Personalized screening intervals for biomarkers using joint models for longitudinal and survival data

Dimitris Rizopoulos, Jeremy Taylor, Joost van Rosmalen, Ewout Steyerberg, Hanneke Takkenberg

Department of Biostatistics, Erasmus Medical Center, the Netherlands

d.rizopoulos@erasmusmc.nl

XXVIIIth International Biometric Conference July 14th, 2016, Victoria, Canada

- Nowadays growing interest in tailoring medical decision making to individual patients
 - Personalized Medicine
 - > Shared Decision Making
- This is of high relevance in various diseases
 - ▷ cancer research, cardiovascular diseases, HIV research, ...

Physicians are interested in accurate prognostic tools that will inform them about the future prospect of a patient in order to adjust medical care

- Aortic Valve study: Patients who received a human tissue valve in the aortic position
 - b data collected by Erasmus MC (from 1987 to 2008);
 77 received sub-coronary implantation; 209 received root replacement

• Outcomes of interest:

- \triangleright death and re-operation \rightarrow composite event
- ▷ aortic gradient

• General Questions:

Can we utilize available aortic gradient measurements to predict survival/re-operation?

> When to plan the next echo for a patient?

• Goals of this talk:

- \triangleright introduce joint models
- ▷ dynamic predictions
- \triangleright optimal timing of next visit

- To answer these questions we need to postulate a model that relates
 - \triangleright the aortic gradient with
 - ▷ the time to death or re-operation
- Some notation
 - $\triangleright T_i^*$: True time-to-death for patient *i*
 - $\triangleright T_i$: Observed time-to-death for patient i
 - $\triangleright \delta_i$: Event indicator, i.e., equals 1 for true events
 - $\triangleright y_i$: Longitudinal aortic gradient measurements

2.1 Joint Modeling Framework (cont'd)

- We start with a standard joint model
 - ▷ Survival Part: Relative risk model

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\},\$$

where

* $m_i(t)$ = the *true* & *unobserved* value of aortic gradient at time t* $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$ * α quantifies the effect of aortic gradient on the risk for death/re-operation * w_i baseline covariates

 $\triangleright \text{ Longitudinal Part: } \text{Reconstruct } \mathcal{M}_i(t) = \{m_i(s), 0 \leq s < t\} \text{ using } y_i(t) \text{ and a mixed effects model (we focus on continuous markers)}$

$$y_i(t) = m_i(t) + \varepsilon_i(t)$$

$$= x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \qquad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$$

where

* $x_i(t)$ and β : Fixed-effects part * $z_i(t)$ and b_i : Random-effects part, $b_i \sim \mathcal{N}(0, D)$

- \bullet The two processes are associated \Rightarrow define a model for their joint distribution
- Joint Models for such joint distributions are of the following form (Tsiatis & Davidian, *Stat. Sinica*, 2004; Rizopoulos, CRC Press, 2012)

$$p(y_i, T_i, \delta_i) = \int p(y_i \mid b_i) \{ h(T_i \mid b_i)^{\delta_i} S(T_i \mid b_i) \} p(b_i) db_i$$

where

 $\triangleright b_i$ a vector of random effects that explains the interdependencies $\triangleright p(\cdot)$ density function; $S(\cdot)$ survival function

- Joint models can be estimated with either Maximum Likelihood or Bayesian approaches (i.e., MCMC)
- Here we follow the Bayesian approach because it facilitates computations for our later developments...

- We are interested in predicting survival probabilities for a new patient j that has provided a set of aortic gradient measurements up to a specific time point t
- Example: We consider Patients 20 and 81 from the Aortic Valve dataset

- What do we know for these patients?
 - ▷ a series of aortic gradient measurements
 - ▷ patient are event-free up to the last measurement
- **Dynamic Prediction** survival probabilities are dynamically updated as additional longitudinal information is recorded

- \bullet <u>Available info:</u> A new subject j with longitudinal measurements up to t
 - $\triangleright T_j^* > t$ $\triangleright \mathcal{Y}_j(t) = \{y_j(t_{jl}); 0 \le t_{jl} \le t, l = 1, \dots, n_j\}$
 - $\triangleright \mathcal{D}_n$ sample on which the joint model was fitted

