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1 Background & Aim

�

Setting
Patients treated with surgery after diagnosis of Prostate Cancer (PCa)

◃ remain at risk of metastasis

� Follow-up

◃ PSA levels at frequent intervals

◃ when PSA increases, physicians consider Salvage Therapy (ST)

◃ ST androgen deprivation therapy, radiation therapy, chemotherapy, and
combinations
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1 Background & Aim (cont’d)

� Important questions regarding Salvage Therapy

◃ who should take it?

◃ when to start?

◃ does it work?
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1 Background & Aim (cont’d)

Quantify the amount by which Salvage Therapy
reduces the risk of metastasis
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1 Background & Aim (cont’d)

�

University of Michigan Prostatectomy Data

◃ 3634 PCa patients followed-up in 1996–2013

* aged 40 to 84 years with clinically localized cT1 to cT3 disease

* received radical prostatectomy

◃ baseline variables: PSA, Gleason, T-stage, age, race, gland volume,
perineural invasion, planned adjuvant therapy
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1 Background & Aim (cont’d)
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1 Background & Aim (cont’d)

�

Challenges

◃ Observational Data – no RCT

* selection bias

* ascertainment bias

◃ Time-Varying Salvage Therapy

* depends on previous PSA

* PSA time-dependent confounder

* endogeneity
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2 Causal ST Effects

� Standard assumptions for Causal Inference

◃ Consistency: Observed outcomes equal the counterfactual outcomes for the
actually assigned treatment

◃ Sequential Exchangeability: The counterfactual outcomes are independent of the
assigned treatment conditionally on the PSA history and baseline covariates

◃ Positivity: Each patient has a nonzero probability of receiving ST at each time
point t
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2 Causal ST Effects (cont’d)

� Setting

◃ PSA measurements up to t

◃ no Salvage Therapy given up to t

◃ we compare cumulative risk of metastasis in the medically-relevant interval
[t, t +∆t]

◃ under two regimes

1. if Salvage Therapy is not given in the interval [t, t +∆t]

2. if Salvage Therapy is given at t
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2 Causal ST Effects (cont’d)
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2 Causal ST Effects (cont’d)

Which is the target group?

� Notation

◃ Tm: time to metastasis

◃ Td: time to death

◃ H∗(t): a version of the PSA history up to t

◃ T
(a)
m and T

(a)
d counterfactual outcomes

* a = 1, ST given at t

* a = 0, ST was not given in [t, t +∆t]
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2 Causal ST Effects (cont’d)

�

Marginal Salvage Therapy Effect

◃ we average over all PSA histories

STM(t +∆t, t) =

Pr{T (1)
m ≤ t +∆t | Tm > t, Td > t} − Pr{T (0)

m ≤ t +∆t | Tm > t, Td > t}

� Notes:

◃ of lesser relevance to the urologists because they decide who gets ST based on
PSA ⇒ more bias

◃ averages over a big group of patients ⇒ less variance
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2 Causal ST Effects (cont’d)

�

Conditional Salvage Therapy Effect

◃ we condition on the PSA history of a specific patient, i.e., H∗(t) = Hi(t)

STC(t +∆t, t) = Pr{T (1)
m ≤ t +∆t | Tm > t, Td > t,Hi(t)}

− Pr{T (0)
m ≤ t +∆t | Tm > t, Td > t,Hi(t)}

� Notes:

◃ much more relevant to the urologists ⇒ less bias

◃ averages over a narrow group of patients identified via modeling assumptions ⇒
more variance
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2 Causal ST Effects (cont’d)

�

Marginal-Conditional Salvage Therapy Effect

◃ consider ST for patients who had PSA levels above the threshold value c at their
last visit, i.e., H∗(t) = {Y (t) : Y (t) > c}

STMC(t +∆t, t) = Pr{T (1)
m ≤ t +∆t | Tm > t, Td > t,H∗(t)}

− Pr{T (0)
m ≤ t +∆t | Tm > t, Td > t,H∗(t)}

� Notes:

◃ relevant to the urologists ⇒ compromised bias

◃ averages over a bigger group of patients ⇒ compromised variance
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3 Causal Effect Estimation

Standard Cox models not suitable

⇓

We need appropriate methods
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3 Causal Effect Estimation (cont’d)

� Main approaches

◃ Marginal Structural Models with IPW

◃ G-Formula & G-Estimation

◃ Model-based
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3 Causal Effect Estimation (cont’d)

� Structural Marginal Models & G-Formula

◃ Advantage: minimal/no assumptions for the outcome model

◃ Disadvantage:

