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What is this Course About

• Often in follow-up studies different types of outcomes are collected

• Explicit outcomes

◃ multiple longitudinal responses (e.g., markers, blood values)

◃ time-to-event(s) of particular interest (e.g., death, relapse)

• Implicit outcomes

◃ missing data (e.g., dropout, intermittent missingness)

◃ random visit times
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What is this Course About (cont’d)

• Methods for the separate analysis of such outcomes are well established in the
literature

• Survival data:

◃ Cox model, accelerated failure time models, . . .

• Longitudinal data

◃ mixed effects models, GEE, marginal models, . . .
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What is this Course About (cont’d)

Purpose of this course is to present the state of the art in

Joint Modeling Techniques
for Longitudinal and Survival Data
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Learning Objectives

• Goals: After this course participants will be able to

◃ identify settings in which a joint modeling approach is required,

◃ construct and fit an appropriate joint model, and

◃ correctly interpret the obtained results

• The course will be explanatory rather than mathematically rigorous

◃ emphasis is given on sufficient detail in order for participants to obtain a clear
view on the different joint modeling approaches, and how they should be used in
practice
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Agenda

• Part I: Introduction

◃ Data sets that we will use throughout the course

◃ Categorization of possible research questions

• Part II: (brief) Review of Linear Mixed Models

◃ Features of repeated measurements data

◃ Linear mixed models

◃ Missing data in longitudinal studies

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM xi



Agenda (cont’d)

• Part III: (brief) Review of Relative Risk Models

◃ Features of survival data

◃ Relative risk models

◃ Time-dependent covariates

• Part IV: The Basic Joint Model

◃ Definition

◃ Estimation & Inference

◃ Connection with the missing data framework
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Agenda (cont’d)

• Part V: Extensions of the Basic Joint Model

◃ Parameterizations

◃ Latent class joint models

◃ Other extensions for the longitudinal and survival submodels (briefly)

• Part VI: Dynamic Predictions

◃ Individualized predictions for the survival

◃ Effect of the parameterization
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Structure of the Course & Material

• Lectures & short software practicals using R package JM and/or JMbayes

• Material:

◃ Course Notes

◃ R code in soft format

• Within the course notes there are several examples of R code which are denoted by
the symbol ‘R> ’
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Chapter 1

Introduction
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1.1 Motivating Longitudinal Studies

• AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine
therapy (AZT) (Abrams et al., NEJM, 1994)

• The aim of this study was to compare the efficacy and safety of two alternative
antiretroviral drugs, didanosine (ddI) and zalcitabine (ddC)

• Outcomes of interest:

◃ time to death

◃ randomized treatment: 230 patients ddI and 237 ddC

◃ CD4 cell count measurements at baseline, 2, 6, 12 and 18 months

◃ prevOI: previous opportunistic infections
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

• Research Questions:

◃ How strong is the association between CD4 cell count and the risk for death?

◃ Is CD4 cell count a good biomarker?

* if treatment improves CD4 cell count, does it also improve survival?

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 5



1.1 Motivating Longitudinal Studies (cont’d)

• PBC: Primary Biliary Cirrhosis:

◃ a chronic, fatal but rare liver disease

◃ characterized by inflammatory destruction of the small bile ducts within the liver

• Data collected by Mayo Clinic from 1974 to 1984 (Murtaugh et al., Hepatology, 1994)

• Outcomes of interest:

◃ time to death and/or time to liver transplantation

◃ randomized treatment: 158 patients received D-penicillamine and 154 placebo

◃ longitudinal serum bilirubin levels
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)
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1.1 Motivating Longitudinal Studies (cont’d)

• Research Questions:

◃ How strong is the association between bilirubin and the risk for death?

◃ How the observed serum bilirubin levels could be utilized to provide predictions of
survival probabilities?

◃ Can bilirubin discriminate between patients of low and high risk?
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1.2 Research Questions

• Depending on the questions of interest, different types of statistical analysis are
required

• We will distinguish between two general types of analysis

◃ separate analysis per outcome

◃ joint analysis of outcomes

• Focus on each outcome separately

◃ does treatment affect survival?

◃ are the average longitudinal evolutions different between males and females?

◃ . . .
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1.2 Research Questions (cont’d)

• Focus on multiple outcomes

◃ Complex hypothesis testing: does treatment improve the average longitudinal
profiles in all markers?

◃ Complex effect estimation: how strong is the association between the longitudinal
evolution of CD4 cell counts and the hazard rate for death?

◃ Association structure among outcomes:

* how the association between markers evolves over time (evolution of the
association)

* how marker-specific evolutions are related to each other (association of the
evolutions)
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1.2 Research Questions (cont’d)

◃ Prediction: can we improve prediction for the time to death by considering all
markers simultaneously?

◃ Handling implicit outcomes: focus on a single longitudinal outcome but with
dropout or random visit times
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1.3 Recent Developments

• Up to now emphasis has been

◃ restricted or coerced to separate analysis per outcome

◃ or given to naive types of joint analysis (e.g., last observation carried forward)

• Main reasons

◃ lack of appropriate statistical methodology

◃ lack of efficient computational approaches & software
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1.3 Recent Developments (cont’d)

• However, recently there has been an explosion in the statistics and biostatistics
literature of joint modeling approaches

• Many different approaches have been proposed that

◃ can handle different types of outcomes

◃ can be utilized in pragmatic computing time

◃ can be rather flexible

◃ most importantly: can answer the questions of interest
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1.4 Joint Models

• Let Y1 and Y2 two outcomes of interest measured on a number of subjects for which
joint modeling is of scientific interest

◃ both can be measured longitudinally

◃ one longitudinal and one survival

• We have various possible approaches to construct a joint density p(y1, y2) of {Y1, Y2}
◃ Conditional models: p(y1, y2) = p(y1)p(y2 | y1)

◃ Copulas: p(y1, y2) = c{F(y1),F(y2)}p(y1)p(y2)

But Random Effects Models have (more or less) prevailed
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1.4 Joint Models (cont’d)

• Random Effects Models specify

p(y1, y2) =

∫
p(y1, y2 | b) p(b) db

=

∫
p(y1 | b) p(y2 | b) p(b) db

◃ Unobserved random effects b explain the association between Y1 and Y2

◃ Conditional Independence assumption

Y1 ⊥⊥ Y2 | b
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1.4 Joint Models (cont’d)

• Features:

◃ Y1 and Y2 can be of different type

* one continuous and one categorical

* one continuous and one survival

* . . .

◃ Extensions to more than two outcomes straightforward

◃ Specific association structure between Y1 and Y2 is assumed

◃ Computationally intensive (especially in high dimensions)
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Chapter 2

Linear Mixed-Effects Models
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2.1 Features of Longitudinal Data

• Repeated evaluations of the same outcome in each subject in time

◃ CD4 cell count in HIV-infected patients

◃ serum bilirubin in PBC patients

• Longitudinal studies allow to investigate

1. how treatment means differ at specific time points, e.g., at the end of the study
(cross-sectional effect)

2. how treatment means or differences between means of treatments change over
time (longitudinal effect)
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2.1 Features of Longitudinal Data (cont’d)

Measurements on the same subject are expected to
be (positively) correlated

• This implies that standard statistical tools, such as the t-test and simple linear
regression that assume independent observations, are not optimal for longitudinal
data analysis.
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2.2 The Linear Mixed Model

• The direct approach to model correlated data ⇒ multivariate regression

yi = Xiβ + εi, εi ∼ N (0, Vi),

where

◃ yi the vector of responses for the ith subject

◃ Xi design matrix describing structural component

◃ Vi covariance matrix describing the correlation structure

• There are several options for modeling Vi, e.g., compound symmetry, autoregressive
process, exponential spatial correlation, Gaussian spatial correlation, . . .
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2.2 The Linear Mixed Model (cont’d)

• Alternative intuitive approach: Each subject in the population has her own
subject-specific mean response profile over time
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2.2 The Linear Mixed Model (cont’d)
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2.2 The Linear Mixed Model (cont’d)

• The evolution of each subject in time can be described by a linear model

yij = β̃i0 + β̃i1tij + εij, εij ∼ N (0, σ2),

where

◃ yij the jth response of the ith subject

◃ β̃i0 is the intercept and β̃i1 the slope for subject i

• Assumption: Subjects are randomly sampled from a population ⇒ subject-specific
regression coefficients are also sampled from a population of regression coefficients

β̃i ∼ N (β,D)
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2.2 The Linear Mixed Model (cont’d)

