.3 A Comparison with the TD Cox (cont’d)

� A unit decrease in CD41/2, results in a

◃ Joint Model: 1.33-fold increase in risk (95% CI: 1.24; 1.43)

◃ Time-Dependent Cox: 1.21-fold increase in risk (95% CI: 1.16; 1.27)

� Which one to believe?

◃ a lot of theoretical and simulation work has shown that the Cox model
underestimates the true association size of endogenous time-varying covariates
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3.4 Joint Models in R

R> Joint models are fitted using function jm() from package JMbayes2, e.g.,

lmeFit <- lme(CD4 ~ obstime + obstime:drug, data = aids,

random = ~ obstime | patient)

CoxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id)

jointFit <- jm(CoxFit, lmeFit, time_var = "obstime")

summary(jointFit)
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3.4 Joint Models in R (cont’d)

R> The data frame given in lme() should be in the long format, while the data frame
given to coxph() should have one line per subject∗

◃ the ordering of the subjects needs to be the same

R> The scale of the time variables in the mixed and Cox models need to be the same

◃ i.e., both in months, or both in years, etc.

R> Argument time var specifies the time variable in the linear mixed model

∗ Unless you want to include exogenous time-varying covariates or handle competing risks
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3.4 Joint Models in R (cont’d)

R> Useful functions

◃ summary(): summarizes the fitted model

◃ compare jm(): compares fitted models using DIC and WAIC

◃ coef(), fixef(), ranef(): extract estimated coefficients and random effects

◃ traceplot() & ggtraceplot: produces traceplots

◃ densplot() & ggdensityplot(): produces density plots

◃ predict(): calculates predictions
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Part IV

Joint Model Extensions
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4.1 Functional Forms

� The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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4.1 Functional Forms (cont’d)
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4.1 Functional Forms (cont’d)

� The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}

Is this the only option? Is this the most
optimal choice?
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4.1 Functional Forms (cont’d)

� Note: Inappropriate modeling of time-varying covariates may result in surprising
results

� Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to
test the effect of cigarette smoking on survival of patients who underwent coronary
artery surgery

◃ the estimated effect of current cigarette smoking was positive on survival although
not significant (i.e., patient who smoked had higher probability of survival)

◃ most of those who had died were smokers but many stopped smoking at the last
follow-up before their death
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4.1 Functional Forms (cont’d)

We need to carefully consider the functional form of
time-varying covariates

� Let’s see some possibilities. . .
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4.1 Functional Forms (cont’d)

� Time-dependent Slopes: The hazard of an event at t is associated with both the
current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α1mi(t) + α2m
′
i(t)},

where

m′
i(t) =

d

dt
{x⊤i (t)β + z⊤i (t)bi}
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4.1 Functional Forms (cont’d)
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4.1 Functional Forms (cont’d)

� The definition of the slope is

m′
i(t) = lim

ϵ→0

mi(t + ϵ)−mi(t)

ϵ

the change in the longitudinal profile as ϵ approaches zero

� It can be challenging to interpret

◃ it is the ‘current’ slope
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4.1 Functional Forms (cont’d)

� Time-dependent Slopes 2: The hazard of an event at t is associated with the change
of the trajectory the last year:

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α∆mi(t)},

where

∆mi(t) = mi(t)−mi(t− 1)
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4.1 Functional Forms (cont’d)

� Cumulative Effects: The hazard of an event at t is associated with the whole area
under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

mi(s) ds
}

� Area under the longitudinal trajectory taken as a summary of Mi(t)
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4.1 Functional Forms (cont’d)
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4.1 Functional Forms (cont’d)

� Cumulative Effects 2: The hazard of an event at t is associated with the whole area
under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp

{
γ⊤wi + α

∫ t

0 mi(s) ds

t

}

� We account for the observation period
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4.1 Functional Forms (cont’d)

R> In JMbayes2 the specification of functional forms is done via the
functional forms argument

◃ e.g., the following code includes the area and slope in the linear predictor, and the
interaction of the former with sex

jm(CoxFit, lmeFit, time_var = "time",

functional_forms = ~ area(y) + value(y) + area(y):sex)
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4.1 Functional Forms (cont’d)

R> The area() function calculates the Cumulative Effects 2 functional form, where
the integral is divide by the length of the period

R> The slope() function can be used for the Time-dependent Slopes 2 functional
form via

slope(..., eps = 1, direction = "back")
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4.2 Multiple Longitudinal Markers

� So far we have concentrated on a single continuous longitudinal outcome

� But very often we may have several outcomes we wish to study, some of which could
be categorical

� Example: In the PBC dataset we have used serum bilirubin as the most important
marker, but during follow-up several other markers have been recorded

◃ serum cholesterol (continuous)

◃ edema (3 categories)

◃ ascites (2 categories)

◃ . . .
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4.2 Multiple Longitudinal Markers (cont’d)

We need to extend the basic joint model!

� To handle multiple longitudinal outcomes of different types we use Generalized Linear
Mixed Models

◃ We assume Yi1, . . . , YiJ for each subject, each one having a distribution in the
exponential family, with expected value

mij(t) = E(yij(t) | bij) = g−1
j {x⊤ij(t)βj + z⊤ij(t)bij},

with g(·) denoting a link function
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4.2 Multiple Longitudinal Markers (cont’d)

� Correlation between the longitudinal outcomes is captured by assuming a multivariate
normal distribution for the random effects

bi =


bi1

...

biJ

 ∼ N (0, D)
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4.2 Multiple Longitudinal Markers (cont’d)

� Two ways to include the longitudinal markers in the survival submodel

◃ conditional expected value

hi(t) = h0(t) exp
{
γ⊤wi +

J∑
j=1

αjmij(t)
}

◃ or conditional linear predictor
hi(t) = h0(t) exp

{
γ⊤wi +

J∑
j=1

αjηij(t)
}

ηij = x⊤ij(t)βj + z⊤ij(t)bij
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4.2 Multiple Longitudinal Markers (cont’d)

� Full Conditional Independence: Given the random effects

◃ the repeated measurements in each outcome are independent,

◃ the longitudinal outcomes are independent of each other, and

◃ longitudinal outcomes are independent of the time-to-event outcome

p(yij | bij) =

nij∏
k=1

p(yij,k | bij)

p(yi | bi) =
∏
j

p(yij | bij)

p(yi, Ti, δi | bi) =
∏
j

p(yij | bij) p(Ti, δi | bi)
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4.2 Multiple Longitudinal Markers (cont’d)

� Features of multivariate joint models

◃ using CI is straightforward to extend joint models to multiple longitudinal
outcomes of different types

