An Introduction to the Joint Modeling of Longitudinal and Survival Data, with Applications in R

Dimitris Rizopoulos

Department of Biostatistics, Erasmus University Medical Center

d.rizopoulos@erasmusmc.nl

Data Science in Health Jheronimus Academy of Data Science May 17, 2019, Den Bosch

Contents

1	Introduction	1
	1.1 Motivating Longitudinal Studies	2
	1.2 Research Questions	10
	1.3 Recent Developments	13
2	Linear Mixed-Effects Models	15
	2.1 Features of Longitudinal Data	16
	2.2 The Linear Mixed Model	17
	2.3 Mixed-Effects Models in R	25

2.4	Missing Data in Longitudinal Studies	•	•	 -	•	•	•	•	 •	•	•	•		 -	•		31
2.5	Missing Data Mechanisms					•		•				•				-	34

3 Relative Risk Models

3.1	Features of Survival Data .	 •	 •	•	•	•	• •	•	•	•	•	•	•	-	-	•	-	•	•	•	-	-	•	•	40
3.2	Relative Risk Models	 •	 •	•	•	•	• •	•	•	-	•	-	•	•	•	•	•	•	•	•	•	•	•	•	43
3.3	Relative Risk Models in R .	 •	 •		•		•	-	-	•	•	-	•	•	•	•	•	•	•	•	•	۰	•	•	46
3.4	Time Dependent Covariates		 •	•	•	•	• •	•	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	48
3.5	Extended Cox Model	 -				•			-	•		-	•	-	-		-		-		-	-			53

39

4	The Basic Joint Model	58
	4.1 Joint Modeling Framework	59
	4.2 A Comparison with the TD Cox	67
	4.3 Joint Models in R	70
	4.4 Connection with Missing Data	76

5	Closing	81
	5.1 Concluding Remarks	82
	5.2 Additional References	86
	5.3 Medical Papers with Joint Modeling	94
Pr	racticals	96

Practicals

Practical 1: A Simple Joint Model	-							-		-	-		-			-		-	-	-		-			-			9'	7
-----------------------------------	---	--	--	--	--	--	--	---	--	---	---	--	---	--	--	---	--	---	---	---	--	---	--	--	---	--	--	----	---

- Often in follow-up studies different types of outcomes are collected
- Explicit outcomes
 - ▷ multiple longitudinal responses (e.g., markers, blood values)
 - ▷ time-to-event(s) of particular interest (e.g., death, relapse)
- Implicit outcomes
 - ▷ missing data (e.g., dropout, intermittent missingness)
 - \triangleright random visit times

- Methods for the separate analysis of such outcomes are well established in the literature
- Survival data:
 - ▷ Cox model, accelerated failure time models,
- Longitudinal data
 - ▷ mixed effects models, GEE, marginal models, ...

Purpose of this course is to introduce the basics of

Joint Models for Longitudinal and Survival Data

- Goals: After this course participants will be able to
 - ▷ identify settings in which a joint modeling approach is required,
 - \triangleright construct and fit an appropriate joint model, and
 - > correctly interpret the obtained results
- The course will be explanatory rather than mathematically rigorous
 - emphasis is given on sufficient detail in order for participants to obtain a clear view on the different joint modeling approaches, and how they should be used in practice

• Part I: Introduction

- > Data sets that we will use throughout the course
- Categorization of possible research questions
- Part II: (brief) Review of Linear Mixed Models
 - > Features of repeated measurements data
 - Linear mixed models
 - ▷ Missing data in longitudinal studies

- Part III: (brief) Review of Relative Risk Models
 - ▷ Features of survival data
 - Relative risk models
 - ▷ Time-dependent covariates
- Part IV: The Basic Joint Model
 - \triangleright Definition
 - Estimation & Inference
 - Connection with the missing data framework

- \bullet Lectures & short software practicals using R package JM and/or JMbayes
- Material (also available in http://www.drizopoulos.com/):
 - \triangleright Course Notes
 - \triangleright R code in soft format
- Within the course notes there are several examples of R code which are denoted by the symbol 'R> '

- Joint modeling sources*
 - ▷ Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data, with Applications in R. Boca Raton: Chapman & Hall/CRC.
 - Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G. (2009). Longitudinal Data Analysis. Handbooks of Modern Statistical Methods. Boca Raton: Chapman & Hall/CRC, Chapter 15.
 - Wu, L. (2009). Mixed Effects Models for Complex Data. Boca Raton: Chapman & Hall/CRC, Chapter 8.
 - ▷ Ibrahim, J., Chen, M.-H. and Sinha, D. (2001). Bayesian Survival Analysis. New York: Springer-Verlag, Chapter 7.

* extra references of papers using joint modeling available at pp. 86–93.

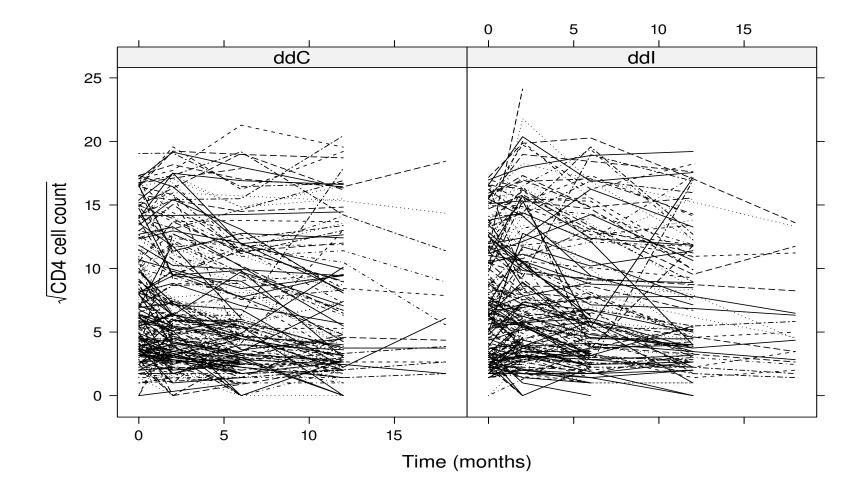
- Useful material for package **JM** can be found in the web sites:
 - > http://jmr.r-forge.r-project.org [R code used in the book]
 - > https://eur.academia.edu/DimitrisRizopoulos/Teaching-Documents
 [additional R script files]
- Useful material for package JMbayes
 - b a paper describing the current capabilities of the package is available on JSS http://dx.doi.org/10.18637/jss.v072.i07
- Blog about joint modeling http://iprogn.blogspot.nl/

- Other software packages capable of fitting joint models
 - ▷ in **R**: **joineR** (by Philipson et al.), **Icmm** (by Proust-Lima et al.)
 - b in SAS: %JM macro (by Garcia-Hernandez and Rizopoulos http://www.jm-macro.com/), %JMFit macro (by Zhang et al.)
 - ▷ in **STATA**: **stjm** (by Crowther)