• We can reformulate the model as

yij = (β0 + bi0) + (β1 + bi1)tij + εij,

where

◃ βs are known as the fixed effects

◃ bis are known as the random effects

• In accordance for the random effects we assume

bi =

bi0
bi1

 ∼ N (0, D)
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2.2 The Linear Mixed Model (cont’d)

• Put in a general form
yi = Xiβ + Zibi + εi,

bi ∼ N (0, D), εi ∼ N (0, σ2Ini),

with

◃ X design matrix for the fixed effects β

◃ Z design matrix for the random effects bi

◃ bi ⊥⊥ εi

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 26



2.2 The Linear Mixed Model (cont’d)

• Interpretation:

◃ βj denotes the change in the average yi when xj is increased by one unit

◃ bi are interpreted in terms of how a subset of the regression parameters for the ith
subject deviates from those in the population

• Advantageous feature: population + subject-specific predictions

◃ β describes mean response changes in the population

◃ β + bi describes individual response trajectories

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 27



2.2 The Linear Mixed Model (cont’d)

• Example: We fit a linear mixed model for the AIDS dataset assuming

◃ different average longitudinal evolutions per treatment group (fixed part)

◃ random intercepts & random slopes (random part)


yij = β0 + β1tij + β2{ddIi × tij} + bi0 + bi1tij + εij,

bi ∼ N (0, D), εij ∼ N (0, σ2)

• Note: We did not include a main effect for treatment due to randomization
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2.2 The Linear Mixed Model (cont’d)

Value Std.Err. t-value p-value

β0 7.189 0.222 32.359 < 0.001

β1 −0.163 0.021 −7.855 < 0.001

β2 0.028 0.030 0.952 0.342

• No evidence of differences in the average longitudinal evolutions between the two
treatments
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2.3 Mixed-Effects Models in R

R> There are two primary packages in R for mixed models analysis:

◃ Package nlme

* fits linear & nonlinear mixed effects models, and marginal models for normal
data

* allows for both random effects & correlated error terms

* several options for covariances matrices and variance functions

◃ Package lme4

* fits linear, nonlinear & generalized mixed effects models

* uses only random effects

* allows for nested and crossed random-effects designs
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2.3 Mixed-Effects Models in R (cont’d)

R> We will only use package nlme because package JM accepts as an argument a
linear mixed model fitted by nlme

R> The basic function to fit linear mixed models is lme() and has three basic arguments

◃ fixed: a formula specifying the response vector and the fixed-effects structure

◃ random: a formula specifying the random-effects structure

◃ data: a data frame containing all the variables
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2.3 Mixed-Effects Models in R (cont’d)

R> The data frame that contains all variables should be in the long format

Subject y time gender age

1 5.1 0.0 male 45

1 6.3 1.1 male 45

2 5.9 0.1 female 38

2 6.9 0.9 female 38

2 7.1 1.2 female 38

2 7.3 1.5 female 38
... ... ... ... ...
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2.3 Mixed-Effects Models in R (cont’d)

R> Using formulas in R

◃ CD4 = Time + Gender
⇒ cd4 ∼ time + gender

◃ CD4 = Time + Gender + Time*Gender
⇒ cd4 ∼ time + gender + time:gender

⇒ cd4 ∼ time*gender (the same)

◃ CD4 = Time + Time2

⇒ cd4 ∼ time + I(time^2)

R> Note: the intercept term is included by default
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2.3 Mixed-Effects Models in R (cont’d)

R> The code used to fit the linear mixed model for the AIDS dataset (p. 28) is as
follows

lmeFit <- lme(CD4 ~ obstime + obstime:drug, data = aids,

random = ~ obstime | patient)

summary(lmeFit)
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2.3 Mixed-Effects Models in R (cont’d)

R> The same fixed-effects structure but only random intercepts

lme(CD4 ~ obstime + obstime:drug, data = aids,

random = ~ 1 | patient)

R> The same fixed-effects structure, random intercepts & random slopes, with a
diagonal covariance matrix (using the pdDiag() function)

lme(CD4 ~ obstime + obstime:drug, data = aids,

random = list(patient = pdDiag(form = ~ obstime)))
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2.4 Missing Data in Longitudinal Studies

• A major challenge for the analysis of longitudinal data is the problem of missing data

◃ studies are designed to collect data on every subject at a set of prespecified
follow-up times

◃ often subjects miss some of their planned measurements for a variety of reasons

• We can have different patterns of missing data
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2.4 Missing Data in Longitudinal Studies (cont’d)

Subject Visits

1 2 3 4 5

1 x x x x x

2 x x x ? ?

3 ? x x x x

4 ? x ? x ?

◃ Subject 1: Completer

◃ Subject 2: dropout

◃ Subject 3: late entry

◃ Subject 4: intermittent
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2.4 Missing Data in Longitudinal Studies (cont’d)

• Implications of missingness:

◃ we collect less data than originally planned ⇒ loss of efficiency

◃ not all subjects have the same number of measurements ⇒ unbalanced datasets

◃ missingness may depend on outcome ⇒ potential bias

• For the handling of missing data, we introduce the missing data indicator

rij =

 1 if yij is observed

0 otherwise
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2.4 Missing Data in Longitudinal Studies (cont’d)

• We obtain a partition of the complete response vector yi

◃ observed data yoi , containing those yij for which rij = 1

◃ missing data ymi , containing those yij for which rij = 0

• For the remaining we will focus on dropout ⇒ notation can be simplified

◃ Discrete dropout time: rdi = 1 +
ni∑
j=1

rij (ordinal variable)

◃ Continuous time: T ∗
i denotes the time to dropout
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2.5 Missing Data Mechanisms

• To describe the probabilistic relation between the measurement and missingness
processes Rubin (1976, Biometrika) has introduced three mechanisms

• Missing Completely At Random (MCAR): The probability that responses are missing
is unrelated to both yoi and ymi

p(ri | yoi , ymi ) = p(ri)

• Examples

◃ subjects go out of the study after providing a pre-determined number of
measurements

◃ laboratory measurements are lost due to equipment malfunction
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2.5 Missing Data Mechanisms (cont’d)

• Features of MCAR:

◃ The observed data yoi can be considered a random sample of the complete data yi

◃ We can use any statistical procedure that is valid for complete data

* sample averages per time point

* linear regression, ignoring the correlation (consistent, but not efficient)

* t-test at the last time point

* . . .
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2.5 Missing Data Mechanisms (cont’d)

• Missing At Random (MAR): The probability that responses are missing is related to
yoi , but is unrelated to ymi

p(ri | yoi , ymi ) = p(ri | yoi )

• Examples

◃ study protocol requires patients whose response value exceeds a threshold to be
removed from the study

◃ physicians give rescue medication to patients who do not respond to treatment
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2.5 Missing Data Mechanisms (cont’d)

• Features of MAR:

◃ The observed data cannot be considered a random sample from the target
population

◃ Not all statistical procedures provide valid results

Not valid under MAR Valid under MAR
sample marginal evolutions sample subject-specific evolutions

methods based on moments, likelihood based inference
such as GEE

mixed models with misspecified mixed models with correctly specified
correlation structure correlation structure

marginal residuals subject-specific residuals
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2.5 Missing Data Mechanisms (cont’d)

• Missing Not At Random (MNAR): The probability that responses are missing is
related to ymi , and possibly also to yoi

p(ri | ymi ) or p(ri | yoi , ymi )

• Examples

◃ in studies on drug addicts, people who return to drugs are less likely than others
to report their status

◃ in longitudinal studies for quality-of-life, patients may fail to complete the
questionnaire at occasions when their quality-of-life is compromised
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2.5 Missing Data Mechanisms (cont’d)

• Features of MNAR

◃ The observed data cannot be considered a random sample from the target
population

◃ Only procedures that explicitly model the joint distribution {yoi , ymi , ri} provide
valid inferences ⇒ analyses which are valid under MAR will not be valid
under MNAR
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2.5 Missing Data Mechanisms (cont’d)

We cannot tell from the data at hand whether the
missing data mechanism is MAR or MNAR

Note: We can distinguish between MCAR and MAR
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Chapter 3

Relative Risk Models
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3.1 Features of Survival Data

• The most important characteristic that distinguishes the analysis of time-to-event
outcomes from other areas in statistics is Censoring

◃ the event time of interest is not fully observed for all subjects under study

• Implications of censoring:

◃ standard tools, such as the sample average, the t-test, and linear regression
cannot be used

