Joint Models with Multiple Longitudinal Outcomes

Dimitris Rizopoulos July 12, 2018

Outcomes in Follow-up Studies

- Often in follow-up studies different types of outcomes are collected
 - multiple longitudinal responses (e.g., markers, blood values)
 - time-to-event(s) of particular interest (e.g., death, relapse)

 Depending on the questions of interest, different types of statistical analysis are required

Outcomes in Follow-up Studies (cont'd)

- Focus simultaneously on multiple outcomes
 - association between longitudinal outcomes
 - which features of the longitudinal profiles are associated with the risk of death

Illustrative Case Study

- Mayo Clinic PBC data: Primary Biliary Cirrhosis
 - a chronic, fatal but rare liver disease
 - characterized by inflammatory destruction of the small bile ducts within the liver

- Outcomes of interest:
 - time to death and/or liver transplantation
 - longitudinal
 - bilirubin, cholesterol, prothrombin time (continuous)
 - ascites, hepatomegaly, spiders (dichotomous)

Illustrative Case Study (cont'd)

Kaplan-Meier Estimate

Illustrative Case Study (cont'd)

- · Research Questions:
 - How strong is the association between the longitudinal biomarkers and the risk of death?
 - How the observed biomarker levels could be utilized to provide predictions of survival probabilities?

Time-varying Covariates

- To answer these questions we need to link
 - the survival outcome
 - the longitudinal biomarkers

• Biomarkers are *endogenous* time-varying covariates

Time-varying Covariates (cont'd)

To account for endogeneity we use the framework of

Joint Models for Longitudinal & Survival Data

Multivariate Joint Models

- We want to simultaneously model all outcomes
 - K possible longitudinal outcomes, i.e., $\mathbf{Y}_{1i}, \dots, \mathbf{Y}_{Ki}$
 - multivariate generalized linear mixed model

$$egin{cases} g_kigl[E\{y_{ki}(t)\mid \mathbf{b}_{ki}\}igr] &= \eta_{ki}(t) = \mathbf{x}_{ki}^ op(t)eta_k + \mathbf{z}_{ki}^ op(t)\mathbf{b}_{ki} \ \ h_i(t) &= h_0(t)\expigl\{\gamma^ op \mathbf{w}_i + \sum\limits_{k=1}^K lpha_k\eta_{ki}(t)igr\} \end{cases}$$

• The association between the longitudinal outcomes is build via random effects

$$\mathbf{b} = egin{bmatrix} \mathbf{b}_{1i} \ \mathbf{b}_{2i} \ dots \ \mathbf{b}_{Ki} \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{D})$$

· (very) high-dimensional random effects

- · Several papers on multivariate joint models
 - a couple under (pseudo) maximum likelihood
 - but mainly under the Bayesian approach or two-stage approaches
- · Why?
 - high dimensional random effects
 - MCMC more robust than Gaussian quadrature

- $\dot{}$ Even though in the majority of these papers the model is written for K longitudinal outcomes
- In practice it is only fitted for 2 or 3 outcomes ...

Hence, a practical deadlock!

- To overcome these difficulties some papers have proposed to work with two-stage approaches
 - fit the longitudinal outcomes in the first stage, and
 - then combine them with the survival one
- Computationally easier
 - it could be done with standard software
 - however biased results!

IS Two-Stage

- Why does the 2-stage approach give biased results?
 - because it does not work with the joint likelihood
- · Hence, to correct the two-stage approach we need the full likelihood
- · However, it is *not efficient* to work with the full joint likelihood due to the aforementioned computational problems

· However, under a Bayesian approach there is a possible solution, namely

Importance Sampling (IS)

• IS allows to use a sample from a *wrong* distribution, and adjust it to look like a sample from the *correct* one

- · Stage I:
 - Fit a multivariate mixed effects model to the longitudinal outcomes alone
 - We obtain an MCMC sample from the distribution

$$\{ heta_y^{(m)}, \mathbf{b}^{(m)}; \; m = 1, \dots, M\} \; \sim \; [heta_y, \mathbf{b} \mid \mathbf{y}_{1i}, \dots, \mathbf{y}_{Ki}]$$

- · Stage II:
 - For each MCMC realization from the first stage we obtain a value for the parameters of the survival model

$$\{ heta_t^{(m)}; \; m=1,\ldots,M\} \; \sim \; [heta_t \mid T_i, \delta_i, \mathbf{b}^{(m)}, heta_y^{(m)}]$$