◃ computationally much more intensive due to the high dimensional random effects
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4.2 Multiple Longitudinal Markers (cont’d)

� Example: Multivariate joint model for the PBC dataset

◃ log(ser Bilir): linear mixed-effects model

* fixed effects: intercept and linear time effect

* random effects: intercept and linear time effect

◃ spiders: mixed-effects logistic regression model

* fixed effects: intercept and linear time effect

* random effects: intercept
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4.2 Multiple Longitudinal Markers (cont’d)

◃ time-to-death: relative risk model

* baseline covariates: drug and age

* Analysis I: conditional linear predictor

* Analysis II: conditional expected value
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4.2 Multiple Longitudinal Markers (cont’d)

� Analysis I: conditional linear predictor

Value Std.Dev. 2.5% 97.5%

D-penicil −0.071 0.234 −0.530 0.373

Age 0.064 0.009 0.046 0.082

value(logSB) 1.317 0.108 1.111 1.531

value(spiders) 0.070 0.048 −0.024 0.167
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4.2 Multiple Longitudinal Markers (cont’d)

� Analysis II: conditional expected value

Value Std.Dev. 2.5% 97.5%

D-penicil −0.080 0.234 −0.545 0.373

Age 0.063 0.009 0.045 0.081

value(logSB) 1.326 0.109 1.113 1.540

expit(value(spiders)) 0.458 0.347 −0.228 1.134
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4.2 Multiple Longitudinal Markers (cont’d)

R> To fit a multivariate joint model in JMbayes2 we need first to fit a series of
univariate mixed models.

◃ for non-Gaussian longitudinal data we use GLMMadaptive

mixed_model(spiders ~ year, data = pbc2,

family = binomial(), random = ~ year | id)

� Arguments of mixed model()

◃ fixed: formula for the response outcome and fixed effects

◃ random: formula for random effects

◃ family: distribution of longitudinal outcome

◃ data: dataset
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4.2 Multiple Longitudinal Markers (cont’d)

R> To fit a multivariate joint model, we use jm() as before but we now provide a
list() of mixed models

◃ an example for the PBC dataset using serum bilirubin (continuous) and spiders
(binary)

lmmFit <- lme(log(serBilir) ~ year, data = pbc2, random = ~ year | id)

melrFit <- mixed_model(spiders ~ year, data = pbc2, family = binomial(),

random = ~ 1 | id)

CoxFit <- coxph(Surv(years, status2) ~ drug + age, data = pbc2.id)

jm(CoxFit, list(lmmFit, melrFit), time_var = "year")
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4.2 Multiple Longitudinal Markers (cont’d)

R> The default in jm() is to include the conditional linear predictor ηij(t) in the
survival submodel

◃ to include the conditional expected value, we can use the functional forms

argument, e.g.,

jm(CoxFit, list(lmmFit, melrFit), time_var = "year",

functional_forms = ~ value(log(serBilir)) +

vexpit(value(spiders)),

n_iter = 20000L, n_burnin = 10000L)
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4.2 Multiple Longitudinal Markers (cont’d)

R> Function jm() allows for various types of mixed models

◃ continuous: Student’s t, beta, gamma, censored normal

◃ categorical: binomial, Poisson, negative binomial, beta binomial

For more info see
https://drizopoulos.github.io/JMbayes2/

→ Articles → Non-Gaussian Mixed Models
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4.3 Competing Risks

� Often multiple failure times are recorded

� Competing risks: Occurrence of one event either

◃ precludes the occurrence of other events or

◃ substantially alters the probability of observing the other events
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4.3 Competing Risks (cont’d)

� Example: In the PBC dataset ⇒ competing risks

◃ some patients received a liver transplantation

◃ so far we have used the composite event, i.e. death or transplantation whatever
comes first

◃ when interest only is on one type of event, the other should be considered as a
competing risk

� Example: In HIV studies

◃ death while in care

◃ disengagement from care
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4.3 Competing Risks (cont’d)

� Example: Alzheimer’s disease studies

◃ dementia

◃ death without dementia
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4.3 Competing Risks (cont’d)

� In principle, competing-risk data can be analyzed through either

◃ cause-specific hazards

◃ cumulative incidence functions (CIFs)
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4.3 Competing Risks (cont’d)

� Let

◃ T ∗
i = min(T ∗

i1, . . . , T
∗
iK) be the survival time

◃ δ∗i ∈ {1, . . . , K} be the failure cause

� Cause-specific hazards: the rate of failure from a particular cause at a specific
time point given that the individual has survived up to that point:

hik(t) = lim
dt→0

P (t < T ∗
i ≤ t + dt, δ∗i = k | T ∗

i > t)

dt
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4.3 Competing Risks (cont’d)

� Proportional cause-specific hazards are usually applied in practice

hik(t) = h0k(t) exp(x
⊤
ikβk)

where

◃ xik baseline covariates (possibly cause-specific)

◃ βk log cause-specific hazard ratios
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4.3 Competing Risks (cont’d)

� If right-censoring occurs

◃ Ti = min(T ∗
i1, . . . , T

∗
iK, Ci), with Ci denoting the censoring time

◃ δi ∈ {0, 1, . . . , K}, with 0 corresponding to censoring

� The likelihood becomes a product over failure causes

p(Ti, δi) =

K∏
k=1

hik(Ti)
I(δi=k) exp

{
−

K∑
k=1

∫ Ti

0

hik(u)du

}

Standard (e.g., Cox) models for each cause can be
fitted separately by treating the other failure causes

as non-informative right censoring!
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4.3 Competing Risks (cont’d)

R> To fit cause-specific hazard models, e.g., through coxph(), we just treat events
from other causes as right-censored

Death

CoxFitDeath <- coxph(Surv(years, status == "dead") ~ drug + age, data = pbc2.id)

n= 312, number of events= 140

coef exp(coef) se(coef) z Pr(>|z|)

drugD-penicil -0.162071 0.850380 0.172501 -0.940 0.347

age 0.045718 1.046780 0.008487 5.387 7.16e-08 ***
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4.3 Competing Risks (cont’d)

R> To fit cause-specific hazard models, e.g., through coxph(), we just treat events
from other causes as right-censored

Transplantation

CoxFitTranspl <- coxph(Surv(years, status == "transplanted") ~ drug + age,

data = pbc2.id)

n= 312, number of events= 29

coef exp(coef) se(coef) z Pr(>|z|)

drugD-penicil -0.23680 0.78915 0.37723 -0.628 0.53

age -0.09649 0.90802 0.02265 -4.259 2.05e-05 ***

The effect of age has an opposite direction!
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4.3 Competing Risks (cont’d)

Cumulative incidence function (CIF) The probability of occurrence of a specific
cause over time