Chapter 1 Introduction

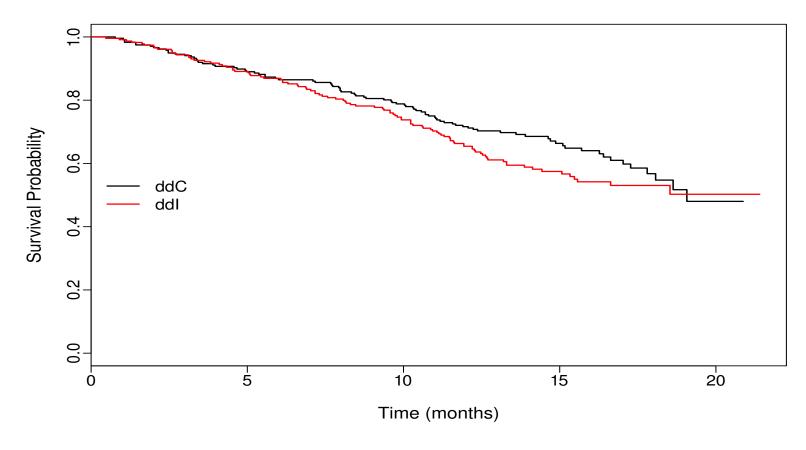
- AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine therapy (AZT) (Abrams et al., NEJM, 1994)
- The aim of this study was to compare the efficacy and safety of two alternative antiretroviral drugs, didanosine (ddl) and zalcitabine (ddC)
- Outcomes of interest:
 - \triangleright time to death
 - ▷ randomized treatment: 230 patients ddl and 237 ddC
 - > CD4 cell count measurements at baseline, 2, 6, 12 and 18 months
 - \triangleright prevOI: previous opportunistic infections

1.1 Motivating Longitudinal Studies (cont'd)



1.1 Motivating Longitudinal Studies (cont'd)

Kaplan–Meier Estimate

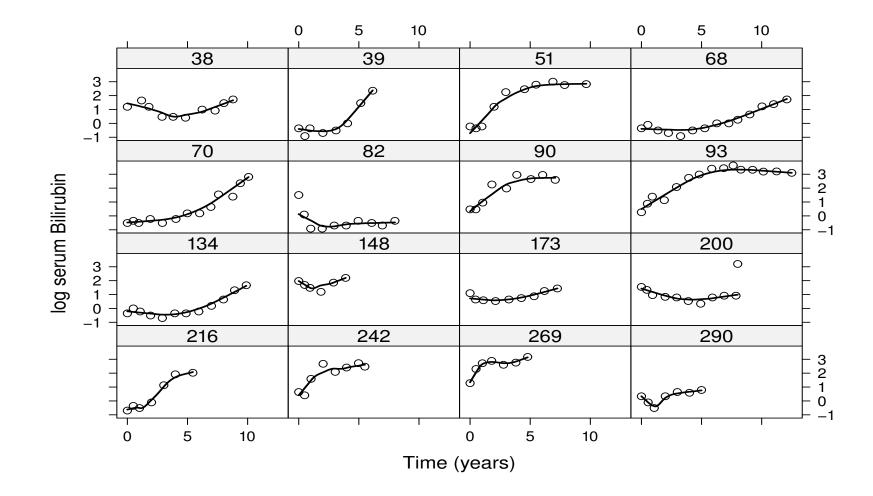


• Research Questions:

- ▷ How strong is the association between CD4 cell count and the risk for death?
- ▷ Is CD4 cell count a good biomarker?
 - * if treatment improves CD4 cell count, does it also improve survival?

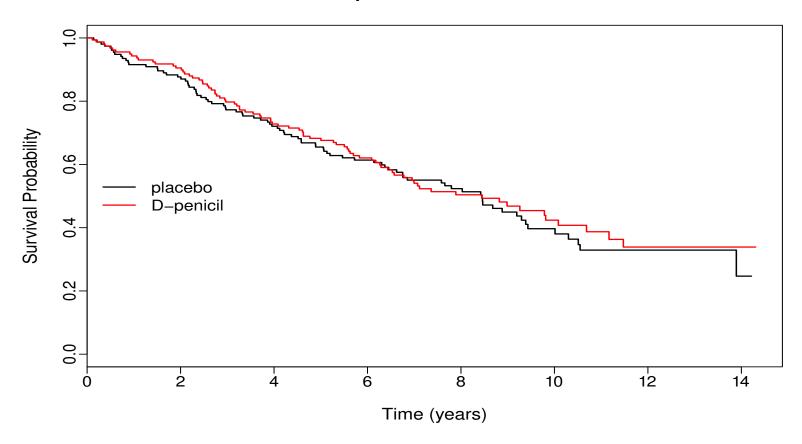
- PBC: Primary Biliary Cirrhosis:
 - ▷ a chronic, fatal but rare liver disease
 - > characterized by inflammatory destruction of the small bile ducts within the liver
- Data collected by Mayo Clinic from 1974 to 1984 (Murtaugh et al., Hepatology, 1994)
- Outcomes of interest:
 - ▷ time to death and/or time to liver transplantation
 - ▷ randomized treatment: 158 patients received D-penicillamine and 154 placebo
 - Iongitudinal serum bilirubin levels

1.1 Motivating Longitudinal Studies (cont'd)



1.1 Motivating Longitudinal Studies (cont'd)

Kaplan–Meier Estimate



• Research Questions:

- > How strong is the association between bilirubin and the risk for death?
- b How the observed serum bilirubin levels could be utilized to provide predictions of survival probabilities?
- ▷ Can bilirubin discriminate between patients of low and high risk?

- Depending on the questions of interest, different types of statistical analysis are required
- We will distinguish between two general types of analysis
 - > separate analysis per outcome
 - ▷ joint analysis of outcomes
- Focus on each outcome separately
 - > does treatment affect survival?
 - ▷ are the average longitudinal evolutions different between males and females?

▷...

- Focus on multiple outcomes
 - Complex hypothesis testing: does treatment improve the average longitudinal profiles in all markers?
 - Complex effect estimation: how strong is the association between the longitudinal evolution of CD4 cell counts and the hazard rate for death?
 - > Association structure among outcomes:
 - * how the association between markers evolves over time (evolution of the association)
 - * how marker-specific evolutions are related to each other (association of the evolutions)

Prediction: can we improve prediction for the time to death by considering all markers simultaneously?