* it requires that the model for the weights is correct

* requires correct models for other competing processes (e.g., censoring, visiting)
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3 Causal Effect Estimation (cont’d)

� Model-based Estimation

◃ Advantage: it allows all competing processes to depend on the longitudinal history
(in any complex manner)

◃ Disadvantage: it requires a correctly specified outcome model
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3 Causal Effect Estimation (cont’d)

Because salvage depends in a complex manner on the longitudinal
history,

we opt for model-based estimation

⇓

Joint Models for Longitudinal and Survival Data
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3 Causal Effect Estimation (cont’d)
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3 Causal Effect Estimation (cont’d)

Joint models completely specify the joint distribution
of PSA, time-to-metastasis & time-to-death

� Under sequential ignorability,

◃ they provide valid marginal distributions

◃ without requiring to model the treatment assignment mechanism
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4 PSA Sub-Model

� As PSA increases, patients may receive ST

� We let Si denote the time a patient initiated ST

◃ for patients who did not initiate ST, Si = ∞

� After ST, PSA levels are expected to drop

◃ but may rise again before metastasis
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4 PSA Sub-Model (cont’d)

log{PSAi(t) + 1} =



ηi(t) + εi(t) = xi(t)β + zi(t)bi + εi(t), t < Si

η̃i(t) + εi(t) =

ηi(t) +
{
x̃i(t̃)β̃ + z̃i(t)b̃i

}
+ εi(t), t ≥ Si,

ui = (bi, b̃i) ∼ N (0,Ω)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)

The model used in the UM data

� Fixed effects

◃ Before Salvage: Nonlinear PSA evolution (B-spline with 6 internal knots)

◃ After Salvage: pre-salvage evolution + drop in PSA, and change in linear evolution

◃ baseline covariates: Age, baseline PSA, Gleason score, Charlson comorbidity index,
perineural invasion

� Random effects

◃ the same time effect as in the fixed part
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5 Metastasis and Death Sub-Models

� Metastasis and Death treated as Competing Risks

� Separate hazard models for metastasis and death

◃ linked with PSA and ST

◃ baseline covariates

Joint Models & Causal Inference – Biostatistics & Health Analytics 2025 26



5 Metastasis and Death Sub-Models (cont’d)

�
Metastasis Sub-Model linked to baseline covariates, Salvage and PSA

hm
i (t) =


hm
0 (t) exp

(
ψ⊤

mwi +αm
⊤f{ηi(t)}

)
, t < Si

hm
0 (t) exp

(
ψ⊤

mwi + γm(t− Si) + ξm
⊤g{η̃i(t)}

)
, t ≥ Si
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5 Metastasis and Death (cont’d)

� Functions f (·) and g(·) specify the functional form
◃ how PSA before and after Salvage is linked to metastasis

� Some options are. . .
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5 Metastasis and Death (cont’d)

� Time-dependent Slopes: The hazard of metastasis at t is associated with both the
current value and the slope of the PSA trajectory at t:

hm
i (t | Hi(t)) = hm

0 (t) exp{ψ⊤
mwi + αm1ηi(t) + αm2η

′
i(t)},

where

η′i(t) =
d

dt
{x⊤i (t)β + z⊤i (t)bi}
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5 Metastasis and Death (cont’d)
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5 Metastasis and Death (cont’d)

� Cumulative Effects: The hazard of metastasis at t is associated with the area under
the PSA trajectory up to t:

hi(t | Mi(t)) = h0(t) exp

{
γ⊤wi + α

∫ t

0 mi(s) ds

t

}

We account for the observation period
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5 Metastasis and Death (cont’d)
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5 Metastasis and Death (cont’d)

�
Death Sub-Model linked to baseline covariates, Salvage but not PSA

hd
i (t) =


hd
0(t) exp(ψ

⊤
dwi), t < Si

hd
0(t) exp(ψ

⊤
dwi + γd), t ≥ Si
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6 Causal Effect Estimation

� From the joint model, we can obtain the conditional causal effect

Pr{T (a)
mi ≤ t +∆t | Tmi > t, Tdi > t,Hi(t),Xi} =∫ ∫
Pr{T (a)

mi ≤ t +∆t | Tmi > t, Tdi > t,ui,Xi,θ}

× p{ui | Tmi > t, Tdi > t,Hi(t),Xi,θ} p(θ | D) duidθ

◃ a = {0, 1}

◃ D = {Ti, δi, Yi; i = 1, . . . , n}

◃ p(θ | D) posterior
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6 Causal Effect Estimation (cont’d)