Fik(t) = Pr(T ∗
i ≤ t, δ∗i = k) =

∫ t

0

hik(u) exp

{
−

K∑
k=1

∫ u

0

hik(s) ds

}
du

� Complex function of cause-specific hazards

� Semi-parametric modeling of sub-distribution hazards, λik(t), proposed by Fine &
Gray (1999) is typically performed for the event of interest as

Fik(t) = 1− exp

{
−
∫ t

0

λik(u)du

}
there is an 1-1 relationship between Fik(t) and λik(t)
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4.3 Competing Risks (cont’d)

R> Proportional sub-distribution hazard models, for each event type, can be fitted
through function crr() of package cmprsk

◃ For death

Call:

crr(ftime = pbc2.id$years, fstatus = pbc2.id$status,

cov1 = mat, cengroup = "alive", failcode = "dead")

coef exp(coef) se(coef) z p-value

D-penicil -0.1915 0.826 0.16899 -1.13 2.6e-01

age 0.0479 1.049 0.00813 5.90 3.7e-09
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4.3 Competing Risks (cont’d)

� Aetiological-type research questions → cause-specific hazards

� Prognosis of a disease and prediction purposes → CIF
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4.3 Competing Risks (cont’d)

� Most of the research in joint modeling was initially focused on a single event

� Joint modeling of longitudinal data and competing-risk survival data has also gained
attention

� Example: In the PBC dataset ⇒ competing risks

◃ death

◃ liver transplantation
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4.3 Competing Risks (cont’d)

� Joint models with competing risks:

yi(t) = mi(t) + εi(t) = x⊤i (t)β + z⊤i (t)bi + εi(t),

hd
i (t) = hd

0(t) exp{γ⊤
d wi + αdmi(t)},

htr
i (t) = htr

0 (t) exp{γ⊤
trwi + αtrmi(t)},

where

◃ hd
i (t) hazard function for death

◃ htr
i (t) hazard function for transplantation
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4.3 Competing Risks (cont’d)

� When two markers are used:

yi1(t) = mi1(t) + εi1(t) = x⊤i1(t)β1 + z⊤i1(t)bi1 + εi1(t),

yi2(t) = mi2(t) + εi2(t) = x⊤i2(t)β2 + z⊤i2(t)bi2 + εi2(t),

hd
i (t) = hd

0(t) exp{γ⊤
d wi + αd1mi1(t) + αd2mi2(t)},

htr
i (t) = htr

0 (t) exp{γ⊤
trwi + αtr1mi1(t) + αtr2mi2(t)},
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4.3 Competing Risks (cont’d)

� In the estimation, the only difference is in the construction of the likelihood part for
the event process

p(Ti, δi | bi; θ) =

K∏
k=1

[
h0k(Ti) exp{γ⊤

k wi + αkmi(Ti)}
]I(δi=k)

× exp

(
−

K∑
k=1

∫ Ti

0

h0k(s) exp
{
γ⊤
k wi + αkmi(s)

}
ds

)
,

with

◃ Ti = min(T ∗
i1, . . . , T

∗
iK, Ci), with Ci denoting the censoring time

◃ δi ∈ {0, 1, . . . , K}, with 0 corresponding to censoring
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4.3 Competing Risks (cont’d)

� This is different than in standard Cox models

We cannot fit a cause-specific hazard joint model by
treating events from other causes as censored!
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4.3 Competing Risks (cont’d)

� Example: Competing risks analysis for the PBC dataset

◃ log(ser Bilir): linear mixed-effects model

* fixed effects: intercept, drug, linear time, interaction drug with time

* random effects: intercept and linear time

◃ time to death or transplantation: relative risk model

* competing risks: transplantation and death

* baseline covariates: drug different per competing risk

* time-varying: current value log ser Bilir different per competing risk
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4.3 Competing Risks (cont’d)

Value Std.Dev. 2.5% 97.5%

D-penicil −0.439 0.522 −1.472 0.555

D-penicil:dead 0.528 0.529 −0.490 1.596

value(logSB) 1.266 0.180 0.941 1.615

value(logSB):dead −0.014 0.183 −0.372 0.305
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4.3 Competing Risks (cont’d)

R> Function jm() can fit joint models with competing risks

◃ First, the survival data have to be prepared in the competing risks long format
using function crisk setup(), e.g.,

pbc2.id[pbc2.id$id %in% c(1,2,5), c("id", "years", "status")]

id years status

1 1 1.095170 dead

2 2 14.152338 alive

5 5 4.120578 transplanted

Dynamic Risk Predictions from Joint Models: July 21, 2024, ISCB 45 92



4.3 Competing Risks (cont’d)

pbc2.idCR <- crisk_setup(pbc2.id, statusVar = "status",

censLevel = "alive", nameStrata = "CR")

pbc2.idCR[pbc2.idCR$id %in% c(1,2,5),

c("id", "years", "status", "CR", "status2")]

id years status CR status2

1 1 1.095170 dead dead 1

1.1 1 1.095170 dead transplanted 0

2 2 14.152338 alive dead 0

2.1 2 14.152338 alive transplanted 0

5 5 4.120578 transplanted dead 0

5.1 5 4.120578 transplanted transplanted 1
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4.3 Competing Risks (cont’d)

R> To fit the joint model, we first fit the linear mixed and relative risk models as before

◃ for the latter we use the data in the competing risks long and put the event-type
variable as strata

lmeFit_CR <- lme(log(serBilir) ~ drug * year, data = pbc2,

random = ~ year | id)

CoxFit_CR <- coxph(Surv(years, status2) ~ drug * strata(CR),

data = pbc2.idCR)
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4.3 Competing Risks (cont’d)

R> Then the joint model is fitted with the code

jm(CoxFit_CR, lmeFit_CR, time_var = "year",

functional_forms = ~ value(log(serBilir)):CR)

For more info see
https://drizopoulos.github.io/JMbayes2/

→ Articles → Competing Risks
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4.3 Competing Risks (cont’d)

R> Function jm() can also fit joint models with multi-state processes

◃ this requires an analogous construction of a long dataset for multi-state models,
and

◃ fitting a stratified Cox model

For more info see
https://drizopoulos.github.io/JMbayes2/

→ Articles → Multi-State Processes
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Part V

Dynamic Predictions
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5.1 Survival Probabilities

� Nowadays there is great interest for prognostic models and their application to
personalized medicine

� Examples are numerous

◃ cancer research, cardiovascular diseases, HIV research, . . .

