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1. Introduction

• Nowadays growing interest in tailoring medical decision making to individual patients

◃ Personalized Medicine

◃ Shared Decision Making

• This is of high relevance in various diseases

◃ cancer research, cardiovascular diseases, HIV research, . . .

Physicians are interested in accurate prognostic tools that will
inform them about the future prospect of a patient in order to

adjust medical care
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1. Introduction (cont’d)

• Aortic Valve study: Patients who received a human tissue valve in the aortic position

◃ data collected by Erasmus MC (from 1987 to 2008);
77 received sub-coronary implantation; 209 received root replacement

• Outcomes of interest:

◃ death and re-operation → composite event

◃ aortic gradient
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1. Introduction (cont’d)

• General Questions:

◃ Can we utilize available aortic gradient measurements to predict
survival/re-operation?

◃ When to plan the next echo for a patient?
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1. Introduction (cont’d)

• Goals of this talk:

◃ introduce joint models

◃ dynamic predictions

◃ optimal timing of next visit
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2.1 Joint Modeling Framework

• To answer these questions we need to postulate a model that relates

◃ the aortic gradient with

◃ the time to death or re-operation

• Some notation

◃ T ∗
i : True time-to-death for patient i

◃ Ti: Observed time-to-death for patient i

◃ δi: Event indicator, i.e., equals 1 for true events

◃ yi: Longitudinal aortic gradient measurements
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2.1 Joint Modeling Framework (cont’d)
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2.1 Joint Modeling Framework (cont’d)

• We start with a standard joint model

◃ Survival Part: Relative risk model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

where

* mi(t) = the true & unobserved value of aortic gradient at time t

* Mi(t) = {mi(s), 0 ≤ s < t}
* α quantifies the effect of aortic gradient on the risk for death/re-operation

* wi baseline covariates
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2.1 Joint Modeling Framework (cont’d)

◃ Longitudinal Part: Reconstruct Mi(t) = {mi(s), 0 ≤ s < t} using yi(t) and a
mixed effects model (we focus on continuous markers)

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t), εi(t) ∼ N (0, σ2),

where

* xi(t) and β: Fixed-effects part

* zi(t) and bi: Random-effects part, bi ∼ N (0, D)
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2.1 Joint Modeling Framework (cont’d)

• The two processes are associated ⇒ define a model for their joint distribution

• Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004; Rizopoulos, CRC Press, 2012)

p(yi, Ti, δi) =

∫
p(yi | bi)

{
h(Ti | bi)δi S(Ti | bi)

}
p(bi) dbi

where

◃ bi a vector of random effects that explains the interdependencies

◃ p(·) density function; S(·) survival function
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2.2 Estimation

• Joint models can be estimated with either Maximum Likelihood or Bayesian
approaches (i.e., MCMC)

• Here we follow the Bayesian approach because it facilitates computations for our later
developments. . .
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3.1 Prediction Survival – Definitions

• We are interested in predicting survival probabilities for a new patient j that has
provided a set of aortic gradient measurements up to a specific time point t

• Example: We consider Patients 20 and 81 from the Aortic Valve dataset
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3.1 Prediction Survival – Definitions (cont’d)
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3.1 Prediction Survival – Definitions (cont’d)
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3.1 Prediction Survival – Definitions (cont’d)
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3.1 Prediction Survival – Definitions (cont’d)

• What do we know for these patients?

◃ a series of aortic gradient measurements

◃ patient are event-free up to the last measurement

• Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded
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3.1 Prediction Survival – Definitions (cont’d)

• Available info: A new subject j with longitudinal measurements up to t

◃ T ∗
j > t

◃ Yj(t) = {yj(tjl); 0 ≤ tjl ≤ t, l = 1, . . . , nj}

◃ Dn sample on which the joint model was fitted

Basic tool: Posterior Predictive Distribution

p
{
T ∗
j | T ∗

j > t,Yj(t),Dn
}
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3.2 Prediction Survival – Estimation

• Based on the fitted model we can estimate the conditional survival probabilities

πj(u | t) = Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
, u > t

• For more details check:

◃ Proust-Lima and Taylor (2009, Biostatistics), Rizopoulos (2011, Biometrics),
Taylor et al. (2013, Biometrics)
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3.3 Prediction Survival – Illustration