Handling implicit outcomes: focus on a single longitudinal outcome but with dropout or random visit times

- Up to now emphasis has been
 - restricted or coerced to separate analysis per outcome
 - ▷ or given to naive types of joint analysis (e.g., last observation carried forward)
- Main reasons
 - Iack of appropriate statistical methodology
 - Iack of efficient computational approaches & software

- However, recently there has been an explosion in the statistics and biostatistics literature of joint modeling approaches
- Many different approaches have been proposed that
 - ▷ can handle different types of outcomes
 - \triangleright can be utilized in pragmatic computing time
 - \triangleright can be rather flexible
 - > most importantly: can answer the questions of interest

Chapter 2

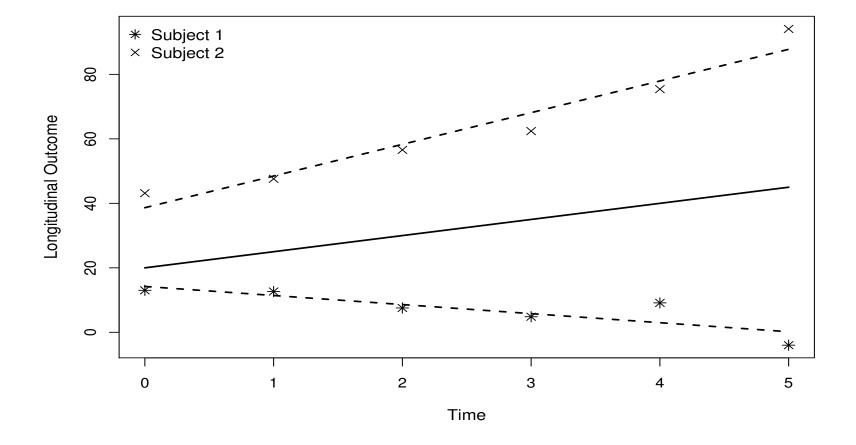
Linear Mixed-Effects Models

- Repeated evaluations of the same outcome in each subject in time
 - ▷ CD4 cell count in HIV-infected patients
 - > serum bilirubin in PBC patients

Measurements on the same subject are expected to be (positively) correlated

• This implies that standard statistical tools, such as the *t*-test and simple linear regression that assume independent observations, are not optimal for longitudinal data analysis.

• **Basic idea:** Each subject in the population has her own subject-specific mean response profile over time



• The evolution of each subject in time can be described by a linear model

$$y_{ij} = \tilde{\beta}_{i0} + \tilde{\beta}_{i1}t_{ij} + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2),$$

where

 $\triangleright y_{ij}$ the *j*th response of the *i*th subject

 $\triangleright \tilde{\beta}_{i0}$ is the intercept and $\tilde{\beta}_{i1}$ the slope for subject i

 Assumption: Subjects are randomly sampled from a population ⇒ subject-specific regression coefficients are also sampled from a population of regression coefficients

$$\tilde{\beta}_i \sim \mathcal{N}(\beta, D)$$

• We can reformulate the model as

$$y_{ij} = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})t_{ij} + \varepsilon_{ij},$$

where

▷ βs are known as the *fixed effects*▷ b_is are known as the *random effects*

• In accordance for the random effects we assume

$$b_i = \begin{bmatrix} b_{i0} \\ b_{i1} \end{bmatrix} \sim \mathcal{N}(0, D)$$

• Put in a general form

$$\begin{cases} y_i = X_i \beta + Z_i b_i + \varepsilon_i, \\\\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_{n_i}), \end{cases}$$

with

- $\triangleright X$ design matrix for the fixed effects β
- $\triangleright Z$ design matrix for the random effects b_i $\triangleright b_i \perp \varepsilon_i$

- Interpretation:
 - $\triangleright \beta_j$ denotes the change in the average y_i when x_j is increased by one unit
 - $> b_i$ are interpreted in terms of how a subset of the regression parameters for the *i*th subject deviates from those in the population
- Advantageous feature: population + subject-specific predictions
 - $\triangleright \beta$ describes mean response changes in the population
 - $\triangleright \beta + b_i$ describes individual response trajectories

Example: We fit a linear mixed model for the AIDS dataset assuming
 b different average longitudinal evolutions per treatment group (fixed part)

> random intercepts & random slopes (random part)

$$\begin{cases} y_{ij} = \beta_0 + \beta_1 t_{ij} + \beta_2 \{ dd \mathbf{I}_i \times t_{ij} \} + b_{i0} + b_{i1} t_{ij} + \varepsilon_{ij}, \\ \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

• <u>Note</u>: We did not include a main effect for treatment due to randomization

	Value	Std.Err.	t-value	p-value
eta_0	7.189	0.222	32.359	< 0.001
β_1	-0.163	0.021	-7.855	< 0.001
β_2	0.028	0.030	0.952	0.342

• No evidence of differences in the average longitudinal evolutions between the two treatments

- **R>** There are two primary packages in R for mixed models analysis:
 - Package nlme
 - * fits linear & nonlinear mixed effects models, and marginal models for normal data
 - * allows for both random effects & correlated error terms
 - * several options for covariances matrices and variance functions
 - Package Ime4
 - * fits linear, nonlinear & generalized mixed effects models
 - * uses only random effects
 - * allows for nested and crossed random-effects designs

- R> We will only use package nlme because package JM accepts as an argument a linear mixed model fitted by nlme
- R> The basic function to fit linear mixed models is lme() and has three basic arguments
 b fixed: a formula specifying the response vector and the fixed-effects structure
 b random: a formula specifying the random-effects structure
 b data: a data frame containing all the variables

R> The data frame that contains all variables should be in the *long format*

Subject	У	time	gender	age
1	5.1	0.0	male	45
1	6.3	1.1	male	45
2	5.9	0.1	female	38
2	6.9	0.9	female	38
2	7.1	1.2	female	38
2	7.3	1.5	female	38
:	÷	:	:	:

R> Using formulas in R

$$\triangleright \mathsf{CD4} = \mathsf{Time} + \mathsf{Gender}$$
$$\Rightarrow \boxed{\mathsf{cd4} \sim \texttt{time} + \texttt{gender}}$$

$$\begin{array}{l} \triangleright \mbox{ CD4} = \mbox{Time} + \mbox{ Gender} + \mbox{Time*Gender} \\ \Rightarrow \mbox{ cd4} \sim \mbox{time} + \mbox{ gender} + \mbox{time:gender} \\ \Rightarrow \mbox{ cd4} \sim \mbox{time*gender} \mbox{ (the same)} \end{array}$$

$$\mathsf{CD4} = \mathsf{Time} + \mathsf{Time}^2 \Rightarrow \mathsf{Cd4} \sim \mathsf{time} + \mathsf{I}(\mathsf{time}^2)$$

R> <u>Note:</u> the intercept term is included by default

R> The code used to fit the linear mixed model for the AIDS dataset (p. 23) is as follows

```
lmeFit <- lme(CD4 ~ obstime + obstime:drug, data = aids,
random = ~ obstime | patient)
```

```
summary(lmeFit)
```


R> The same fixed-effects structure but only random intercepts

```
lme(CD4 ~ obstime + obstime:drug, data = aids,
random = ~ 1 | patient)
```


- A major challenge for the analysis of longitudinal data is the problem of missing data
 - studies are designed to collect data on every subject at a set of prespecified follow-up times
 - > often subjects miss some of their planned measurements for a variety of reasons