◃ inferences may be sensitive to misspecification of the distribution of the event
times
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3.1 Features of Survival Data (cont’d)

• Several types of censoring:

◃ Location of the true event time wrt the censoring time: right, left & interval

◃ Probabilistic relation between the true event time & the censoring time:
informative & non-informative (similar to MNAR and MAR)

Here we focus on non-informative right censoring

• Note: Survival times may often be truncated; analysis of truncated samples requires
similar calculations as censoring
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3.1 Features of Survival Data (cont’d)

• Notation (i denotes the subject)

◃ T ∗
i ‘true’ time-to-event

◃ Ci the censoring time (e.g., the end of the study or a random censoring time)

• Available data for each subject

◃ observed event time: Ti = min(T ∗
i , Ci)

◃ event indicator: δi = 1 if event; δi = 0 if censored

Our aim is to make valid inferences for T ∗
i but using

only {Ti, δi}
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3.2 Relative Risk Models

• Relative Risk Models assume a multiplicative effect of covariates on the hazard
scale, i.e.,

hi(t) = h0(t) exp(γ1wi1 + γ2wi2 + . . . + γpwip) ⇒

log hi(t) = log h0(t) + γ1wi1 + γ2wi2 + . . . + γpwip,

where

◃ hi(t) denotes the hazard for an event for patient i at time t

◃ h0(t) denotes the baseline hazard

◃ wi1, . . . , wip a set of covariates
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3.2 Relative Risk Models (cont’d)

• Standard MLE can be applied based on the log-likelihood function

ℓ(θ) =

n∑
i=1

δi log p(Ti; θ) + (1− δi) log Si(Ti; θ),

which also can be re-expressed in terms of the hazard function

ℓ(θ) =

n∑
i=1

δi log hi(Ti; θ)−
∫ Ti

0

hi(s; θ) ds

Sensitivity to distributional assumptions due to
censoring
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3.2 Relative Risk Models (cont’d)

• Cox Model: We make no assumptions for the baseline hazard function

• Parameter estimates and standard errors are based on the log partial likelihood
function

pℓ(γ) =

n∑
i=1

δi

[
γ⊤wi − log

{ ∑
j:Tj≥Ti

exp(γ⊤wj)
}]

,

where only patients who had an event contribute
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3.2 Relative Risk Models (cont’d)

• Example: For the PBC dataset were interested in the treatment effect while
correcting for sex and age effects

hi(t) = h0(t) exp(γ1D-penici + γ2Femalei + γ3Agei)

Value HR Std.Err. z-value p-value

γ1 −0.138 0.871 0.156 −0.882 0.378

γ2 −0.493 0.611 0.207 −2.379 0.017

γ3 0.021 1.022 0.008 2.784 0.005
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3.3 Relative Risk Models in R

R> The primary package in R for the analysis of survival data is the survival package

R> A key function in this package that is used to specify the available event time
information in a sample at hand is Surv()

R> For right censored failure times (i.e., what we will see in this course) we need to
provide the observed event times time, and the event indicator status, which
equals 1 for true failure times and 0 for right censored times

Surv(time, status)
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3.3 Relative Risk Models in R (cont’d)

R> Cox models are fitted using function coxph(). For instance, for the PBC data the
following code fits the Cox model that contains the main effects of ‘drug’, ‘sex’ and
‘age’:

coxFit <- coxph(Surv(years, status2) ~ drug + sex + age,

data = pbc2.id)

summary(coxFit)

R> The two main arguments are a formula specifying the design matrix of the model
and a data frame containing all the variables
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3.4 Time Dependent Covariates

• Often interest in the association between a time-dependent covariate and the risk for
an event

◃ treatment changes with time (e.g., dose)

◃ time-dependent exposure (e.g., smoking, diet)

◃ markers of disease or patient condition (e.g., blood pressure, PSA levels)

◃ . . .

• Example: In the PBC study, are the longitudinal bilirubin measurements associated
with the hazard for death?
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3.4 Time Dependent Covariates (cont’d)

• To answer our questions of interest we need to postulate a model that relates

◃ the serum bilirubin with

◃ the time-to-death

• The association between baseline marker levels and the risk for death can be
estimated with standard statistical tools (e.g., Cox regression)

• When we move to the time-dependent setting, a more careful consideration is
required
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3.4 Time Dependent Covariates (cont’d)

• There are two types of time-dependent covariates
(Kalbfleisch and Prentice, 2002, Section 6.3)

◃ Exogenous (aka external): the future path of the covariate up to any time t > s is
not affected by the occurrence of an event at time point s, i.e.,

Pr
{
Yi(t) | Yi(s), T

∗
i ≥ s

}
= Pr

{
Yi(t) | Yi(s), T

∗
i = s

}
,

where 0 < s ≤ t and Yi(t) = {yi(s), 0 ≤ s < t}

◃ Endogenous (aka internal): not Exogenous
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3.4 Time Dependent Covariates (cont’d)

• It is very important to distinguish between these two types of time-dependent
covariates, because the type of covariate dictates the appropriate type of analysis

• In our motivating examples all time-varying covariates are Biomarkers ⇒ These are
always endogenous covariates

◃ measured with error (i.e., biological variation)

◃ the complete history is not available

◃ existence directly related to failure status
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3.4 Time Dependent Covariates (cont’d)
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3.5 Extended Cox Model

• The Cox model presented earlier can be extended to handle time-dependent
covariates using the counting process formulation

hi(t | Yi(t), wi) = h0(t)Ri(t) exp{γ⊤wi + αyi(t)},

where

◃ Ni(t) is a counting process which counts the number of events for subject i by
time t,

◃ hi(t) denotes the intensity process for Ni(t),

◃ Ri(t) denotes the at risk process (‘1’ if subject i still at risk at t), and

◃ yi(t) denotes the value of the time-varying covariate at t
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3.5 Extended Cox Model (cont’d)

• Interpretation:

hi(t | Yi(t), wi) = h0(t)Ri(t) exp{γ⊤wi + αyi(t)}

exp(α) denotes the relative increase in the risk for an event at time t that results
from one unit increase in yi(t) at the same time point

• Parameters are estimated based on the log-partial likelihood function

pℓ(γ, α) =

n∑
i=1

∫ ∞

0

{
Ri(t) exp{γ⊤wi + αyi(t)}

− log
[∑

j

Rj(t) exp{γ⊤wj + αyj(t)}
]}

dNi(t)
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3.5 Extended Cox Model (cont’d)

• Typically, data must be organized in the long format

Patient Start Stop Event yi(t) Age

1 0 135 1 5.5 45

2 0 65 0 2.2 38

2 65 120 0 3.1 38

2 120 155 1 4.1 38

3 0 115 0 2.5 29

3 115 202 0 2.9 29
... ... ... ... ... ...

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 64



3.5 Extended Cox Model (cont’d)

• How does the extended Cox model handle time-varying covariates?

◃ assumes no measurement error

◃ step-function path

◃ existence of the covariate is not related to failure status
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3.5 Extended Cox Model (cont’d)
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3.5 Extended Cox Model (cont’d)

• Therefore, the extended Cox model is only valid for exogenous time-dependent
covariates

Treating endogenous covariates as exogenous may
produce spurious results!
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Chapter 4

The Basic Joint Model

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 68



4.1 Joint Modeling Framework

• To account for the special features of endogenous covariates a new class of models
has been developed

Joint Models for Longitudinal and Time-to-Event Data

• Intuitive idea behind these models

1. use an appropriate model to describe the evolution of the marker in time for each
patient

2. the estimated evolutions are then used in a Cox model

• Feature: Marker level’s are not assumed constant between visits
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4.1 Joint Modeling Framework (cont’d)
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4.1 Joint Modeling Framework (cont’d)

• Some notation

◃ T ∗
i : True event time for patient i

◃ Ti: Observed event time for patient i

◃ δi: Event indicator, i.e., equals 1 for true events

◃ yi: Longitudinal responses

• We will formulate the joint model in 3 steps – in particular, . . .
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4.1 Joint Modeling Framework (cont’d)

• Step 1: Let’s assume that we know mi(t), i.e., the true & unobserved value of the
marker at time t

• Then, we can define a standard relative risk model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

where

◃ Mi(t) = {mi(s), 0 ≤ s < t} longitudinal history

◃ α quantifies the strength of the association between the marker and the risk for
an event

◃ wi baseline covariates
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4.1 Joint Modeling Framework (cont’d)