Physicians are interested in accurate prognostic tools
to facilitate medical decision-making
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5.1 Survival Probabilities (cont’d)

� We want to obtain survival probabilities for a new patient j with longitudinal
measurements up to time t

� Example: Patients 2 and 25 from the PBC dataset have 9 and 12 serum bilirubin
measurements, respectively

◃ Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded

� We need to account for the endogenous nature of the covariate

◃ providing measurements up to time point t ⇒ the patient was still alive at time t
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5.1 Survival Probabilities (cont’d)
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5.1 Survival Probabilities (cont’d)

� For a new subject j, we have available measurements up to t

Yj(t) = {yj(s), 0 ≤ s ≤ t}

and we are interested in

πj(u | t) = Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
,

where

◃ where u > t

◃ Dn denotes the training sample
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5.1 Survival Probabilities (cont’d)

� We assume that the joint model has been fitted to the data at hand

� Based on the fitted model, we can estimate the conditional survival probabilities
(Rizopoulos, 2011, Biometrics)
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5.1 Survival Probabilities (cont’d)

� It is convenient to proceed using a Bayesian formulation of the problem ⇒
πj(u | t) can be written as

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
=

∫
Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t), θ
}
p(θ | Dn) dθ

� The first part of the integrand takes the form

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t), θ
}
=

=

∫
Sj

{
u | Mj(u, bj, θ), θ

}
Sj

{
t | Mj(t, bj, θ), θ

} p(bj | T ∗
j > t,Yj(t),θ) dbj
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5.1 Survival Probabilities (cont’d)

� A Monte Carlo estimate of πj(u | t) can be obtained using the following simulation
scheme:

Step 1. draw θ(ℓ) ∼ [θ | Dn]

Step 2. draw b
(ℓ)
j ∼ [bj | T ∗

j > t,Yj(t), θ
(ℓ)]

Step 3. compute π
(ℓ)
j (u | t) = Sj

{
u | Mj(u, b

(ℓ)
j , θ(ℓ)), θ(ℓ)

}/
Sj

{
t | Mj(t, b

(ℓ)
j , θ(ℓ)), θ(ℓ)

}
� Repeat Steps 1–3, ℓ = 1, . . . , L times, where L denotes the number of Monte Carlo
samples
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5.1 Survival Probabilities (cont’d)

� Example: Dynamic predictions of survival probabilities for Patients 2 & 25 from the
PBC dataset: We fit the joint model

� Longitudinal submodel

◃ fixed effects: intercept & natural cubic splines of time with 3 d.f., sex, and
interaction of the time effect with sex

◃ random effects: intercept, natural cubic splines of time with 3 d.f.

� Survival submodel

◃ sex effect + underlying serum bilirubin level
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5.1 Survival Probabilities (cont’d)

� Based on the fitted joint model we estimate πj(u | t) for Patients 2 and 25

� We use 500 Monte Carlo samples, and we took as estimate

π̂j(u | t) = mean{π(ℓ)
j (u | t), ℓ = 1, . . . , L}

and calculated a corresponding 95% pointwise CIs
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5.1 Survival Probabilities (cont’d)
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5.1 Survival Probabilities (cont’d)

−
2

−
1

0
1

2
3

lo
g
(s

e
rB

ili
r)

0 2 4 6 8

Follow−up Time

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Patient 2

−
2

−
1

0
1

2
3

0 2 4 6 8

Follow−up Time

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
u
rv

iv
a
l P

ro
b
a
b
ili

ty

Patient 25

Dynamic Risk Predictions from Joint Models: July 21, 2024, ISCB 45 108



5.1 Survival Probabilities (cont’d)
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5.1 Survival Probabilities (cont’d)
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5.1 Survival Probabilities (cont’d)
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5.1 Survival Probabilities (cont’d)
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5.1 Survival Probabilities (cont’d)
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5.1 Survival Probabilities (cont’d)

R> Individualized predictions of survival probabilities are computed by function
predict() – for example, for Patient 2 from the PBC dataset we have

sfit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],

process = "event", return_newdata = TRUE)

sfit

plot(sfit)
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5.2 Functional Forms

� All previous predictions were based on the standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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5.2 Functional Forms (cont’d)

� We have seen earlier that there are several alternative functional forms (see Section 5.1)

� Relevant questions:

◃ Does the assumed functional form affect predictions?

◃ Which functional form is the most optimal?

� Example: We compare predictions for the longitudinal and survival outcomes under
different parameterizations for Patient 51 from the PBC study
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5.2 Functional Forms (cont’d)
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5.2 Functional Forms (cont’d)

� Predictions based on five joint models for the PBC dataset

◃ the same longitudinal submodel as before, and

◃ relative risk submodels:

hi(t) = h0(t) exp{γD-pnci + α1mi(t)},

hi(t) = h0(t) exp{γD-pnci + α2m
′
i(t)},

hi(t) = h0(t) exp{γD-pnci + α1mi(t) + α2m
′
i(t)}
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5.2 Functional Forms (cont’d)

hi(t) = h0(t) exp

{
γD-pnci + α3

∫ t

0 mi(s)ds

t

}
,

hi(t) = h0(t) exp

{
γD-pnci + α1mi(t) + α3

∫ t

0 mi(s)ds

t

}
,
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5.2 Functional Forms (cont’d)

1yr−window Predictions
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5.2 Functional Forms (cont’d)

The chosen functional form can influence the derived
predictions
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5.2 Functional Forms (cont’d)

� We compare the models using the information criteria

DIC WAIC LPML

area 4276.422 4568.705 −2713.276

value 4261.051 4574.446 −2763.496

value + area 4268.458 4604.367 −2639.927

value + slope 4274.964 4644.614 −2666.901

slope 4519.831 4891.027 −2896.365

� We continue with the area functional form
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5.3 Discrimination

� We have seen how to calculate predictions of conditional survival probabilities

◃ however, to use these predictions in practice we need to evaluate their accuracy

� Predictive accuracy measures

◃ Discrimination: sensitivity, specificity, ROC and AUC

◃ Calibration: comparison between predicted and observed probabilities

◃ Overall: combination of discrimination and calibration
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5.3 Discrimination (cont’d)

� To assess the discriminative power of the model, we assume the following setting

◃ using the available longitudinal data up to time t,

◃ we are interested in events occurring in a medically-relevant interval (t, t +∆t]

� Based on the fitted joint model and for a particular threshold value c ∈ [0, 1], we can
term subject j a case if

πj(t +∆t | t) ≤ c
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5.3 Discrimination (cont’d)

� Following, we can define sensitivity

SN∆t
t (c) = Pr

{
πj(t +∆t | t) ≤ c | T ∗

j ∈ (t, t +∆t]
}
,

specificity

SP∆t
t (c) = Pr

{
πj(t +∆t | t) > c | T ∗

j > t +∆t
}
,

and the corresponding AUC

AUC∆t
t

= Pr
[
πi(t +∆t | t) < πj(t +∆t | t) | {T ∗

i ∈ (t, t +∆t]} ∩ {T ∗
j > t +∆t}

]
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5.3 Discrimination (cont’d)