- Implications of missingness:
 - \triangleright we collect less data than originally planned \Rightarrow *loss of efficiency*
 - \triangleright not all subjects have the same number of measurements \Rightarrow *unbalanced datasets*
 - \triangleright missingness may depend on outcome \Rightarrow *potential bias*
- For the handling of missing data, we introduce the missing data indicator

$$r_{ij} = \begin{cases} 1 & \text{if } y_{ij} \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$$

- We obtain a partition of the complete response vector y_i
 - \triangleright observed data y_i^o , containing those y_{ij} for which $r_{ij} = 1$

 \triangleright missing data y_i^m , containing those y_{ij} for which $r_{ij} = 0$

• For the remaining we will focus on dropout \Rightarrow notation can be simplified

 \triangleright Discrete dropout time: $r_i^d = 1 + \sum_{j=1}^{n_i} r_{ij}$ (ordinal variable)

 \triangleright **Continuous time**: T_i^* denotes the time to dropout

- To describe the probabilistic relation between the measurement and missingness processes Rubin (1976, Biometrika) has introduced three mechanisms
- Missing Completely At Random (MCAR): The probability that responses are missing is unrelated to both y_i^o and y_i^m

$$p(r_i \mid \boldsymbol{y}_i^o, \boldsymbol{y}_i^m) = p(r_i)$$

• Examples

- subjects go out of the study after providing a pre-determined number of measurements
- Iaboratory measurements are lost due to equipment malfunction

• Missing At Random (MAR): The probability that responses are missing is related to y_i^o , but is unrelated to y_i^m

$$p(r_i \mid y_i^o, y_i^m) = p(r_i \mid y_i^o)$$

• Examples

study protocol requires patients whose response value exceeds a threshold to be removed from the study

> physicians give rescue medication to patients who do not respond to treatment

• Missing Not At Random (MNAR): The probability that responses are missing is related to y_i^m , and possibly also to y_i^o

$$p(r_i \mid \boldsymbol{y_i^m})$$
 or $p(r_i \mid \boldsymbol{y_i^o}, \boldsymbol{y_i^m})$

- Examples
 - in studies on drug addicts, people who return to drugs are less likely than others to report their status
 - in longitudinal studies for quality-of-life, patients may fail to complete the questionnaire at occasions when their quality-of-life is compromised

- Features of MNAR
 - The observed data cannot be considered a random sample from the target population
 - \triangleright Only procedures that explicitly model the joint distribution $\{y_i^o, y_i^m, r_i\}$ provide valid inferences \Rightarrow analyses which are valid under MAR will not be valid under MNAR

We cannot tell from the data at hand whether the missing data mechanism is MAR or MNAR

Note: We can distinguish between MCAR and MAR

Chapter 3 Relative Risk Models

- The most important characteristic that distinguishes the analysis of time-to-event outcomes from other areas in statistics is **Censoring**
 - ▷ the event time of interest is not fully observed for all subjects under study
- Implications of censoring:
 - ▷ standard tools, such as the sample average, the *t*-test, and linear regression cannot be used
 - inferences may be sensitive to misspecification of the distribution of the event times

- Several types of censoring:
 - > Location of the true event time wrt the censoring time: *right*, *left* & *interval*
 - Probabilistic relation between the true event time & the censoring time: informative & non-informative (similar to MNAR and MAR)

Here we focus on non-informative right censoring

• <u>Note</u>: Survival times may often be truncated; analysis of truncated samples requires similar calculations as censoring

- Notation (*i* denotes the subject)
 - $\triangleright T_i^*$ 'true' time-to-event
 - $\triangleright C_i$ the censoring time (e.g., the end of the study or a random censoring time)
- Available data for each subject
 - \triangleright observed event time: $T_i = \min(T_i^*, C_i)$
 - \triangleright event indicator: $\delta_i = 1$ if event; $\delta_i = 0$ if censored

Our aim is to make valid inferences for T_i^* but using only $\{T_i, \delta_i\}$

• **Relative Risk Models** assume a multiplicative effect of covariates on the hazard scale, i.e.,

$$h_i(t) = h_0(t) \exp(\gamma_1 w_{i1} + \gamma_2 w_{i2} + \ldots + \gamma_p w_{ip}) \Rightarrow$$

$$\log h_{i}(t) = \log h_{0}(t) + \gamma_{1}w_{i1} + \gamma_{2}w_{i2} + \ldots + \gamma_{p}w_{ip},$$

where

 $\triangleright h_i(t)$ denotes the hazard for an event for patient i at time t $\triangleright h_0(t)$ denotes the baseline hazard $\triangleright w_{i1}, \ldots, w_{ip}$ a set of covariates

- Cox Model: We make no assumptions for the baseline hazard function
- Parameter estimates and standard errors are based on the log partial likelihood function

$$p\ell(\gamma) = \sum_{i=1}^{n} \delta_i \Big[\gamma^\top w_i - \log \Big\{ \sum_{j: T_j \ge T_i} \exp(\gamma^\top w_j) \Big\} \Big],$$

where only patients who had an event contribute

• Example: For the PBC dataset were interested in the treatment effect while correcting for sex and age effects

$$h_i(t) = h_0(t) \exp(\gamma_1 D - penic_i + \gamma_2 Female_i + \gamma_3 Age_i)$$

	Value	HR	Std.Err.	z-value	p-value
γ_1	-0.138	0.871	0.156	-0.882	0.378
γ_2	-0.493	0.611	0.207	-2.379	0.017
γ_3	0.021	1.022	0.008	2.784	0.005

- **R>** The primary package in R for the analysis of survival data is the **survival** package
- R> A key function in this package that is used to specify the available event time information in a sample at hand is Surv()
- R> For right censored failure times (i.e., what we will see in this course) we need to provide the observed event times time, and the event indicator status, which equals 1 for true failure times and 0 for right censored times

Surv(time, status)

R> Cox models are fitted using function coxph(). For instance, for the PBC data the following code fits the Cox model that contains the main effects of 'drug', 'sex' and 'age':

```
summary(coxFit)
```

R> The two main arguments are a formula specifying the design matrix of the model and a data frame containing all the variables

- Often interest in the association between a time-dependent covariate and the risk for an event
 - ▷ treatment changes with time (e.g., dose)
 - ▷ time-dependent exposure (e.g., smoking, diet)
 - ▷ markers of disease or patient condition (e.g., blood pressure, PSA levels)

▷...

• Example: In the PBC study, are the longitudinal bilirubin measurements associated with the hazard for death?