• Based on the fitted model we can estimate the conditional survival probabilities

$$\pi_j(u \mid t) = \mathsf{Pr}\big\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\big\}, \quad u > t$$

- For more details check:
 - Proust-Lima and Taylor (2009, Biostatistics), Rizopoulos (2011, Biometrics), Taylor et al. (2013, Biometrics)

- Example: We fit a joint model to the Aortic Valve data
- Longitudinal submodel
 - \triangleright fixed effects: natural cubic splines of time (d.f.= 3), operation type, and their interaction
 - \triangleright random effects: Intercept, & natural cubic splines of time (d.f.= 3)
- Survival submodel
 - \triangleright type of operation, age, sex + underlying aortic gradient level
 - ▷ log baseline hazard approximated using B-splines

• Question 2:

> When the patient should come for the next visit?

This is a difficult question!

- Many parameters that affect it
 - ▷ which model to use?
 - ▷ what criterion to use?
 - ▷ change in treatment?
 - $\triangleright \dots$

We will work under the following setting \Rightarrow

- Let $y_i(u)$ denote the future longitudinal measurement u > t
- We would like to select the optimal u such that:
 - \triangleright patient still event-free up to u
 - \triangleright maximize the information by measuring $y_j(u)$ at u

• Utility function

$$U(u \mid t) = E\left\{\lambda_{1} \underbrace{\log \frac{p\left(T_{j}^{*} \mid T_{j}^{*} > u, \left\{\mathcal{Y}_{j}(t), \boldsymbol{y}_{j}(\boldsymbol{u})\right\}, \mathcal{D}_{n}\right)}{p\left\{T_{j}^{*} \mid T_{j}^{*} > u, \mathcal{Y}_{j}(t), \mathcal{D}_{n}\right\}}}_{First term} + \lambda_{2} \underbrace{I(T_{j}^{*} > \boldsymbol{u})}_{Second term}\right\}$$

expectation wrt joint predictive distribution $[T_j^*, y_j(u) \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n]$

- \triangleright First term: expected Kullback-Leibler divergence of posterior predictive distributions with and without $y_i(u)$
- \triangleright Second term: 'cost' of waiting up to $u \Rightarrow$ increase the risk

- \bullet Nonnegative constants λ_1 and λ_2 weigh the cost of waiting as opposed to the information gain
 - \triangleright elicitation in practice difficult \Rightarrow trading information units with probabilities
- How to get around it?

Equivalence between compound and constrained optimal designs

- It can be shown that
 - \triangleright for any λ_1 and λ_2 ,

 \triangleright there exists a constant $\pmb{\kappa} \in [0,1]$ for which

$$\underset{u}{\operatorname{argmax}} \bigcup(u \mid t) \iff \underset{u}{\operatorname{argmax}} E\left\{ \log \frac{p(T_j^* \mid T_j^* > u, \{\mathcal{Y}_j(t), y_j(u)\}, \mathcal{D}_n)}{p\{T_j^* \mid T_j^* > u, \mathcal{Y}_j(t), \mathcal{D}_n\}} \right\}$$

subject to the constraint $\pi_j(u \mid t) \geq \kappa$

- Elicitation of κ is relatively easier
 - ▷ Chosen by the physician
 - Determined using ROC analysis
- Estimation is achieved using a Monte Carlo scheme
 - ▷ more details in Rizopoulos et al. (2015)

Example: We illustrate how for Patient 81 we have seen before
 The threshold for the constraint is set to

$$\pi_j(u \mid t) \ge \kappa = 0.8$$

> After each visit we calculate the optimal timing for the next one using

$$\underset{u}{\operatorname{argmax}} \operatorname{\mathsf{EKL}}(u \mid t) \quad \text{ where } \ u \in (t, t^{up}]$$

and

$$t^{up} = \min\{5, u : \pi_j(u \mid t) = 0.8\}$$

5. Software

- Software: R package **JMbayes** freely available via http://cran.r-project.org/package=JMbayes
 - \triangleright it can fit a variety of joint models + many other features
 - > relevant to this talk: cvDCL() and dynInfo()

GUI interface for dynamic predictions using package shiny

Thank you for your attention!