� To estimate the sensitivity, specificity and the AUC, we need to account for censoring

� Two main approaches

◃ model-based weights

◃ inverse probability of censoring weighting (IPCW)
(using Kaplan-Meier or other non-parametric estimators)
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5.3 Discrimination (cont’d)

� IPCW

◃ Advantage: it provides unbiased estimates even when the model is misspecified

◃ Disadvantage: it requires that the model for the weights is correct

* in settings where joint models are used, challenging because censoring may
depend on the longitudinal outcomes in a complex manner
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5.3 Discrimination (cont’d)

� Model-based Weights

◃ Advantage: it allows censoring to depend on the longitudinal history (in any
possible manner)

◃ Disadvantage: it requires that the model is well calibrated
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5.3 Discrimination (cont’d)

Because censoring often depends on the longitudinal history,
we opt for model-based weights
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5.3 Discrimination (cont’d)

� For the R(t) subjects at risk at time t (i.e., Ti > t), sensitivity is estimated as

ŜN
∆t

t (c) =

∑
i:Ti≥t

I{π̂i(t +∆t | t) ≤ c} × Ωi∑
i:Ti≥t

Ωi

,

where

Ωi =

 1, if Ti ≤ t +∆t and δi = 1

1− π̂i(t +∆t | Ti), if Ti ≤ t +∆t and δi = 0
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5.3 Discrimination (cont’d)

� And specificity as

ŜP
∆t

t (c) =

∑
i:Ti≥t

I{π̂i(t +∆t | t) > c} × Φi∑
i:Ti≥t

Φi

,

where

Φi =

 1, if Ti > t +∆t

π̂i(t +∆t | Ti), if Ti ≤ t +∆t and δi = 0
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5.3 Discrimination (cont’d)

� Example: For the joint model fitted to the PBC dataset we have seen earlier

◃ we estimate dynamic sensitivity, specificity and the ROC curve

◃ at follow-up times t = 3, 5, and 7

◃ for ∆t = 2
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5.3 Discrimination (cont’d)
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5.3 Discrimination (cont’d)
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5.3 Discrimination (cont’d)
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5.3 Discrimination (cont’d)

� The corresponding AUCs are

Time AUC

t = 3 0.86

t = 5 0.80

t = 7 0.76
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5.3 Discrimination (cont’d)

R> For a fitted joint model, we calculate the ROC curve and the corresponding AUC
with the syntax

# model-based weights

roc <- tvROC(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)

# Kaplan-Meier IPCW

roc <- tvROC(jointFit, newdata = pbc2, Tstart = 5, Dt = 2,

type_weights = "IPCW")

roc

plot(roc)

tvAUC(roc)
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5.4 Prediction Error

� We have covered discrimination

◃ calibration assessed via calibration plots

� In standard survival analysis there are measures that combine the two concepts into
one metric

◃ the most-well know measure that achieves that is the Brier score
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5.4 Prediction Error (cont’d)

� In the joint modeling framework, we need to take into account the dynamic nature of
the longitudinal marker

� The expected quadratic error of prediction (Brier score) has the form

PE(t +∆t | t) = E
[
{Ni(t +∆t)− πi(t +∆t | t)}2

]
where

◃ Ni(t) = I(T ∗
i > t) is the “true” event status at time t
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5.4 Prediction Error (cont’d)

� An estimator for PE(t +∆t | t) that accounts for censoring

P̂E(t +∆t | t) = {R(t)}−1
∑
i:Ti≥t

I(t +∆t > u){1− π̂i(t +∆t | t)}2

+ δiI(Ti < t +∆t){0− π̂i(t +∆t | t)}2

+ (1− δi)I(Ti < t +∆t)
[
π̂i(t +∆t | Ti){1− π̂i(t +∆t | t)}2

+{1− π̂i(t +∆t | Ti)}{0− π̂i(t +∆t | t)}2
]
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5.4 Prediction Error (cont’d)

where

◃ R(t) denotes the number of subjects at risk at t

◃ red part: subjects still event-free at t +∆t

◃ blue part: subjects who had the event before t +∆t

◃ green part: subject censored before t +∆t

� The weights used to account for censoring are model-based

◃ censoring is allowed to depend on the longitudinal history in any possible manner

◃ the model needs to be well specified
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5.4 Prediction Error (cont’d)

� Example: For the joint model fitted to the PBC dataset we have seen earlier

◃ we estimate the dynamic Brier score

◃ at follow-up times t = 3, 5, and 7

◃ for ∆t = 2
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5.4 Prediction Error (cont’d)

� The estimated Brier scores are

Time Brier Score

t = 3 0.10

t = 5 0.11

t = 7 0.12
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5.4 Prediction Error (cont’d)

R> For a fitted joint model, we calculate the time-varying Brier score with the syntax

# model-based weights

predErr <- tvBrier(jointFit, newdata = pbc2, Tstart = 5, Dt = 2)

# Kaplan-Meier IPCW

predErr <- tvBrier(jointFit, newdata = pbc2, Tstart = 5, Dt = 2,

type_weights = "IPCW")

predErr
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5.5 Cumulative Risk Probabilities

� We have presented dynamic predictions for a single longitudinal outcome and one
event

� Extensions:

◃ multiple longitudinal outcomes

◃ competing risks

How can we account for the above?
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5.5 Cumulative Risk Probabilities (cont’d)

� Suppose that for a new subject j, we have measurements from I multiple
longitudinal outcomes up to time point t. The data for the ith marker

Yji(t) = {yji(tjik); 0 ≤ tjik ≤ t, k = 1, 2, . . . , nji}

with Yj(t) = {Yj1(t), . . . ,YjI(t)}

� In the competing risk setting we are interested in predicting the cause-specific
cumulative incidence probabilities

Pr
{
t < T ∗

j ≤ t +∆t, δ∗j = k | T ∗
j > t,Yj(t),Dn

}
for k = 1, 2, . . . , K.
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5.5 Cumulative Risk Probabilities (cont’d)

� Similarly to the single event case, to account for variability in the model parameters

Pr
{
t < T ∗

j ≤ t +∆t, δ∗j = k | T ∗
j > t,Yj(t),Dn

}
=

∫
Pr

{
t < T ∗

j ≤ t +∆t, δ∗j = k | T ∗
j > t,Yj(t); θ

}
p(θ | Dn)dθ

� The first part of the integrand is the cumulative incidence (risk) for the kth event
given that the individual is event-free at time t