- To answer our questions of interest we need to postulate a model that relates
 - \triangleright the serum bilirubin with
 - ▷ the time-to-death
- The association between **baseline** marker levels and the risk for death can be estimated with standard statistical tools (e.g., Cox regression)
- When we move to the time-dependent setting, a more **careful consideration** is required

• There are two types of time-dependent covariates

(Kalbfleisch and Prentice, 2002, Section 6.3)

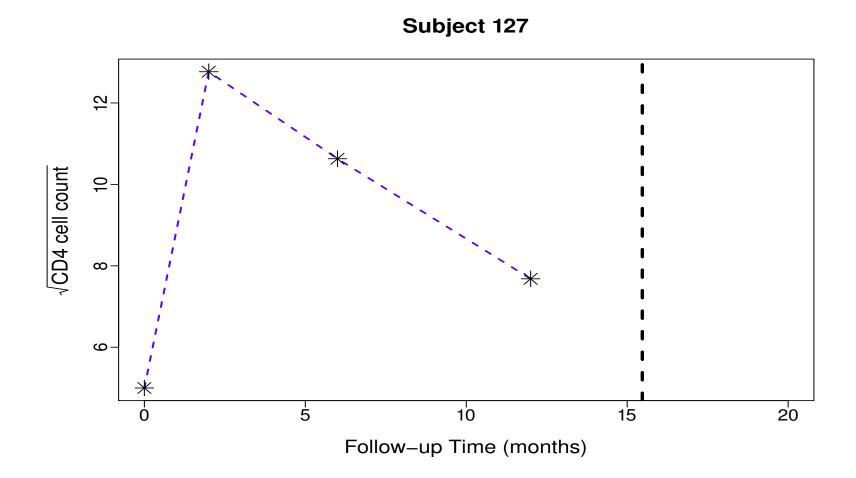
 \triangleright Exogenous (aka external): the future path of the covariate up to any time t > s is not affected by the occurrence of an event at time point s, i.e.,

 $\Pr\{\mathcal{Y}_i(t) \mid \mathcal{Y}_i(s), T_i^* \ge s\} = \Pr\{\mathcal{Y}_i(t) \mid \mathcal{Y}_i(s), T_i^* = s\},\$

where $0 < s \leq t$ and $\mathcal{Y}_i(t) = \{y_i(s), 0 \leq s < t\}$

▷ Endogenous (aka internal): not Exogenous

- It is **very important** to distinguish between these two types of time-dependent covariates, because the type of covariate dictates the appropriate type of analysis
- In our motivating examples all time-varying covariates are Biomarkers ⇒ These are always endogenous covariates
 - ▷ measured with error (i.e., biological variation)
 - ▷ the complete history is not available
 - ▷ existence directly related to failure status



• The Cox model presented earlier can be extended to handle time-dependent covariates using the counting process formulation

$$h_i(t \mid \mathcal{Y}_i(t), w_i) = h_0(t) R_i(t) \exp\{\gamma^\top w_i + \alpha y_i(t)\},\$$

where

- $\triangleright N_i(t)$ is a counting process which counts the number of events for subject i by time t,
- $\triangleright h_i(t)$ denotes the intensity process for $N_i(t)$,
- $\triangleright R_i(t)$ denotes the at risk process ('1' if subject *i* still at risk at *t*), and
- $> y_i(t)$ denotes the value of the time-varying covariate at t

• Interpretation:

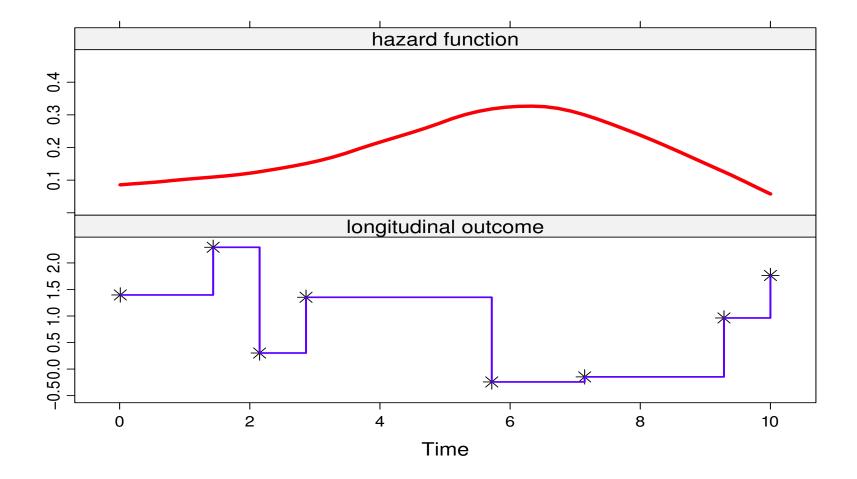
$$h_i(t \mid \mathcal{Y}_i(t), w_i) = h_0(t) R_i(t) \exp\{\gamma^\top w_i + \alpha y_i(t)\}$$

 $exp(\alpha)$ denotes the relative increase in the risk for an event at time t that results from one unit increase in $y_i(t)$ at the same time point

• Parameters are estimated based on the log-partial likelihood function

$$p\ell(\gamma, \alpha) = \sum_{i=1}^{n} \int_{0}^{\infty} \left\{ R_{i}(t) \exp\{\gamma^{\top} w_{i} + \alpha y_{i}(t)\} - \log\left[\sum_{j} R_{j}(t) \exp\{\gamma^{\top} w_{j} + \alpha y_{j}(t)\}\right] \right\} dN_{i}(t)$$

- How does the extended Cox model handle time-varying covariates?
 - ▷ assumes no measurement error
 - ▷ step-function path
 - \triangleright existence of the covariate is not related to failure status



• Therefore, the extended Cox model is only valid for exogenous time-dependent covariates

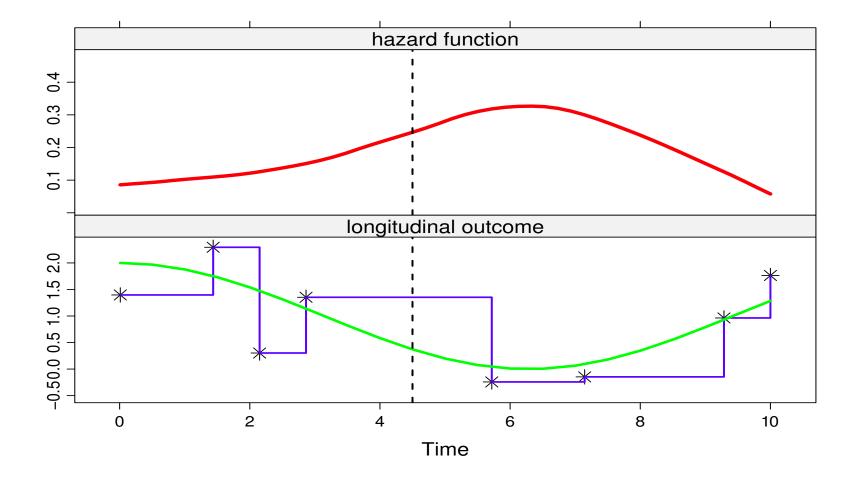
Treating endogenous covariates as exogenous may produce spurious results!