• Step 2: From the observed longitudinal response yi(t) reconstruct the covariate
history for each subject

• Mixed effects model (we focus, for now, on continuous markers)

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t), εi(t) ∼ N (0, σ2),

where

◃ xi(t) and β: Fixed-effects part

◃ zi(t) and bi: Random-effects part, bi ∼ N (0, D)
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4.1 Joint Modeling Framework (cont’d)

• Step 3: The two processes are associated ⇒ define a model for their joint
distribution

• Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

p(yi, Ti, δi) =

∫
p(yi | bi)

{
h(Ti | bi)δi S(Ti | bi)

}
p(bi) dbi,

where

◃ bi a vector of random effects that explains the interdependencies

◃ p(·) density function; S(·) survival function
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4.1 Joint Modeling Framework (cont’d)

• Key assumption: Full Conditional Independence ⇒ random effects explain all
interdependencies

◃ the longitudinal outcome is independent of the time-to-event outcome

◃ the repeated measurements in the longitudinal outcome are independent of each
other

p(yi, Ti, δi | bi) = p(yi | bi) p(Ti, δi | bi)

p(yi | bi) =
∏
j

p(yij | bi)

Caveat: CI is difficult to be tested
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4.1 Joint Modeling Framework (cont’d)

• The censoring and visiting∗ processes are assumed non-informative:

• Decision to withdraw from the study or appear for the next visit

◃ may depend on observed past history (baseline covariates + observed
longitudinal responses)

◃ no additional dependence on underlying, latent subject characteristics
associated with prognosis

∗The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which

longitudinal measurements are collected.
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4.1 Joint Modeling Framework (cont’d)

• The survival function, which is a part of the likelihood of the model, depends on the
whole longitudinal history

Si(t | bi) = exp

(
−
∫ t

0

h0(s) exp{γ⊤wi + αmi(s)} ds

)

• Therefore, care in the definition of the design matrices of the mixed model

◃ when subjects have nonlinear profiles ⇒

◃ use splines or polynomials to model them flexibly

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 77



4.1 Joint Modeling Framework (cont’d)

• Assumptions for the baseline hazard function h0(t)

◃ parametric ⇒ possibly restrictive

◃ unspecified ⇒ within JM framework underestimates standard errors

• It is advisable to use parametric but flexible models for h0(t)

◃ splines

log h0(t) = γh0,0 +

Q∑
q=1

γh0,qBq(t, v),

where

* Bq(t, v) denotes the q-th basis function of a B-spline with knots v1, . . . , vQ

* γh0 a vector of spline coefficients
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4.1 Joint Modeling Framework (cont’d)

• It is advisable to use parametric but flexible models for h0(t)

◃ step-functions: piecewise-constant baseline hazard often works satisfactorily

h0(t) =

Q∑
q=1

ξqI(vq−1 < t ≤ vq),

where 0 = v0 < v1 < · · · < vQ denotes a split of the time scale
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4.2 Estimation

• Mainly maximum likelihood but also Bayesian approaches

• The log-likelihood contribution for subject i:

ℓi(θ) = log

∫ { ni∏
j=1

p(yij | bi; θ)
}{

h(Ti | bi; θ)δi Si(Ti | bi; θ)
}
p(bi; θ) dbi,

where

Si(t | bi; θ) = exp

(
−
∫ t

0

h0(s; θ) exp{γ⊤wi + αmi(s)} ds

)
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4.2 Estimation (cont’d)

• Both integrals do not have, in general, a closed-form solution ⇒ need to be
approximated numerically

• Standard numerical integration algorithms

◃ Gaussian quadrature

◃ Monte Carlo

◃ . . .

• More difficult is the integral with respect to bi because it can be of high dimension

◃ Laplace approximations

◃ pseudo-adaptive Gaussian quadrature rules
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4.2 Estimation (cont’d)

• To maximize the approximated log-likelihood

ℓ(θ) =

n∑
i=1

log

∫
p(yi | bi; θ)

{
h(Ti | bi; θ)δi Si(Ti | bi; θ)

}
p(bi; θ) dbi,

we need to employ an optimization algorithm

• Standard choices

◃ EM (treating bi as missing data)

◃ Newton-type

◃ hybrids (start with EM and continue with quasi-Newton)
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4.2 Estimation (cont’d)

• Standard errors: Standard asymptotic MLE

vâr(θ̂) =

{
−

n∑
i=1

∂2 log p(yi, Ti, δi; θ)

∂θ⊤∂θ

∣∣∣
θ=θ̂

}−1

• Standard asymptotic tests + information criteria

◃ likelihood ratio test

◃ score test

◃ Wald test

◃ AIC, BIC, . . .
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4.2 Estimation (cont’d)

• Based on a fitted joint model, estimates for the random effects are based on the
posterior distribution:

p(bi | Ti, δi, yi; θ) =
p(Ti, δi | bi; θ) p(yi | bi; θ) p(bi; θ)

p(Ti, δi, yi; θ)

∝ p(Ti, δi | bi; θ) p(yi | bi; θ) p(bi; θ),

in which θ is replaced by its MLE θ̂
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4.2 Estimation (cont’d)

• Measures of location 
b̄i =

∫
bi p(bi | Ti, δi, yi; θ̂) dbi

b̂i = argmaxb{log p(b | Ti, δi, yi; θ̂)}

• Measures of dispersion


var(bi) =

∫
(bi − b̄i)(bi − b̄i)

⊤ p(bi | Ti, δi, yi; θ̂) dbi

Hi =
{
−∂2 log p(b|Ti,δi,yi;θ̂)

∂b⊤∂b

∣∣
b=b̂i

}−1
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4.3 Bayesian Estimation

• Bayesian estimation

◃ under the Bayesian paradigm both θ and {bi, i = 1, . . . , n} are regarded as
parameters

• Inference is based on the full posterior distribution

p(θ, b | T, δ, y) =

∏
i p(Ti, δi | bi; θ) p(yi | bi; θ) p(bi; θ) p(θ)∏

i p(Ti, δi, yi)

∝
n∏
i=1

{
p(Ti, δi | bi; θ) p(yi | bi; θ) p(bi; θ)

}
p(θ)
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4.3 Bayesian Estimation (cont’d)

• No closed-form solutions for the integrals in the normalizing constant ⇒ MCMC

• For the standard joint model we have define thus far, the majority of the parameters
can be updated using Gibbs sampling (or slice sampling)

◃ when no close-form posterior conditionals are available, we can use the
Metropolis-Hastings algorithm

• To gain in efficiency, we can do block-updating for many of the parameters, i.e.,

◃ fixed effects β

◃ random effects bi

◃ baseline covariates in the survival submodel γ
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4.3 Bayesian Estimation (cont’d)

• Good proposal distributions can be obtained from the separate fits of the two
submodels

• Not directly programmable in WinBUGS, INLA, etc., due to the integral in the
definition of the survival function

Si(t | bi; θ) = exp

(
−
∫ t

0

h0(s; θ) exp{γ⊤wi + αmi(s)} ds

)
extra steps required. . .
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4.3 Bayesian Estimation (cont’d)

• Inference then proceeds in the usual manner from the MCMC output, e.g.,

◃ posterior means, variances, and standard errors

◃ credible intervals

◃ Bayes factors

◃ DIC, CPO

◃ . . .
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4.4 A Comparison with the TD Cox

• Example: To illustrate the virtues of joint modeling, we compare it with the standard
time-dependent Cox model for the AIDS data

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp{γddIi + αmi(t)},

where

◃ h0(t) is assumed piecewise-constant
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4.4 A Comparison with the TD Cox (cont’d)

JM Cox

log HR (std.err) log HR (std.err)

Treat 0.33 (0.16) 0.31 (0.15)

CD41/2 −0.29 (0.04) −0.19 (0.02)

• Clearly, there is a considerable effect of ignoring the measurement error, especially for
the CD4 cell counts
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4.4 A Comparison with the TD Cox (cont’d)

• A unit decrease in CD41/2, results in a

◃ Joint Model: 1.3-fold increase in risk (95% CI: 1.24; 1.43)

◃ Time-Dependent Cox: 1.2-fold increase in risk (95% CI: 1.16; 1.27)

• Which one to believe?