Fkj(t +∆t | t) = Pr
{
t < T ∗

j ≤ t +∆t, δ∗j = k | T ∗
j > t,Yj(t); θ

}
=∫

Pr
{
t < T ∗

j ≤ t +∆t, δ∗j = k | T ∗
j > t,Yj(t), bj; θ

}
p{bj | T ∗

j > t,Yj(t); θ}dbj

where bj represents the random effects for all longitudinal markers.
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5.5 Cumulative Risk Probabilities (cont’d)

� A Monte Carlo estimate of Fkj(t +∆t | t) can be obtained using the following
simulation scheme:

Step 1. draw θ(l) ∼ [θ | Dn]

Step 2. draw b
(l)
j ∼ [bj | T ∗

j > t,Yj(t);θ]

Step 3. compute

F
(l)
kj (t +∆t | t) = Pr

{
t < T ∗

j ≤ t +∆t, δ∗j = k | T ∗
j > t,Yj(t), b

(l)
j ; θ(l)

}

� Repeat Steps 1-3, l = 1, . . . , L times, where L denotes the number of Monte Carlo
samples.
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5.5 Cumulative Risk Probabilities (cont’d)

� Example: Dynamic predictions of survival probabilities for Patient 2 from the PBC
dataset

� Longitudinal submodels

◃ log(ser Bilir)

* fixed effects: intercept, drug, linear and squared time, and interactions of linear
and square time with drug

* random effects: intercept and linear and squared time

◃ prothrombin

* fixed effects: intercept, drug, linear time, interaction of time with drug

* random effects: intercept and linear and squared time
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5.5 Cumulative Risk Probabilities (cont’d)

� Example: Dynamic predictions of survival probabilities for Patient 2 from the PBC
dataset

� time to death or transplantation: relative risk model

◃ competing risks: transplantation and death

◃ baseline covariates: drug and age different per competing risk

◃ time-varying: current value log(ser Bilir) and prothrombin different per competing
risk
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5.5 Cumulative Risk Probabilities (cont’d)

R> Function jm() can fit joint models with multiple longitudinal outcomes and
competing risks, with the survival data prepared in the competing risks long format
using function crisk setup(), e.g.,

pbc2.id[pbc2.id$id %in% c(1,2,5), c("id", "years", "status")]

id years status

1 1 1.095170 dead

2 2 14.152338 alive

5 5 4.120578 transplanted

Dynamic Risk Predictions from Joint Models: July 21, 2024, ISCB 45 144



5.5 Cumulative Risk Probabilities (cont’d)

pbc2.idCR <- crisk_setup(pbc2.id, statusVar = "status",

censLevel = "alive", nameStrata = "CR")

pbc2.idCR[pbc2.idCR$id %in% c(1,2,5),

c("id", "years", "status", "CR", "status2")]

id years status CR status2

1 1 1.095170 dead dead 1

1.1 1 1.095170 dead transplanted 0

2 2 14.152338 alive dead 0

2.1 2 14.152338 alive transplanted 0

5 5 4.120578 transplanted dead 0

5.1 5 4.120578 transplanted transplanted 1
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5.5 Cumulative Risk Probabilities (cont’d)

R> For the competing risk model we use the data in the competing risks long format
and put the event-type variable CR as strata

# Fit the competing risk cox model

CoxFit_CR <- coxph(Surv(years, status2) ~ (age + drug) * strata(CR),

data = pbc2.idCR)
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5.5 Cumulative Risk Probabilities (cont’d)

R> We can create a list() for functional forms for each longitudinal outcome to
ensure an interaction with the event-type variable

# Functional forms

CR_forms <- list(

"log(serBilir)" = ~ value(log(serBilir)):CR,

"prothrombin" = ~ value(prothrombin):CR

)
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5.5 Cumulative Risk Probabilities (cont’d)

R> We then fit two linear mixed models for log(ser Bilir) and prothrombin

fm1 <- lme(log(serBilir) ~ poly(year, 2) * drug, data = pbc2,

random = ~ poly(year, 2) | id)

fm2 <- lme(prothrombin ~ year * drug, data = pbc2,

random = ~ year | id)
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5.5 Cumulative Risk Probabilities (cont’d)

R> The model is fitted using the code

# Fit the competing risk joint model

jFit_CR <- jm(CoxFit_CR, list(fm1, fm2), time_var = "year",

functional_forms = CR_forms,

n_iter = 25000L, n_burnin = 5000L, n_thin = 5L)
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5.5 Cumulative Risk Probabilities (cont’d)

R> Individualized predictions of survival probabilities are computed by function
predict().

R> In contrast to the case with a single event, two datasets (with longitudinal and event
information, respectively) are required in a named list(). For example, for Patient
2 from the PBC dataset we have

ND_long <- pbc2[pbc2$id == 2, ]

ND_event <- pbc2.idCR[pbc2.idCR$id == 2, ]

ND <- list(newdataL = ND_long, newdataE = ND_event)
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5.5 Cumulative Risk Probabilities (cont’d)

R> Two datasets (with longitudinal and event information, respectively) are required in
a named list(). For example, for Patient 2 from the PBC dataset we have

R> plot() is used to depict the evolution of the longitudinal outcomes and the
cumulative risk probabilities of the competing risks

predLong <- predict(jFit_CR, newdata = ND, return_newdata = TRUE,

times = seq(censTimes[i], 10, length = 25))

predEvent <- predict(jFit_CR, newdata = ND, return_newdata = TRUE,

process = "event",

times = seq(censTimes[i], 10, length = 25))

plot(predLong, predEvent, outcomes = 1:2)
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5.5 Cumulative Risk Probabilities (cont’d)

� Based on the fitted joint model we estimate Fkj(t +∆t | t) for Patient 2

� We use 500 Monte Carlo samples, and we took as estimate

F̂kj(t +∆t | t) = 1

L

L∑
l=1

F
(l)
kj (t +∆t | t)

and calculated a corresponding 95% pointwise CIs
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5.5 Cumulative Risk Probabilities (cont’d)
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5.5 Cumulative Risk Probabilities (cont’d)
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5.5 Cumulative Risk Probabilities (cont’d)
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5.5 Cumulative Risk Probabilities (cont’d)
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5.5 Cumulative Risk Probabilities (cont’d)
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5.5 Cumulative Risk Probabilities (cont’d)
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5.6 Discrimination with Competing Risks

� We have seen how to calculate conditional cumulative incidence functions
Fkj(t +∆t | t) on the basis of a competing risk joint model

◃ Similarly to the single event case, their accuracy can be evaluated through
appropriately defined measures