Chapter 4 The Basic Joint Model

• To account for the special features of endogenous covariates a new class of models has been developed

Joint Models for Longitudinal and Time-to-Event Data

- Intuitive idea behind these models
 - 1. use an appropriate model to describe the evolution of the marker in time for each patient
 - 2. the estimated evolutions are then used in a Cox model
- Feature: Marker level's are **not** assumed constant between visits



• Some notation

- $\triangleright T_i^*$: True event time for patient *i*
- $\triangleright T_i$: Observed event time for patient *i*
- $\triangleright \delta_i$: Event indicator, i.e., equals 1 for true events
- $\triangleright y_i$: Longitudinal responses
- We will formulate the joint model in 3 steps in particular, ...

- Step 1: Let's assume that we know $m_i(t)$, i.e., the *true* & *unobserved* value of the marker at time t
- Then, we can define a standard relative risk model

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\},\$$

where

- $\triangleright \mathcal{M}_i(t) = \{ \underline{m_i(s)}, 0 \le s < t \}$ longitudinal history
- $\triangleright \alpha$ quantifies the strength of the association between the marker and the risk for an event
- $\triangleright w_i$ baseline covariates

- Step 2: From the observed longitudinal response $y_i(t)$ reconstruct the covariate history for each subject
- Mixed effects model (we focus, for now, on continuous markers)

$$y_i(t) = \boldsymbol{m}_i(t) + \varepsilon_i(t)$$
$$= \boldsymbol{x}_i^{\top}(t)\beta + \boldsymbol{z}_i^{\top}(t)\boldsymbol{b}_i + \varepsilon_i(t), \qquad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$$

where

 $\triangleright x_i(t)$ and β : Fixed-effects part $\triangleright z_i(t)$ and b_i : Random-effects part, $b_i \sim \mathcal{N}(0, D)$

- Step 3: The two processes are associated \Rightarrow define a model for their joint distribution
- Joint Models for such joint distributions are of the following form (Tsiatis & Davidian, Stat. Sinica, 2004)

$$p(y_i, T_i, \delta_i) = \int p(y_i \mid b_i) \{ h(T_i \mid b_i)^{\delta_i} S(T_i \mid b_i) \} p(b_i) db_i,$$

where

 $\triangleright b_i$ a vector of random effects that explains the interdependencies $\triangleright p(\cdot)$ density function; $S(\cdot)$ survival function

- Key assumption: Full Conditional Independence ⇒ random effects explain all interdependencies
 - > the longitudinal outcome is independent of the time-to-event outcome
 - b the repeated measurements in the longitudinal outcome are independent of each other

$$p(y_i, T_i, \delta_i \mid b_i) = p(y_i \mid b_i) p(T_i, \delta_i \mid b_i)$$
$$p(y_i \mid b_i) = \prod_j p(y_{ij} \mid b_j)$$

Caveat: CI is difficult to be tested

- The censoring and visiting^{*} processes are assumed non-informative:
- Decision to withdraw from the study or appear for the next visit
 - may depend on observed past history (baseline covariates + observed longitudinal responses)
 - no additional dependence on underlying, latent subject characteristics associated with prognosis

*The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which longitudinal measurements are collected.

• Example: To illustrate the virtues of joint modeling, we compare it with the standard time-dependent Cox model for the AIDS data

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) \\ = \beta_0 + \beta_1 t + \beta_2 \{t \times ddI_i\} + b_{i0} + b_{i1}t + \varepsilon_i(t), \qquad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \\ h_i(t) = h_0(t) \exp\{\gamma ddI_i + \alpha m_i(t)\}, \end{cases}$$

where

$$\triangleright h_0(t)$$
 is assumed piecewise-constant

	JM	Cox
	\log HR (std.err)	\log HR (std.err)
Treat	0.33(0.16)	$0.31 \ (0.15)$
$CD4^{1/2}$	-0.29(0.04)	-0.19(0.02)

• Clearly, there is a considerable effect of ignoring the measurement error, especially for the CD4 cell counts

- A unit decrease in CD4 $^{1/2}$, results in a
 - ▷ Joint Model: 1.3-fold increase in risk (95% CI: 1.24; 1.43)
 - ▷ **Time-Dependent Cox**: 1.2-fold increase in risk (95% CI: 1.16; 1.27)
- Which one to believe?
 - b a lot of theoretical and simulation work has shown that the Cox model underestimates the true association size of markers

R> Joint models are fitted using function jointModel() from package JM. This function accepts as main arguments a linear mixed model and a Cox PH model based on which it fits the corresponding joint model

```
lmeFit <- lme(CD4 ~ obstime + obstime:drug,
    random = ~ obstime | patient, data = aids)
coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)</pre>
```

```
jointFit <- jointModel(lmeFit, coxFit, timeVar = "obstime",
    method = "piecewise-PH-aGH")
```

```
summary(jointFit)
```


R> The data frame given in lme() should be in the long format, while the data frame given to coxph() should have one line per subject*

▷ the ordering of the subjects needs to be the same

- R> In the call to coxph() you need to set x = TRUE (or model = TRUE) such that the design matrix used in the Cox model is returned in the object fit
- **R>** Argument timeVar specifies the time variable in the linear mixed model

^{*} Unless you want to include exogenous time-varying covariates or handle competing risks

R> Argument method specifies the type of relative risk model and the type of numerical integration algorithm – the syntax is as follows:

<baseline hazard>-<parameterization>-<numerical integration>

Available options are:

- > "piecewise-PH-GH": PH model with piecewise-constant baseline hazard
- ▷ "spline-PH-GH": PH model with B-spline-approximated log baseline hazard
- ▷ "weibull-PH-GH": PH model with Weibull baseline hazard
- ▷ "weibull-AFT-GH": AFT model with Weibull baseline hazard
- ▷ "Cox-PH-GH": PH model with unspecified baseline hazard

GH stands for standard Gauss-Hermite; using aGH invokes the pseudo-adaptive Gauss-Hermite rule

R> Joint models under the Bayesian approach are fitted using function jointModelBayes() from package JMbayes. This function works in a very similar manner as function jointModel(), e.g.,

```
lmeFit <- lme(CD4 ~ obstime + obstime:drug,
    random = ~ obstime | patient, data = aids)
coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)
jointFitBayes <- jointModelBayes(lmeFit, coxFit, timeVar = "obstime")
summary(jointFitBayes)
```


R> JMbayes is more flexible (in some respects):

- \triangleright directly implements the MCMC
- \triangleright allows for categorical longitudinal data as well
- ▷ allows for general transformation functions
- ▷ penalized B-splines for the baseline hazard function

▷...