� Monte Carlo scheme to estimate STC
i (t +∆t, t)

◃ sample θ̆
(l)

from the posterior of the parameters [θ | D]

◃ sample ŭ
(l)
i from the posterior of the random effects

[ui | Tmi > t, Tdi > t,Hi(t),Xi, θ̆
(l)
]

◃ calculate π
(l)
i (t +∆t | t, a) = Pr{T (a)

mi ≤ t +∆t | Tmi > t, Tdi > t, ŭ
(l)
i ,Xi, θ̆

(l)
}

� We repeat L times and get

ŜT
C

i (t +∆t, t) =
1

L

L∑
l=1

π
(l)
i (t +∆t | t, a = 1)− π

(l)
i (t +∆t | t, a = 0)
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6 Causal Effect Estimation (cont’d)

� Estimation of STM(t +∆t, t) and STMC(t +∆t, t) proceeds by averaging the
conditional effects over the respective groups of patients

� For example, for STM(t +∆t, t)

◃ R(t) the subset of patients at risk at time t

◃ for each patient in R(t), we calculate ŜT
C

i (t +∆t, t)

ŜT
M
(t +∆t, t) = n−1

r

∑
i:i∈R(t)

ŜT
C

i (t +∆t, t),
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6 Causal Effect Estimation (cont’d)

� To estimate the variance of the causal effects, we need to take into account that they
are a function of both the parameters θ and the data D

VarD
{
ŜT

M(
t +∆t, t;θ,D

)}
= VarD

[
Eθ|D

{
STM

(
t +∆t, t;θ,D

)}]

� We achieve this using an adaptation of the procedure of Antonelli et al. (2021)
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7 Results

Time after surgery (years)

lo
g
(P

S
A

 +
 1

)

0

1

2

3

0 5 10

130 217

0 5 10

545 637

873 1310 1311

0

1

2

3

1390

0

1

2

3

1553

0 5 10

1591 1819

0 5 10

2050

Joint Models & Causal Inference – Biostatistics & Health Analytics 2025 38



7 Results (cont’d)

Time after surgery (years)
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7 Results (cont’d)

Marginal
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8 Extensions & Discussion

� Implementation available in JMbayes2

◃ predict() cumulative incidence risks

◃ causal effects() calculates the different causal effects
(not yet in the package, but in GitHub)

� Shiny app. . .
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Thank for your attention!

https://www.drizopoulos.com/
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8 Causal Effect Estimation (cont’d)

� The first term is written as

Pr{T (a)
mi ≤ t +∆t, | Tmi > t, Tdi > t,ui,Xi,θ} =∫ t+∆t

t

h
m(a)
i (v) exp

(
−
∫ v

t

{
h
m(a)
i (s) + h

d(a)
i (s)

}
ds−

∫ t

0

{
h
m(0)
i (s) + h

d(0)
i (s)

}
ds
)
dv

exp
(
−
∫ t

0

{
h
m(0)
i (s) + h

d(0)
i (s)

}
ds
)
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8 Causal Effect Estimation (cont’d)

� Using telescoping we get:

p(θ,u,θN | T , δ,Y ,N )

∝
n∏

i=1

ni∏
j=1

p{Yi(tij), Ti, δi | Yi(ti,j−1),Ni(ti,j−1),Xi,θ,ui}

×
ni∏
j=1

p{Ni(tij) | Yi(ti,j−1),Ni(ti,j−1), Yi(tij), Ti, δi,Xi,θN ,ui}

× p(ui | θ)× p(θ)× p(θN)
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8 Causal Effect Estimation (cont’d)

� Under sequential exchangeability, we have that

p{Ni(tij) | Yi(tij),Ni(ti,j),F (a)
i (vij), T

(a)
i , δ

(a)
i ,Xi,θN ,ui} =

p{Ni(tij) | Yi(tij),Ni(ti,j−1),Xi,θN},

⇒ inference can be based on the first term (i.e., the observed data model) and
ignore the second term
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8 Computational Details (cont’d)

� Custom-made and tailored MCMC algorithm

◃ Gibbs sampling (hierarchical centering for fixed effects)

◃ adaptive Metropolis-Hastings

◃ (Metropolis-adjusted Langevin algorithm for certain parameter)

◃ centered design matrices

� Speed via parallel sampling of random effects

� Chains run in parallel
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8 Results (cont’d)

https://emcbiostatistics.shinyapps.io/Plots PSA/
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