� Predictive accuracy measures

◃ Discrimination: sensitivity, specificity, ROC and AUC

◃ Calibration: comparison between predicted and observed probabilities

◃ Overall: combination of discrimination and calibration
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5.6 Discrimination with Competing Risks (cont’d)

� Without loss of generality, let us focus on the first event, δ∗j = 1 (main event)

� Definition of cases and controls is more challenging in the competing risk setting

◃ Cases →
{
T ∗
j ∈ (t, t +∆t], δ∗j = 1

}
◃ Controls → ??
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5.6 Discrimination with Competing Risks (cont’d)

� As in the case of a single event, to assess the discriminative power of the model, we
assume the following setting

◃ available longitudinal information from multiple markers up to time t,

◃ we are interested in events occurring in a medically-relevant interval (t, t +∆t]
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5.6 Discrimination with Competing Risks (cont’d)

� Based on a fitted joint model and for a specific threshold c ∈ [0, 1], we can term a
subject j a case if

F1j(t +∆t | t) ≥ c

� Definition of sensitivity should be clear

SN∆t
t (c) = Pr

{
F1j(t +∆t | t) ≥ c | T ∗

j ∈ (t, t +∆t], δ∗j = 1
}
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5.6 Discrimination with Competing Risks (cont’d)

� Controls may be defined via several ways, but here we define controls as subjects
who are not cases, i.e.,

◃ Event-free at t +∆t or

◃ Experienced a competing event within (t, t +∆t]

� Definition of specificity

SP∆t
t (c) = Pr

[
F1j(t +∆t | t) ≤ c |

{
T ∗
j > t +∆t

}
∪
{
T ∗
j ∈ (t, t +∆t], δ∗j ̸= 1

}]
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5.6 Discrimination with Competing Risks (cont’d)

� The previous definitions of sensitivity and specificity give rise to the following
definition of the AUC

AUC∆t
t = Pr

[
F1i(t +∆t | t) ≥ F1j(t +∆t | t)

| T ∗
i ∈ (t, t +∆t], δ∗i = 1,

{
T ∗
j > t +∆t

}
∪
{
T ∗
j ∈ (t, t +∆t], δ∗j ̸= 1

}]

� The probability of observing a pair of subjects (i, j) where subject i has higher
cumulative risk for the main event compared to subject j, given that subject i is a
case and subject j a control
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5.6 Discrimination with Competing Risks (cont’d)

� Subjects censored within (t, t +∆t] have a missing status (cases or controls?)

� Blanche et al. (2013, 2014) derived IPCW estimators, accounting for missingness due
to right censoring.

� Observed cases and controls were weighed by the probability of being observed
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5.6 Discrimination with Competing Risks (cont’d)

� Sensitivity can be estimated by

ŜN
∆t

t (c) =

∑n
i=1 I

{
F̂1j(t +∆t | t) ≥ c

}
I {Ti ∈ (t, t +∆t], δi = 1} × Ωi∑n

i=1 I {Ti ∈ (t, t +∆t], δi = 1} × Ωi

� Let Ĝ() be the Kaplan-Meier estimator of the survival function of the censoring
distribution

� Ωi =
Ĝ(Ti)

Ĝ(t)
denotes the estimated conditional probability of not being censored at Ti

conditional on being uncensored at t

� Recall that Ti = min(T ∗
i , Ci) and δi = δ∗i I(T

∗
i ≤ Ci) represent the observed survival

time and event type, respectively.
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5.6 Discrimination with Competing Risks (cont’d)

� Subjects censored before t are only used to estimate the weights

� Blanche et al. (2014) derived similar estimators for the specificity and the AUC

� This procedure is different than the one we used before (model-based weighting)

� Model-based weights and IPCW have advantages and disadvantages (see our previous
discussion)
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5.6 Discrimination with Competing Risks (cont’d)

� As mentioned before, a metric that combines discrimination and calibration is the
Brier score

� In competing risks, this is defined as

PE(t +∆t | t) = E
[
{F1j(t +∆t | t)− T ∗

i ∈ (t, t +∆t], δ∗i = 1}2 | T ∗
i > t

]

� Blanche et al. (2014) derived a similar IPCW estimator based on the Kaplan-Meier
distribution of censoring
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5.6 Discrimination with Competing Risks (cont’d)

R> Not currently implemented in package JMbayes2

R> tvAUC() and tvBrier() will be extended soon to competing risks
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Part VI

Closing
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6.1 Concluding Remarks

� When we need joint models for longitudinal and survival outcomes?

◃ to handle endogenous time-varying covariates in a survival analysis context

◃ to account for nonrandom dropout in a longitudinal data analysis context

� How joint models work?

◃ a mixed model for the longitudinal outcome

◃ a relative risk model for the event process

◃ explain interrelationships with shared random effects
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6.1 Concluding Remarks (cont’d)

� Where to pay attention when defining joint models?

◃ model flexibly the subject-specific evolutions for the longitudinal outcome

◃ consider how to model the association structure between the two processes
⇒ Functional Forms

� Extensions

◃ under the full conditional independence assumption we can easily extend the basic
joint model

◃ multiple longitudinal outcomes and/or multiple failure times

◃ though more computationally intensive
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6.1 Concluding Remarks (cont’d)

� Individualized predictions

◃ joint models can provide subject-specific predictions for the longitudinal and
survival outcomes

◃ these are dynamically updated as extra information is recorded for the subjects

◃ joint models constitute an excellent tool for personalized medicine
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The End!
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Part VII

Practicals
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7.1 R Practical: Dynamic Predictions

� We will work with the Liver Cirrhosis dataset

◃ a placebo-controlled randomized trial on 488 liver cirrhosis patients

� Start R and load package JMbayes2, using library("JMbayes2")

� The longitudinal (long format) and survival information for the liver cirrhosis patients
can be found in data frames prothro and prothros, respectively

◃ the variables that we will need are:
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7.1 R Practical: Dynamic Predictions (cont’d)

◃ prothro

* id: patient id number

* pro: prothrombin measurements

* time: follow-up times in years

* treat: randomized treatment

◃ prothros

* Time: observed event times in years

* death: event indicator with 0 = ‘alive’, and 1 = ‘dead’

* treat: randomized treatment
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7.1 R Practical: Dynamic Predictions (cont’d)

� We will fit the following joint model to the Liver Cirrhosis dataset

◃ longitudinal submodel: linear subject-specific random slopes for prothrombin levels
allowing for different average evolutions in the two treatment groups

yi(t) = mi(t) + εi(t)

mi(t) = β0 + β1t + β2{Trti × t} + bi0 + bi1t

◃ survival submodel: treatment effect & true effect of prothrobin

hi(t) = h0(t) exp{γTrti + αmi(t)}
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7.1 R Practical: Dynamic Predictions (cont’d)