- **R>** In both packages methods are available for the majority of the standard generic functions + extras
 - > summary(), anova(), vcov(), logLik()
 - > coef(), fixef(), ranef()
 - > fitted(), residuals()
 - ▷ plot()
 - > xtable() (you need to load package xtable first)

- So far we have attacked the problem from the survival point of view
- However, often, we may be also interested on the longitudinal outcome
- Issue: When patients experience the event, they dropout from the study
 > a direct connection with the missing data field

- To show this connection more clearly
 - $\triangleright T_i^*$: true time-to-event
 - $\triangleright y_i^o$: longitudinal measurements before T_i^*
 - $\triangleright y_i^m$: longitudinal measurements after T_i^*
- Important to realize that the model we postulate for the longitudinal responses is for the complete vector $\{y_i^o, y_i^m\}$

b implicit assumptions about missingness

• Missing data mechanism:

$$p(T_i^* \mid y_i^o, y_i^m) = \int p(T_i^* \mid b_i) \ p(b_i \mid y_i^o, y_i^m) \ db_i$$

still depends on y_i^m , which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show different longitudinal evolutions than patients who do not

- Example: In the AIDS data the association parameter α was highly significant, suggesting nonrandom dropout
- A comparison between
 - $\triangleright \mathsf{ linear mixed-effects model} \Rightarrow \mathsf{MAR}$
 - \triangleright joint model \Rightarrow MNAR
 - is warranted
- MAR assumes that missingness depends only on the observed data

$$p(T^*_i \mid y^o_i, y^m_i) = p(T^*_i \mid y^o_i)$$

	LMM (MAR)	JM (MNAR)
	value (s.e.)	value (s.e)
Inter	7.19 (0.22)	7.22 (0.22)
Time	-0.16 (0.02)	-0.19 (0.02)
Treat:Time	0.03 (0.03)	0.01 (0.03)

• Minimal sensitivity in parameter estimates & standard errors

 \Rightarrow Warning: This does not mean that this is always the case!

Chapter 5 Closing

• When we need joint models for longitudinal and survival outcomes?

to handle endogenous time-varying covariates in a survival analysis context
 to account for nonrandom dropout in a longitudinal data analysis context

• How joint models work?

- ▷ a mixed model for the longitudinal outcome
- \triangleright a relative risk model for the event process
- ▷ explain interrelationships with shared random effects

• Where to pay attention when defining joint models?

- > model flexibly the subject-specific evolutions for the longitudinal outcome
- ▷ use parametric but flexible models for the baseline hazard function
- \triangleright consider how to model the association structure between the two processes \Rightarrow Parameterization

• Extensions

- b under the full conditional independence assumption we can easily extend the basic joint model
- > multiple longitudinal outcomes and/or multiple failure times
- b though more computationally intensive

• Individualized predictions

- b joint models can provide subject-specific predictions for the longitudinal and survival outcomes
- > these are dynamically updated as extra information is recorded for the subjects
- $\triangleright \Rightarrow$ joint models constitute an excellent tool for personalized medicine

• What we did not cover

b diagnostics for joint models using residuals

▷...

The End!

- Andrinopoulou, E.R., Rizopoulos, D., Takkenberg, J. and Lesaffre, E. (2014). Joint modeling of two longitudinal outcomes and competing risk data. *Statistics in Medicine*, to appear.
- Brown, E. and Ibrahim, J. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. *Biometrics* **59**, 221–228.
- Brown, E. Ibrahim, J. and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. *Biometrics* **61**, 64–73.
- Chi, Y.-Y. and Ibrahim, J. (2006). Joint models for multivariate longitudinal and multivariate survival data. *Biometrics* **62**, 432–445.
- DeGruttola, V. and Tu, X. (1994). Modeling progression of CD-4 lymphocyte count and its relationship to survival time. *Biometrics* **50**, 1003–1014.
- Elashoff, R., Li, G. and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. *Biometrics* **64**, 762–771.

- Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. *Statistics in Medicine* **15**, 1663–1685.
- Gerds, T. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. *Biometrical Journal* **48**, 1029–1040.
- Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. *Biometrics* **61**, 92–105.
- Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. *Biostatistics* **1**, 465–480.
- Henderson, R., Diggle, P. and Dobson, A. (2002). Identification and efficacy of longitudinal markers for survival. *Biostatistics* **3**, 33–50.
- Hsieh, F., Tseng, Y.-K. and Wang, J.-L. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. *Biometrics* **62**, 1037–1043.

- Lin, H., Turnbull, B., McCulloch, C. and Slate, E. (2002). Latent class models for joint analysis of longitudinal biomarker and event process: Application to longitudinal prostate-specific antigen readings and prostate cancer. *Journal of the American Statistical Association* **97**, 53–65.
- Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. *Journal of the Royal Statistical Society, Series C* **58**, 65–81.
- Proust-Lima, C., Joly, P., Dartigues, J. and Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. *Computational Statistics and Data Analysis* **53**, 1142–1154.
- Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. *Biostatistics* **10**, 535–549.
- Rizopoulos, D. (2012). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. *Computational Statistics and Data Analysis* **56**, 491–501.
- Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. *Biometrics* **67**, 819–829.

- Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. *Journal of Statistical Software* **35** (9), 1–33.
- Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. *Statistics in Medicine* **30**, 1366–1380.
- Rizopoulos, D., Hatfield, L.A., Carlin, B.P. and Takkenberg, J.J.M. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. *Journal of the American Statistical Association* 109, 1385–1397.
- Rizopoulos, D., Murawska, M., Andrinopoulou, E.-R., Molenberghs, G., Takkenberg, J. and Lesaffre, E. (2013). Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. *Submitted*.
- Rizopoulos, D. and Lesaffre, E. (2014). Introduction to the special issue on joint modelling techniques. *Statistical Methods in Medical Research* **23**, 3–10.
- Rizopoulos, D., Verbeke, G. and Lesaffre, E. (2009). Fully exponential Laplace approximation for the joint modelling of survival and longitudinal data. *Journal of the Royal Statistical Society, Series B* **71**, 637–654.

- Rizopoulos, D., Verbeke, G., Lesaffre, E. and Vanrenterghem, Y. (2008). A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. *Biometrics* **64**, 611–619.
- Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2010). Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. *Biometrics* **66**, 20–29.
- Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. *Biometrika* **95**, 63–74.
- Rubin, D. (1976). Inference and missing data. *Biometrika* **63**, 581–592.
- Song, X., Davidian, M. and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. *Biometrics* **58**, 742–753.
- Taylor, J., Park, Y., Ankerst, D., Proust-Lima, C., Williams, S., Kestin, L., Bae, K., Pickles, T., and Sandler, H. (2013). Real-time individual predictions of prostate cancer recurrence using joint models. *Biometrics*, **69**, 206–213.
- Tseng, Y.-K., Hsieh, F. and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. *Biometrika* **92**, 587–603.

- Tsiatis, A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. *Biometrika* **88**, 447–458.
- Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. *Statistica Sinica* **14**, 809–834.
- Tsiatis, A., DeGruttola, V., and Wulfsohn, M. (1995). Modeling the relationship of survival to longitudinal data measured with error: Applications to survival and CD4 counts in patients with AIDS. *Journal of the American Statistical Association* **90**, 27–37.
- Viviani, S., Alfó, M. and Rizopoulos, D. (2014). Generalized linear mixed joint model for longitudinal and survival outcomes. *Statistics and Computing*, **24**, 417–427.
- Viviani, S., Rizopoulos, D. and Alfó, M. (2014). Local sensitivity of shared parameter models to nonignorability of dropout. *Statistical Modelling* **14**, 205–228.
- Wang, Y. and Taylor, J. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. *Journal of the American Statistical Association* **96**, 895–905.