◃ a lot of theoretical and simulation work has shown that the Cox model
underestimates the true association size of markers
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4.5 Joint Models in R

R> Joint models are fitted using function jointModel() from package JM. This
function accepts as main arguments a linear mixed model and a Cox PH model based
on which it fits the corresponding joint model

lmeFit <- lme(CD4 ~ obstime + obstime:drug,

random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

jointFit <- jointModel(lmeFit, coxFit, timeVar = "obstime",

method = "piecewise-PH-aGH")

summary(jointFit)
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4.5 Joint Models in R (cont’d)

R> As before, the data frame given in lme() should be in the long format, while the
data frame given to coxph() should have one line per subject∗

◃ the ordering of the subjects needs to be the same

R> In the call to coxph() you need to set x = TRUE (or model = TRUE) such that
the design matrix used in the Cox model is returned in the object fit

R> Argument timeVar specifies the time variable in the linear mixed model

∗ Unless you want to include exogenous time-varying covariates or handle competing risks
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4.5 Joint Models in R (cont’d)

R> Argument method specifies the type of relative risk model and the type of numerical
integration algorithm – the syntax is as follows:

<baseline hazard>-<parameterization>-<numerical integration>

Available options are:

◃ "piecewise-PH-GH": PH model with piecewise-constant baseline hazard

◃ "spline-PH-GH": PH model with B-spline-approximated log baseline hazard

◃ "weibull-PH-GH": PH model with Weibull baseline hazard

◃ "weibull-AFT-GH": AFT model with Weibull baseline hazard

◃ "Cox-PH-GH": PH model with unspecified baseline hazard

GH stands for standard Gauss-Hermite; using aGH invokes the pseudo-adaptive
Gauss-Hermite rule
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4.5 Joint Models in R (cont’d)

R> Joint models under the Bayesian approach are fitted using function
jointModelBayes() from package JMbayes. This function works in a very similar
manner as function jointModel(), e.g.,

lmeFit <- lme(CD4 ~ obstime + obstime:drug,

random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

jointFitBayes <- jointModelBayes(lmeFit, coxFit, timeVar = "obstime")

summary(jointFitBayes)
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4.5 Joint Models in R (cont’d)

R> JMbayes is more flexible (in some respects):

◃ directly implements the MCMC

◃ allows for categorical longitudinal data as well

◃ allows for general transformation functions

◃ penalized B-splines for the baseline hazard function

◃ . . .
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4.5 Joint Models in R (cont’d)

R> In both packages methods are available for the majority of the standard generic
functions + extras

◃ summary(), anova(), vcov(), logLik()

◃ coef(), fixef(), ranef()

◃ fitted(), residuals()

◃ plot()

◃ xtable() (you need to load package xtable first)
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4.6 Connection with Missing Data

• So far we have attacked the problem from the survival point of view

• However, often, we may be also interested on the longitudinal outcome

• Issue: When patients experience the event, they dropout from the study

◃ a direct connection with the missing data field

Dropout must be taken into account when deriving
inferences for the longitudinal outcome
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4.6 Connection with Missing Data (cont’d)

• To show this connection more clearly

◃ T ∗
i : true time-to-event

◃ yoi : longitudinal measurements before T
∗
i

◃ ymi : longitudinal measurements after T
∗
i

• Important to realize that the model we postulate for the longitudinal responses is
for the complete vector {yoi , ymi }

◃ implicit assumptions about missingness
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4.6 Connection with Missing Data (cont’d)

• Missing data mechanism:

p(T ∗
i | yoi , ymi ) =

∫
p(T ∗

i | bi) p(bi | yoi , ymi ) dbi

still depends on ymi , which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show
different longitudinal evolutions than patients who do not
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4.6 Connection with Missing Data (cont’d)

• Implications of nonrandom dropout

◃ observed data do not constitute a random sample from the target population

• This feature complicates the validation of the joint model’s assumptions using
standard residual plots

◃ what is the problem: Residual plots may show systematic behavior due to dropout
and not because of model misfit
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4.6 Connection with Missing Data (cont’d)

• What about censoring?

◃ censoring also corresponds to a discontinuation of the data collection process for
the longitudinal outcome

• Likelihood-based inferences for joint models provide valid inferences when censoring is
MAR

◃ a patient relocates to another country (MCAR)

◃ a patient is excluded from the study when her longitudinal response exceeds a
prespecified threshold (MAR)

◃ censoring depends on random effects (MNAR)
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4.6 Connection with Missing Data (cont’d)

• Joint models belong to the class of Shared Parameter Models

p(yoi , y
m
i , T

∗
i ) =

∫
p(yoi , y

m
i | bi) p(T ∗

i | bi) p(bi)dbi

the association between the longitudinal and missingness processes is explained by
the shared random effects bi
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4.6 Connection with Missing Data (cont’d)

• The other two well-known frameworks for MNAR data are

◃ Selection models

p(yoi , y
m
i , T

∗
i ) = p(yoi , y

m
i ) p(T

∗
i | yoi , ymi )

◃ Pattern mixture models:

p(yoi , y
m
i , T

∗
i ) = p(yoi , y

m
i | T ∗

i ) p(T
∗
i )

• These two model families are primarily applied with discrete dropout times and
cannot be easily extended to continuous time
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4.6 Connection with Missing Data (cont’d)

• Example: In the AIDS data the association parameter α was highly significant,
suggesting nonrandom dropout

• A comparison between

◃ linear mixed-effects model ⇒ MAR

◃ joint model ⇒ MNAR

is warranted

• MAR assumes that missingness depends only on the observed data

p(T ∗
i | yoi , ymi ) = p(T ∗

i | yoi )
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4.6 Connection with Missing Data (cont’d)

LMM (MAR) JM (MNAR)

value (s.e.) value (s.e)

Inter 7.19 (0.22) 7.22 (0.22)

Time −0.16 (0.02) −0.19 (0.02)

Treat:Time 0.03 (0.03) 0.01 (0.03)

• Minimal sensitivity in parameter estimates & standard errors

⇒ Warning: This does not mean that this is always the case!

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 107



Chapter 5

Extensions of Joint Models
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5.1 Parameterizations

• The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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5.1 Parameterizations (cont’d)
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5.1 Parameterizations (cont’d)

• The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}

Is this the only option? Is this the most
optimal choice?
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5.1 Parameterizations (cont’d)

• Note: Inappropriate modeling of time-dependent covariates may result in surprising
results

• Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to
test the effect of cigarette smoking on survival of patients who underwent coronary
artery surgery

◃ the estimated effect of current cigarette smoking was positive on survival although
not significant (i.e., patients who smoked had higher probability of survival)

◃ most of those who had died were smokers but many stopped smoking at the last
follow-up before their death
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5.1 Parameterizations (cont’d)

We need to carefully consider the functional form of
time-dependent covariates

• Let’s see some possibilities. . .
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5.1 Parameterizations (cont’d)

• Lagged Effects: The hazard for an event at t is associated with the level of the
marker at a previous time point:

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t
c
+)},

where

tc+ = max(t− c, 0)
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5.1 Parameterizations (cont’d)
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5.1 Parameterizations (cont’d)

• Time-dependent Slopes: The hazard for an event at t is associated with both the
current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α1mi(t) + α2m
′
i(t)},

where

m′
i(t) =

d

dt
{x⊤i (t)β + z⊤i (t)bi}
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5.1 Parameterizations (cont’d)
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5.1 Parameterizations (cont’d)

• Cumulative Effects: The hazard for an event at t is associated with the whole area
under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

mi(s) ds
}

• Area under the longitudinal trajectory taken as a summary of Mi(t)
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5.1 Parameterizations (cont’d)
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5.1 Parameterizations (cont’d)

• Weighted Cumulative Effects (convolution): The hazard for an event at t is
associated with the area under the weighted trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

ϖ(t− s)mi(s) ds
}
,

where ϖ(·) an appropriately chosen weight function, e.g.,

◃ Gaussian density

◃ Student’s-t density

◃ . . .
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5.1 Parameterizations (cont’d)

• Random Effects: The hazard for an event at t is associated only with the random
effects of the longitudinal model:

hi(t | Mi(t)) = h0(t) exp(γ
⊤wi + α⊤bi)

• Features:

◃ avoids numerical integration for the survival function

◃ interpretation of α more difficult, especially in high-dimensional random-effects
settings
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5.1 Parameterizations (cont’d)

• Example: Sensitivity of inferences for the longitudinal process to the choice of the
parameterization for the AIDS data

• We use the same mixed model as before, i.e.,

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t)

and the following four survival submodels
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5.1 Parameterizations (cont’d)