� T1: Fit the linear mixed model using lme(), the Cox model using coxph(), and the
corresponding joint model using jm() (see pp.41–43)

� We are interested in producing predictions of survival probabilities for Patient 155

� T2: Extract the data of Patient 155 using the code

dataP155 <- prothro[prothro$id == 155, ]
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7.1 R Practical: Dynamic Predictions (cont’d)

� T3: Using the first measurement of Patient 155, and the fitted joint model calculate
his conditional survival probabilities using function predict() and plot it using the
plot method (see p.109)

◃ set the Time variable equal to the time of the first measurement

◃ set the death variable equal to 0

� T4: Combine the predictions in one plot

◃ save as the object Spred the survival predictions, and Lpred the longitudinal ones

◃ use plot(Lpred, Spred)
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7.1 R Practical: Dynamic Predictions (cont’d)

� T5: Repeat the same procedure by including each time the next measurement of
Patient 155 and see how his survival probabilities change over time as extra
prothrombin measurements are recorded

◃ first using only the first measurement,

◃ and following update the predictions after each new longitudinal measurement has
been recorded

◃ use a for loop to achieve this
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7.1 R Practical: Dynamic Predictions (cont’d)

� T6: Calculate the ROC and the corresponding AUC under the postulated model at
year 3 and with a 1-year window (see p.130)

◃ using model-based weights and IPCW

� T7: Calculate the prediction error for the same period (see p.137)

◃ using model-based weights and IPCW

Dynamic Risk Predictions from Joint Models: July 21, 2024, ISCB 45 188



7.2 R Practical: Dynamic Predictions CIFs

� We will work with the Mayo Clinic Primary Biliary Cirrhosis Data

◃ A placebo-controlled randomized trial on 312 patients with primary biliary cirrhosis

� Start R and load package JMbayes2, using library(”JMbayes2”)

� The longitudinal (long format) and survival information for the primary biliary
cirrhosis patients can be found in data frames pbc2 and pbc2.id, respectively

◃ the variables that we will need are:
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7.2 R Practical: Dynamic Predictions CIFs (cont’d)

� pbc2

◃ id: patient id number

◃ serBilir: serum bilirubin in mg/dl

◃ prothrombin: prothrombin time in seconds

◃ year: measurement times (in years)

◃ drug: treatment group (placebo and D-penicil)

� pbc2.id

◃ years: patient id number

◃ status2: a factor with levels alive, transplanted and dead

◃ drug: treatment group (placebo and D-penicil)

◃ age: at baseline (in years)
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7.2 R Practical: Dynamic Predictions CIFs (cont’d)

� We will fit the following joint model to the Mayo Clinic Primary Biliary Cirrhosis
dataset

◃ Longitudinal submodel for log(serBilir): linear and quadratic subject-specific
random slopes for log bilirubin levels allowing for different average evolutions in
the two treatment groups

yi1(t) = mi1(t) + ϵi1(t)

mi1(t) = β0 + β1t + β2t
2 + β3{Drugi × t} + β4{Drugi × t2}

+ bi0 + bi1t + bi0t
2

◃ Longitudinal submodel for prothrombin: linear subject-specific random slopes for
prothrombin levels allowing for different average evolutions in the two treatment
groups

yi2(t) = mi2(t) + ϵi2(t)

mi2(t) = β0 + β1t + β2{Drugi × t} + bi0 + bi1t
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7.2 R Practical: Dynamic Predictions CIFs (cont’d)

� We will fit the following joint model to the Mayo Clinic Primary Biliary Cirrhosis
dataset

◃ Cause-specific hazard for death

hd
i (t) = hd

0(t) exp{γd1Agei + γd2Drugi + αd1mi1(t) + αd2mi2(t)}

◃ Cause-specific hazard for transplantation

htr
i (t) = htr

0 (t) exp{γtr1Agei + γtr2Drugi + αtr1mi1(t) + αtr2mi2(t)}
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7.2 R Practical: Dynamic Predictions CIFs (cont’d)

� T1: Fit the longitudinal models for log(serBilir) and prothrombin using lme()

◃ poly(year, 2) can automatically construct linear and quadratic slopes

� T2: Use crisk setup to appropriately construct a competing risk format dataset

◃ specify the event type variable, the level corresponding to right censoring and a
name for the strata variable to be constructed
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7.2 R Practical: Dynamic Predictions CIFs (cont’d)

� T3: Fit a coxph() model to the new dataset allowing for interaction with the event
type

� Create a named list() for each longitudinal outcome to ensure an interaction with
the event-type variable

CR_forms <- list(

"log(serBilir)" = ~ value(log(serBilir)):CR,

"prothrombin" = ~ value(prothrombin):CR

)
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7.2 R Practical: Dynamic Predictions CIFs (cont’d)

� T4: Fit the competing risk joint model for the two longitudinal markers using jm()

by providing the objects from lme() and coxph()

◃ Use the argument functional forms to provide the list()

� T5: Extract the longitudinal and competing risk data of Patient 2 using the code

ND_long <- pbc2[pbc2$id == 2, ]

ND_event <- pbc2.idCR[pbc2.idCR$id == 2, ]
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7.2 R Practical: Dynamic Predictions CIFs (cont’d)

� T6: Use the first observation in the longitudinal data

◃ Set the years equal to 0.2

◃ Set the status2 equal to 0 (event-free at 0.2 years)

◃ Combine the datasets in a named list()

ND <- list(newdataL = ND_long, newdataE = ND_event)

◃ Use predict() to calculate predictions for the cumulative risk probabilities and
future longitudinal values for the two markers up to 10 years since baseline

* Use newdata = ND in predict() and process = "event" for cumulative
risk predictions
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7.2 R Practical: Dynamic Predictions CIFs (cont’d)

� T7: Combine the predictions in one plot

◃ Save as the object predEvent for the survival predictions, and predLong for the
longitudinal ones

◃ Use plot(predLong, predEvent, outcomes = 1:2)

� T8: Plot the predictions about future longitudinal outcomes for the two markers

par(mfrow = c(1,2))

plot(predLong, outcomes = 1)

plot(predLong, outcomes = 2)
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7.2 R Practical: Dynamic Predictions CIFs (cont’d)

� Repeat the same procedure by keeping data of Patient 2 up to 0.2, 0.5, 1, 5, 8 years
since baseline, respectively, and observe how their survival probabilities change over
time as extra longitudinal measurements are recorded

◃ first keep data up to 0.2 years,

◃ and following update the predictions after new longitudinal information has been
recorded

◃ use a for loop to achieve this
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