- Wu, M. and Bailey, K. (1988). Analysing changes in the presence of informative right censoring caused by death and withdrawal. *Statistics in Medicine* **7**, 337–346.
- Wu, M. and Bailey, K. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. *Biometrics* **45**, 939–955.
- Wu, M. and Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. *Biometrics* **44**, 175–188.
- Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. *Biometrics* **53**, 330–339.
- Xu, C., Baines, P. and Wang, J.-L. (2014). Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data. *Biostatistics*, to appear.
- Xu, J. and Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated measures and times to events. *Applied Statistics* **50**, 375–387.

- Ye, W., Lin, X., and Taylor, J. (2008). Semiparametric modeling of longitudinal measurements and time-to-event data a two stage regression calibration approach. *Biometrics* **64**, 1238–1246.
- Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. *Statistica Sinica* **14**, 835–862.
- Yu, M., Taylor, J. and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. *Journal of the American Statistical Association* **108**, 178–187.
- Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. *The Annals of Statistics* **33**, 2132–2163.
- Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. *Biometrics* **63**, 332–341.

- Andrinopoulou, E.R., Rizopoulos, D., Jin, R., Bogers, A., Lesaffre, E. and Takkenberg, J. (2012). An introduction to mixed models and joint modeling: Analysis of valve function over time. *Annals of Thoracic Surgery* **93**, 1765–1772.
- Andrinopoulou, E.R., Rizopoulos, D., Geleijnse, M., Lesaffre, E., Bogers, A. and Takkenberg, J. (2015). Dynamic prediction of outcome for patients with severe aortic stenosis: Application of joint models for longitudinal and time-to-event data. *BMC Cardiovascular Disorders*, to appear.
- Daher Abdi, D.Z., Essig, M., Rizopoulos, D., Le Meur, Y., Premaud, A., Woillard, J.-B., Rerolle, J.-P., Marquet, P. and Rousseau, A. (2013). Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant recipients using a joint modeling approach. *Pharmacological Research* **72**, 52–60.
- Ibrahim, J., Chu, H. and Chen, L.-M. (2010). Basic concepts and methods for joint models of longitudinal and survival data. *Journal of Clinical Oncology* **28**, 2796–2801.
- Nunez, J., Nunez, E., Rizopoulos, D., Minana, G., Bodi, V., Bondanza, L., Husser, O., Merlos, P., Santas, E., Pascual-Figal, D.,; Chorro, F. and Sanchis, J. (2014). Red blood cell distribution width is longitudinally associated with mortality and incident anemia in heart failure patients. *Circulation Journal* **78**, 410–418.
- Rizopoulos, D. and Takkenberg, J. (2014). Tools & Techniques: Dealing with time-varying covariates in survival analysis joint models versus Cox models. *EuroIntervention* **10**, 285–288.

- Thabut, G., Christie, J., Mal, H., Fournier, M., Brugiere, O., Leseche, G., Castier, Y. and Rizopoulos, D. (2013). Survival benefit of lung transplant for cystic fibrosis since lung-allocation-score implementation. *American Journal of Respiratory and Critical Care Medicine* 187, 1335–1340.
- van der Linde, D., Roos-Hesselink, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap, S., Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Takkenberg, J. (2013). Surgical outcome of discrete subaortic stenosis in adults: A multicenter study. *Circulation* **127**, 1184–1191.
- van der Linde, D., Takkenberg, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap, S., Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Roos-Hesselink, J. (2013). Natural history of discrete subaortic stenosis in adults: A multicenter study. *European Heart Journal* 34, 1548–1556.

Practicals

- We will fit a simple joint model to the PBC dataset
- Start R and load package **JM**, using library(JM)
- The longitudinal (long format) and survival information for the PBC patients can be found in data frames pbc2 and pbc2.id. The variables that we will need are:

\triangleright pbc2

- * id: patient id number
- * **serBilir**: serum bilirubin
- * year: follow-up times in years

⊳pbc2.id

- * years: observed event times in years
- * status: 'alive', 'transplanted', 'dead'
- * drug: treatment indicator

• T1: Fit the linear mixed effects model for log serum bilirubin using function lme(), assuming simple linear evolutions in time for each subject, i.e., a simple random-intercepts and random-slopes structure and different average evolutions per treatment group (see pp. 26–30)

$$y_i(t) = \beta_0 + \beta_1 t + \beta_2 \{ D-penic_i \times t \} + b_{i0} + b_{i1}t + \varepsilon_i(t)$$

• T2: Create the indicator for the composite event (i.e., 'alive' = 0, 'transplanted' or 'dead' = 1) using the code

pbc2.id\$status2 <- as.numeric(pbc2.id\$status != "alive")</pre>

- T3: Fit the Cox PH model using coxph() that includes only treatment as baseline covariate, remember to set x = TRUE (see pp. 46–47)
- We want to fit the joint model

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) \\ = \beta_0 + \beta_1 t + \beta_2 \{ \mathtt{D-penic}_i \times t \} + b_{i0} + b_{i1} t + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \end{cases}$$
$$h_i(t) = h_0(t) \exp\{\gamma \mathtt{D-penic}_i + \alpha m_i(t)\}, \end{cases}$$

• T4: Fit this joint model based on the fitted linear mixed and Cox models using function jointModel() (see pp. 70–72)

▷ with piecewise-constant baseline hazard & the (pseudo) adaptive GH rule

- T5: Use the summary() method to obtain a detailed output of the fitted joint model interpret the results
- T6: Produce 95% confidence intervals for the parameters in the longitudinal submodel, and for the hazard ratios in the survival submodel using function confint() (the parm argument of confint() can take as values "all" (default), "Longitudinal" and "Event")

- This model assumes that the strength of the association between the level of serum bilirubin and the risk for the composite event is the same in the two treatment groups
- To relax this additivity assumption we will add the interaction effect between serum bilirubin and treatment

$$\begin{array}{l} y_i(t) \ = \ m_i(t) + \varepsilon_i(t) \\ \\ = \ \beta_0 + \beta_1 t + \beta_2 \{ \texttt{D-penic}_i \times t \} + b_{i0} + b_{i1} t + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \end{array} \\ \\ h_i(t) \ = \ h_0(t) \exp \big[\gamma \texttt{D-penic}_i + \alpha_1 m_i(t) + \alpha_2 \{ \texttt{D-penic}_i \times m_i(t) \} \big], \end{array}$$

- To fit this model with package **JM** we need to define the **interFact** argument of **jointModel()**. This should be a named **list** with two elements:
 - value: a formula with the factors for which we wish to calculate the interaction terms

> data: the data frame used to fit the Cox model

• T7: Define this list and fit the corresponding joint model. Use the summary() method to obtained a detailed output and interpret the results