• Model I (current value)

hi(t) = h0(t) exp{γddIi + α1mi(t)}

• Model II (current value + current slope)

hi(t) = h0(t) exp{γddIi + α1mi(t) + α2m
′
i(t)},

where

◃ m′
i(t) = β1 + β2ddIi + bi1
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5.1 Parameterizations (cont’d)

• Model III (random slope)

hi(t) = h0(t) exp{γddIi + α3bi1}

• Model IV (area)

hi(t) = h0(t) exp
{
γddIi + α4

∫ t

0

mi(s) ds
}
,

where

◃
∫ t

0 mi(s) ds = β0t +
β1
2 t

2 + β2
2 {t

2 × ddIi} + bi0t +
bi1
2 t

2
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5.1 Parameterizations (cont’d)

Value

value

value+slope

random slope

area

6.8 7.0 7.2 7.4 7.6

β0

−0.25 −0.20 −0.15 −0.10

β1

−0.05 0.00 0.05

β2
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5.1 Parameterizations (cont’d)

• There are noticeable differences between the parameterizations

◃ especially in the slope parameters

• Therefore, a sensitivity analysis should not stop at the standard joint model
parameterization but also consider alternative association structures
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5.1 Parameterizations (cont’d)

R> Lagged effects can be fitted using the lag argument of jointModel(). For
example, the following code fits a joint model for the PBC dataset with

◃ random intercepts and random slopes for log serum bilirubin, and

◃ a relative risk model with piecewise-constant baseline hazard and the true effect
at the previous year

lmeFit <- lme(log(serBilir) ~ year, random = ~ year | id, data = pbc2)

coxFit <- coxph(Surv(years, status2) ~ 1, data = pbc2.id, x = TRUE)

jointFit <- jointModel(lmeFit, coxFit, timeVar = "year",

method = "piecewise-PH-aGH", lag = 1)

summary(jointFit)
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5.1 Parameterizations (cont’d)

R> For the time-dependent slopes and cumulative effects parameterizations, arguments
parameterization and derivForm of jointModel() should be used

◃ the first one just specifies whether we want to include a single or two terms
involving mi(t) in the linear predictor of the survival submodel, options are

* parameterization = "value"

* parameterization = "slope"

* parameterization = "both"

◃ the second one requires a few extra steps to specify – we will see an example in
the practical
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5.2 Multiple Longitudinal Markers

• So far we have concentrated on a single continuous marker

• But very often we may have several markers we wish to study, some of which could
be categorical

• Example: In the PBC dataset we have used serum bilirubin as the most important
marker, but during follow-up several other markers have been recorded

◃ serum cholesterol (continuous)

◃ edema (3 categories)

◃ ascites (2 categories)

◃ . . .
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5.2 Multiple Longitudinal Markers (cont’d)

We need to extend the basic joint model!

• To handle multiple longitudinal markers of different types we use Generalized Linear
Mixed Models

◃ We assume Yi1, . . . , YiJ for each subject, each one having a distribution in the
exponential family, with expected value

mij(t) = E(yij(t) | bij) = g−1
j {x⊤ij(t)βj + z⊤ij(t)bij},

with g(·) denoting a link function
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5.2 Multiple Longitudinal Markers (cont’d)

◃ Correlation between the outcomes is built by assuming a multivariate normal
distribution for the random effects

bi = (b⊤i1, . . . , b
⊤
iJ)

⊤ ∼ N (0, D)

• The expected value of each longitudinal marker is incorporated in the linear predictor
of the survival submodel

hi(t) = h0(t) exp
{
γ⊤wi +

J∑
j=1

αjmij(t)
}
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5.3 Multiple Failure Times

• Often multiple failure times are recorded

◃ competing risks

◃ recurrent events

• Example: In the PBC dataset ⇒ competing risks

◃ Some patients received a liver transplantation

◃ So far we have used the composite event, i.e. death or transplantation whatever
comes first

◃ When interest only is on one type of event, the other should be considered as a
competing risk
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5.3 Multiple Failure Times (cont’d)

• Joint models with competing risks:

yi(t) = mi(t) + εi(t) = x⊤i (t)β + z⊤i (t)bi + εi(t),

hd
i (t) = hd

0(t) exp{γ⊤
d wi + αdmi(t)},

htr
i (t) = htr

0 (t) exp{γ⊤
trwi + αtrmi(t)},

where

◃ hd
i (t) hazard function for death

◃ htr
i (t) hazard function for transplantation
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5.3 Multiple Failure Times (cont’d)

• Multiple Failure Times: recurrent events

• Example: In the PBC dataset ⇒ recurrent events

◃ Patients showed irregular visiting patterns

◃ So far, when we fitted the joint model we assumed that the visiting process is
non-informative

◃ If this assumption is violated, we should also model this process in order to obtain
valid inferences
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5.3 Multiple Failure Times (cont’d)

• Joint model with recurrent (visiting process) & terminal events

yi(t) = mi(t) + εi(t) = x⊤i (t)β + z⊤i (t)bi + εi(t),

ri(t) = r0(t) exp
{
γ⊤
r wri + αrmi(t) + vi

}
,

hi(t) = h0(t) exp
{
γ⊤
h whi + αhmi(t) + ζvi

}
,

with

◃ ri(t) hazard function for the recurrent events

◃ hi(t) hazard function for the terminal event

◃ vi frailty term accounting for the correlation in the recurrent events
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5.4 Extensions & Parameterizations

• Features of multivariate joint models

◃ using CI is straightforward to extend joint models to multiple longitudinal
outcomes of different types, and multiple failure times

◃ computationally much more intensive due to requirement for high dimensional
numerical integrations with respect to the random effects
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5.4 Extensions & Parameterizations (cont’d)

• Note: In the previous extensions of joint models, i.e.,

◃ multiple longitudinal markers

◃ multiple failure times

we used the default parameterization that includes the current value term mi(t) in
the linear predictor of the survival submodel(s)

Nonetheless, all the other parameterizations we have seen
earlier are also applicable
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Chapter 6

Dynamic Predictions, Discrimination & Calibration
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6.1 Survival Probabilities: Definitions

• Nowadays there is great interest for prognostic models and their application to
personalized medicine

• Examples are numerous

◃ cancer research, cardiovascular diseases, HIV research, . . .

Physicians are interested in accurate prognostic tools that will
inform them about the future prospect of a patient in order to

adjust medical care
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6.1 Survival Probabilities: Definitions (cont’d)

• We are interested in predicting survival probabilities for a new patient j that has
provided a set of serum bilirubin measurements up to a specific time point t

• Example: We consider Patients 2 and 25 from the PBC dataset that have provided
us with 9 and 12 serum bilirubin measurements, respectively

◃ Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded

• We need to account for the endogenous nature of the marker

◃ providing measurements up to time point t ⇒ the patient was still alive at time t
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6.1 Survival Probabilities: Definitions (cont’d)
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6.1 Survival Probabilities: Definitions (cont’d)

• More formally, for a new subject j we have available measurements up to time point t

Yj(t) = {yj(s), 0 ≤ s ≤ t}

and we are interested in

πj(u | t) = Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
,

where

◃ where u > t, and

◃ Dn denotes the sample on which the joint model was fitted
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6.2 Survival Probabilities: Estimation

• We assume that the joint model has been fitted to the data at hand

• Based on the fitted model we can estimate the conditional survival probabilities
(Rizopoulos, 2011, Biometrics)
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6.2 Survival Probabilities: Estimation (cont’d)

• πj(u | t) can be rewritten as

πj(u | t) =

∫
Sj

{
u | Mj(u, bj, θ); θ

}
Sj

{
t | Mj(t, bj, θ); θ

} p(bj | T ∗
j > t,Yj(t); θ) dbj

• A naive estimator for πj(u | t) can be constructed by plugging-in the MLEs and the
Empirical Bayes estimates

π̃j(u | t) =
Sj

{
u | Mj(u, b̂j, θ̂); θ̂

}
Sj

{
t | Mj(t, b̂j, θ̂); θ̂

}
◃ this works relatively well in practice, but

◃ standard errors are difficult to compute
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6.2 Survival Probabilities: Estimation (cont’d)

• It is convenient to proceed using a Bayesian formulation of the problem ⇒
πj(u | t) can be written as

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
=

∫
Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
p(θ | Dn) dθ

• We have already seen the first part of the integrand

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
=

=

∫
Sj

{
u | Mj(u, bj, θ); θ

}
Sj

{
t | Mj(t, bj, θ); θ

} p(bj | T ∗
j > t,Yj(t); θ) dbj
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6.2 Survival Probabilities: Estimation (cont’d)