• Example: We fit a joint model to the Aortic Valve data

• Longitudinal submodel

◃ fixed effects: natural cubic splines of time (d.f.= 3), operation type, and their
interaction

◃ random effects: Intercept, & natural cubic splines of time (d.f.= 3)

• Survival submodel

◃ type of operation, age, sex + underlying aortic gradient level

◃ log baseline hazard approximated using B-splines
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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4.1 Next Visit Time – Set up

• Question 2:

◃ When the patient should come for the next visit?
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4.1 Next Visit Time – Set up (cont’d)

This is a difficult question!

• Many parameters that affect it

◃ which model to use?

◃ what criterion to use?

◃ change in treatment?

◃ . . .

We will work under the following setting ⇒
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4.1 Next Visit Time – Set up(cont’d)
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4.1 Next Visit Time – Set up(cont’d)

Time

E
ve

nt
−

F
re

e 
P

ro
ba

bi
lit

y

A
oG

ra
di

en
t

t

IBC XXVIII – July 14th, 2016, Victoria 21/30



4.1 Next Visit Time – Set up(cont’d)
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4.2 Next Visit Time – Timing

• Let yj(u) denote the future longitudinal measurement u > t

• We would like to select the optimal u such that:

◃ patient still event-free up to u

◃ maximize the information by measuring yj(u) at u
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4.2 Next Visit Time – Timing (cont’d)

• Utility function

U(u | t) = E

{
λ1 log

p
(
T ∗
j | T ∗

j > u,
{
Yj(t), yj(u)

}
,Dn

)
p{T ∗

j | T ∗
j > u,Yj(t),Dn}︸ ︷︷ ︸+λ2 I(T

∗
j > u)︸ ︷︷ ︸

}

First term Second term

expectation wrt joint predictive distribution [T ∗
j , yj(u) | T ∗

j > t,Yj(t),Dn]

◃ First term: expected Kullback-Leibler divergence of posterior predictive
distributions with and without yj(u)

◃ Second term: ‘cost’ of waiting up to u ⇒ increase the risk
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4.2 Next Visit Time – Timing (cont’d)

• Nonnegative constants λ1 and λ2 weigh the cost of waiting as opposed to the
information gain

◃ elicitation in practice difficult ⇒ trading information units with probabilities

• How to get around it?

Equivalence between compound and constrained
optimal designs
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4.2 Next Visit Time – Timing (cont’d)

• It can be shown that

◃ for any λ1 and λ2,

◃ there exists a constant κ ∈ [0, 1] for which

argmax
u

U(u | t) ⇐⇒ argmax
u

E

{
log

p
(
T ∗
j | T ∗

j > u,
{
Yj(t), yj(u)

}
,Dn

)
p{T ∗

j | T ∗
j > u,Yj(t),Dn}

}

subject to the constraint πj(u | t) ≥ κ
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4.2 Next Visit Time – Timing (cont’d)

• Elicitation of κ is relatively easier

◃ Chosen by the physician

◃ Determined using ROC analysis

• Estimation is achieved using a Monte Carlo scheme

◃ more details in Rizopoulos et al. (2015)
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4.3 Next Visit Time – Example

• Example: We illustrate how for Patient 81 we have seen before

◃ The threshold for the constraint is set to

πj(u | t) ≥ κ = 0.8

◃ After each visit we calculate the optimal timing for the next one using

argmax
u

EKL(u | t) where u ∈ (t, tup]

and

tup = min{5, u : πj(u | t) = 0.8}
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4.3 Next Visit Time – Example (cont’d)
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4.3 Next Visit Time – Example (cont’d)
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4.3 Next Visit Time – Example (cont’d)
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4.3 Next Visit Time – Example (cont’d)
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4.3 Next Visit Time – Example (cont’d)
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4.3 Next Visit Time – Example (cont’d)
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5. Software

• Software: R package JMbayes freely available via
http://cran.r-project.org/package=JMbayes

◃ it can fit a variety of joint models + many other features

◃ relevant to this talk: cvDCL() and dynInfo()

GUI interface for dynamic predictions using package
shiny
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Thank you for your attention!
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