• Provided that the sample size is sufficiently large, we can approximate the posterior
of the parameters by

{θ | Dn} ∼ N (θ̂, Ĥ),

where

◃ θ̂ are the MLEs, and

◃ Ĥ their asymptotic covariance matrix
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6.2 Survival Probabilities: Estimation (cont’d)

• A Monte Carlo estimate of πj(u | t) can be obtained using the following simulation
scheme:

Step 1. draw θ(ℓ) ∼ N (θ̂, Ĥ)

Step 2. draw b
(ℓ)
j ∼ {bj | T ∗

j > t,Yj(t), θ
(ℓ)}

Step 3. compute π
(ℓ)
j (u | t) = Sj

{
u | Mj(u, b

(ℓ)
j , θ(ℓ)); θ(ℓ)

}/
Sj

{
t | Mj(t, b

(ℓ)
j , θ(ℓ)); θ(ℓ)

}
• Repeat Steps 1–3, ℓ = 1, . . . , L times, where L denotes the number of Monte Carlo
samples
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6.2 Survival Probabilities: Estimation (cont’d)

• Steps 1 and 3 are straightforward

• In Step 2 we need to sample from {bj | T ∗
j > t,Yj(t), θ

(ℓ)}, which is nonstandard

◃ as ni increases, this posterior converges to a multivariate normal distribution
(Rizopoulos et al., Biometrika, 2008)

◃ we use a Metropolis-Hastings algorithm with multivariate t proposals
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6.2 Survival Probabilities: Estimation (cont’d)

• Example: Dynamic predictions of survival probabilities for Patients 2 & 25 from the
PBC dataset: We fit the joint model

• Longitudinal submodel

◃ fixed effects: Linear & quadratic time, treatment and their interaction

◃ random effects: Intercept, linear & quadratic time effects

• Survival submodel

◃ treatment effect + underlying serum bilirubin level

◃ piecewise-constant baseline hazard in 7 intervals
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6.2 Survival Probabilities: Estimation (cont’d)

• Based on the fitted joint model we estimate πj(u | t) for Patients 2 and 25

• We use 500 Monte Carlo samples, and we took as estimate

π̂j(u | t) = median{π(ℓ)
j (u | t), ℓ = 1, . . . , L}

and calculated a corresponding 95% pointwise CIs
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6.2 Survival Probabilities: Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)

0 2 4 6 8

−
2

−
1

0
1

2
3

Time

lo
g(

se
ru

m
 B

ili
ru

bi
n)

Subject 2

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8
−

2
−

1
0

1
2

3

Time

Subject 25

0.0

0.2

0.4

0.6

0.8

1.0

S
ur

vi
va

l P
ro

ba
bi

lit
y

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 152



6.2 Survival Probabilities: Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)
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6.2 Survival Probabilities: Estimation (cont’d)

R> Individualized predictions of survival probabilities are computed by function
survfitJM() – for example, for Patient 2 from the PBC dataset we have

sfit <- survfitJM(jointFit, newdata = pbc2[pbc2$id == "2", ])

sfit

plot(sfit)

plot(sfit, include.y = TRUE)
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6.3 Longitudinal Responses: Definitions∗

• In some occasions it may be also of interest to predict the longitudinal outcome

• We can proceed in the same manner as for the survival probabilities: We have
available measurements up to time point t

Yj(t) = {yj(s), 0 ≤ s ≤ t}

and we are interested in

ωj(u | t) = E
{
yj(u) | T ∗

j > t,Yj(t),Dn

}
, u > t
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6.3 Longitudinal Responses: Definitions∗ (cont’d)

• To estimate ωj(u | t) we can follow a similar approach as for πj(u | t) – Namely,
ωj(u | t) is written as:

E
{
yj(u) | T ∗

j > t,Yj(t),Dn

}
=

∫
E
{
yj(u) | T ∗

j > t,Yj(t),Dn; θ
}
p(θ | Dn) dθ

• With the first part of the integrand given by:

E
{
yj(u) | T ∗

j > t,Yj(t),Dn; θ
}
=

=

∫
{x⊤j (u)β + z⊤j (u)bj} p(bj | T ∗

j > t,Yj(t); θ) dbj
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6.3 Longitudinal Responses: Estimation∗ (cont’d)

• A similar Monte Carlo simulation scheme:

Step 1. draw θ(ℓ) ∼ N (θ̂, Ĥ)

Step 2. draw b
(ℓ)
j ∼ {bj | T ∗

j > t,Yj(t), θ
(ℓ)}

Step 3. compute ω
(ℓ)
j (u | t) = x⊤j (u)β

(ℓ) + z⊤j (u)b
(ℓ)
j

• Note: Prediction intervals can be easily computed by replacing Step 3 with a draw
from:

ω
(ℓ)
j (u | t) ∼ N

{
x⊤j (u)β

(ℓ) + z⊤j (u)b
(ℓ)
j , [σ2](ℓ)

}
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6.3 Longitudinal Responses: Estimation∗ (cont’d)

• Example: Dynamic predictions of serum bilirubin for Patients 2 & 25 from the PBC
dataset: We fit the joint model

• Longitudinal submodel

◃ fixed effects: Linear & quadratic time, treatment and their interaction

◃ random effects: Intercept, linear & quadratic time effects

• Survival submodel

◃ treatment effect + underlying serum bilirubin level

◃ piecewise-constant baseline hazard in 7 intervals
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6.3 Longitudinal Responses: Estimation∗ (cont’d)

• Based on the fitted joint model we estimate ωj(u | t) for Patients 2 and 25

• Point estimates

ω̂j(u | t) = x⊤j (u)β̂ + z⊤j (u)b̂j,

where β̂: MLEs & b̂j: empirical Bayes estimates

• 95% pointwise CIs

◃ simulation scheme: 2.5% and 97.5% percentiles of 500 Monte Carlo samples of

ω
(ℓ)
j (u | t)
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6.3 Longitudinal Responses: Estimation∗ (cont’d)
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6.3 Longitudinal Responses: Estimation∗ (cont’d)
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6.3 Longitudinal Responses: Estimation∗ (cont’d)
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6.3 Longitudinal Responses: Estimation∗ (cont’d)
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6.3 Longitudinal Responses: Estimation∗ (cont’d)
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6.3 Longitudinal Responses: Estimation∗ (cont’d)
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6.3 Longitudinal Responses: Estimation∗ (cont’d)

R> Individualized predictions for the longitudinal outcome are computed by function
predict() – for example, for Patient 2 from the PBC dataset we have function

lfit <- predict(jointFit, newdata = pbc2[pbc2$id == "2", ],

type = "Subject", interval = "conf", returnData = TRUE)

lfit

xyplot(pred + low + upp ~ year, data = lfit, type = "l",

lty = c(1,2,2), col = c(2,1,1), lwd = 2)

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 160



6.3 Longitudinal Responses: Estimation∗ (cont’d)

R> Web interface using the shiny package

library("shiny")

runApp(file.path(.Library, "JMbayes/demo"))
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6.4 Importance of the Parameterization

• All previous predictions were based on the standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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6.4 Importance of the Parameterization (cont’d)

• We have seen earlier that there are several alternative parameterizations (see Section 5.1)

• Relevant questions:

◃ Does the assumed parameterization affect predictions?

◃ Which parameterization is the most optimal?

• Example: We compare predictions for the longitudinal and survival outcomes under
different parameterizations for Patient 51 from the PBC study
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6.4 Importance of the Parameterization (cont’d)
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6.4 Importance of the Parameterization (cont’d)

• Predictions based on five joint models for the PBC dataset

◃ the same longitudinal submodel as before, and

◃ relative risk submodels:

hi(t) = h0(t) exp{γD-pnci + α1mi(t)},

hi(t) = h0(t) exp{γD-pnci + α2m
′
i(t)},

hi(t) = h0(t) exp{γD-pnci + α1mi(t) + α2m
′
i(t)},
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6.4 Importance of the Parameterization (cont’d)

hi(t) = h0(t) exp
{
γD-pnci + α3

∫ t

0

mi(s)ds
}
,

hi(t) = h0(t) exp
{
γD-pnci + α4

∫ t

0

ϕ(t− s)mi(s)ds
}
,

where ϕ(·) standard normal pdf
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6.4 Importance of the Parameterization (cont’d)

Longitudinal Outcome

Predicted log serum bilirubin

Value

Slope

Value+Slope

Area

weighted Area

u = 1

−1 0 1 2 3 4

u = 1.5 u = 2

−1 0 1 2 3 4

u = 3

Value

Slope

Value+Slope

Area

weighted Area

u = 4 u = 5.5 u = 6.5 u = 7.9

Value

Slope

Value+Slope

Area

weighted Area

−1 0 1 2 3 4

u = 8.9 u = 10.7
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6.4 Importance of the Parameterization (cont’d)

Survival Outcome

Survival Probability

Value

Slope

Value+Slope

Area

weighted Area

u = 1

0.2 0.4 0.6 0.8 1.0

u = 1.5 u = 2

0.2 0.4 0.6 0.8 1.0

u = 3

Value

Slope

Value+Slope

Area

weighted Area

u = 4 u = 5.5 u = 6.5 u = 7.9

Value

Slope

Value+Slope

Area

weighted Area

0.2 0.4 0.6 0.8 1.0

u = 8.9 u = 10.7
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6.4 Importance of the Parameterization (cont’d)

• The chosen parameterization can influence the derived predictions

◃ especially for the survival outcome

• My current work: How to optimally choose parameterization?

◃ per subject (personalized medicine)

• Quite promising results from the Bayesian approach using Bayesian Model Averaging
techniques

◃ it can be done with package JMbayes,

◃ it falls a bit outside the scope of this course, but

◃ I can provide information if interested. . .
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Chapter 7

Closing
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7.1 Concluding Remarks

• When we need joint models for longitudinal and survival outcomes?

◃ to handle endogenous time-varying covariates in a survival analysis context

◃ to account for nonrandom dropout in a longitudinal data analysis context

• How joint models work?

◃ a mixed model for the longitudinal outcome

◃ a relative risk model for the event process

◃ explain interrelationships with shared random effects
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7.1 Concluding Remarks (cont’d)

• Where to pay attention when defining joint models?

◃ model flexibly the subject-specific evolutions for the longitudinal outcome

◃ use parametric but flexible models for the baseline hazard function

◃ consider how to model the association structure between the two processes
⇒ Parameterization

• Extensions

◃ under the full conditional independence assumption we can easily extend the basic
joint model

◃ multiple longitudinal outcomes and/or multiple failure times

◃ though more computationally intensive
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7.1 Concluding Remarks (cont’d)

• Individualized predictions

◃ joint models can provide subject-specific predictions for the longitudinal and
survival outcomes

◃ these are dynamically updated as extra information is recorded for the subjects

◃ ⇒ joint models constitute an excellent tool for personalized medicine

• What we did not cover

◃ assessment of predictive performance

◃ diagnostics for joint models using residuals

◃ . . .
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The End!
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Practicals
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Practical 1: A Simple Joint Model

• We will fit a simple joint model to the PBC dataset

• Start R and load package JM, using library(JM)

• The longitudinal (long format) and survival information for the PBC patients can be
found in data frames pbc2 and pbc2.id. The variables that we will need are:
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Practical 1: A Simple Joint Model (cont’d)

◃ pbc2

* id: patient id number

* serBilir: serum bilirubin

* year: follow-up times in years

◃ pbc2.id

* years: observed event times in years

* status: ‘alive’, ‘transplanted’, ‘dead’

* drug: treatment indicator
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Practical 1: A Simple Joint Model (cont’d)

• T1: Fit the linear mixed effects model for log serum bilirubin using function lme(),
assuming simple linear evolutions in time for each subject, i.e., a simple
random-intercepts and random-slopes structure and different average evolutions per
treatment group (see pp. 31–35)

yi(t) = β0 + β1t + β2{D-penici × t} + bi0 + bi1t + εi(t)

• T2: Create the indicator for the composite event (i.e., ‘alive’ = 0, ‘transplanted’ or
‘dead’ = 1) using the code

pbc2.id$status2 <- as.numeric(pbc2.id$status != "alive")
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Practical 1: A Simple Joint Model (cont’d)

• T3: Fit the Cox PH model using coxph() that includes only treatment as baseline
covariate, remember to set x = TRUE (see pp. 55–56)

• We want to fit the joint model

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{D-penici × t} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp{γD-penici + αmi(t)},
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Practical 1: A Simple Joint Model (cont’d)

• T4: Fit this joint model based on the fitted linear mixed and Cox models using
function jointModel() (see pp. 93–95)

◃ with piecewise-constant baseline hazard & the (pseudo) adaptive GH rule

• T5: Use the summary() method to obtain a detailed output of the fitted joint
model – interpret the results

• T6: Produce 95% confidence intervals for the parameters in the longitudinal
submodel, and for the hazard ratios in the survival submodel using function
confint() (the parm argument of confint() can take as values "all" (default), "Longitudinal" and

"Event")
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Practical 1: A Simple Joint Model (cont’d)

• This model assumes that the strength of the association between the level of serum
bilirubin and the risk for the composite event is the same in the the two treatment
groups

• To relax this additivity assumption we will add the interaction effect between serum
bilirubin and treatment

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{D-penici × t} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp
[
γD-penici + α1mi(t) + α2{D-penici ×mi(t)}

]
,
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Practical 1: A Simple Joint Model (cont’d)

• To fit this model with package JM we need to define the interFact argument of
jointModel(). This should be a named list with two elements:

◃ value: a formula with the factors for which we wish to calculate the interaction
terms

◃ data: the data frame used to fit the Cox model

• T7: Define this list and fit the corresponding joint model. Use the summary()
method to obtained a detailed output and interpret the results

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 192



Practical 1: A Simple Joint Model (cont’d)

• Based on the fitted joint model we can test for three treatment effects, namely

◃ in the longitudinal process:

H0 : β2 = 0

◃ in the survival process:

H0 : γ = α2 = 0

◃ in the joint process:

H0 : β2 = γ = α2 = 0
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Practical 1: A Simple Joint Model (cont’d)

• We would like test these hypotheses using likelihood ratio tests

• T8: Fit the three joint models under the corresponding H0, and use function
anova() to perform the LRTs (this function accepts as a first argument the joint model under the null,

and as second the joint model under the alternative)
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Practical 2: Dynamic Predictions

• We will work with the Liver Cirrhosis dataset

◃ a placebo-controlled randomized trial on 488 liver cirrhosis patients

• Start R and load package JM, using library(JM)

• The longitudinal (long format) and survival information for the liver cirrhosis patients
can be found in data frames prothro and prothros, respectively. The variables
that we will need are:

Joint Modeling of Longitudinal & Survival Outcomes: August 2, 2016, JSM 195



Practical 2: Dynamic Predictions (cont’d)

◃ prothro

* id: patient id number

* pro: prothrobin measurements

* time: follow-up times in years

* treat: randomized treatment

◃ prothros

* Time: observed event times in years

* death: event indicator with 0 = ‘alive’, and 1 = ‘dead’

* treat: randomized treatment
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Practical 2: Dynamic Predictions (cont’d)

• We will fit the following joint model to the Liver Cirrhosis dataset

◃ longitudinal submodel: linear subject-specific random slopes for prothrobin levels
allowing for different average evolutions in the two treatment groups

yi(t) = mi(t) + εi(t)

mi(t) = β0 + β1t + β2{Trti × t} + bi0 + bi1t

◃ survival submodel: treatment effect & true effect of prothrobin

hi(t) = h0(t) exp{γTrti + αmi(t)}

h0(t) taken piecewise-constant
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Practical 2: Dynamic Predictions (cont’d)

• T1: Fit the linear mixed model using lme(), the Cox model using coxph(), and the
corresponding joint model using jointModel()

• We are interested in producing predictions of survival probabilities for Patient 155

• T2: Extract the data of Patient 155 using the code

dataP155 <- prothro[prothro$id == 155, ]
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Practical 2: Dynamic Predictions (cont’d)

• T3: Using the first measurement of Patient 155, and the fitted joint model calculate
his conditional survival probabilities using function survfitJM() and plot it using
the plot method (see p. 153)

• T4: Repeat the same procedure by including each time the next measurement of
Patient 155 and see how his survival probabilities evolve dynamically in time as extra
prothrobin measurements are recorded

◃ check arguments conf.int and fill.area of the plot() method for including
the 95% confidence intervals
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Practical 2: Dynamic Predictions (cont’d)

• T5: Similarly, produce predictions for future longitudinal responses of Patient 155
using the predict() method for fitted joint models (see p. 160)

◃ first using only the first measurement,

◃ and following update the predictions after each new longitudinal measurement has
been recorded
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