 The combined MCMC sample from the two-stage approach can be corrected with the weights

$$\widetilde{w}^{(m)} = rac{p(heta_t^{(m)}, heta_y^{(m)}, \mathbf{b}^{(m)} \mid T_i, \delta_i, \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki})}{p(heta_t^{(m)} \mid T_i, \delta_i, heta_y^{(m)}, \mathbf{b}^{(m)}) \; p(heta_y^{(m)}, \mathbf{b}^{(m)} \mid \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki})}$$

$$w^{(m)} = \widetilde{w}^{(m)} \Big/ \sum_{m=1}^M \widetilde{w}^{(m)}$$

· If you do the math ...

$$egin{aligned} \widetilde{w}^{(m)} &= p(T_i, \delta_i \mid \mathbf{b}^{(m)}, heta_y^{(m)}) \ &= \int p(T_i, \delta_i \mid heta_t, \mathbf{b}^{(m)}, heta_y^{(m)}) p(heta_t) \; d heta_t \end{aligned}$$

- Hence, a marginal likelihood calculation

- Approaches to estimate marginal likelihoods
 - Power posteriors
 - more accurate estimate of marginal likelihood
 - but computationally intensive
 - Laplace approximation

• OK, how does it perform?

- Simulation study
 - 2 longitudinal outcomes (both normal)
 - compare corrected two-stage approach with full Bayesian
 - Stage I: JAGS 2 chains run in parallel
 - Stage II: run in parallel using 4 cores

- The correction does not seem to help much!!
- Why is that?
 - detective work ...

- · Stage I:
 - Fit a multivariate mixed effects model to the longitudinal outcomes alone
 - We obtain an MCMC sample from the distribution

$$\{ heta_y^{(m)}, \mathbf{b}^{(m)}; \; m = 1, \dots, M\} \; \sim \; [heta_y, \mathbf{b} \mid \mathbf{y}_{1i}, \dots, \mathbf{y}_{Ki}]$$

- · Stage II:
 - For each MCMC realization from the first stage we obtain a value for the parameters of the survival model **and** the random effects

$$\{ heta_t^{(m)}, \mathbf{b}^{(m)}; \; m = 1, \dots, M\} \; \sim \; [heta_t, \mathbf{b} \mid T_i, \delta_i, \mathbf{y}_{1i}, \dots, \mathbf{y}_{Ki}, heta_u^{(m)}]$$

25/31

- Now Stage II is more challenging
 - Stage II-a: $\mathbf{b}^* \sim [\mathbf{b} \mid T_i, \delta_i, \mathbf{y}_{1i}, \dots, \mathbf{y}_{Ki}, \theta_y^{(m)}, \theta_t^*]$
 - Stage II-b: $heta_t^* \sim [heta_t \mid T_i, \delta_i, heta_y^{(m)}, \mathbf{b}^*]$

 Stage II-a: entails calculating the multivariate density of all longitudinal outcomes

 The combined MCMC sample from the two-stage approach can be corrected with the weights

$$\widetilde{w}^{(m)} = rac{p(heta_t^{(m)}, heta_y^{(m)}, \mathbf{b}^{(m)} \mid T_i, \delta_i, \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki})}{p(heta_t^{(m)}, \mathbf{b}^{(m)} \mid T_i, \delta_i, \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki}, heta_y^{(m)}) \; p(heta_y^{(m)}, \mathbf{b}^{(m)} \mid \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki})}$$

$$w^{(m)} = \widetilde{w}^{(m)} \Big/ \sum_{m=1}^M \widetilde{w}^{(m)}$$

Again we obtain a marginal likelihood computation

$$\widetilde{w}^{(m)} = rac{p(\mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki}, T_i, \delta_i \mid heta_y^{(m)})}{p(\mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki} \mid \mathbf{b}_i^{(m)}, heta_y^{(m)}) \, p(\mathbf{b}_i^{(m)} \mid heta_y^{(m)})}$$

where

$$p(\mathbf{y}_{1i},\ldots,\mathbf{y}_{Ki},T_i,\delta_i\mid heta_y^{(m)})=$$

$$\int \int p(\mathbf{y}_{1i},\ldots,\mathbf{y}_{Ki}\mid \mathbf{b}_i, heta_y^{(m)})p(T_i,\delta_i\mid \mathbf{b}_i, heta_t, heta_y^{(m)})p(\mathbf{b}_i\mid heta_y^{(m)})p(heta_t\mid d\mathbf{b}_id heta_t)$$

Conclusion & Software

- We have evaluated the IS-corrected 2-stage approach is more challenging settings
 - 6 longitudinal outcomes
 - mix of continuous, count & binary

Promising results

Software implementation in the R package JMbayes

Thank you for your attention!

http://www.drizopoulos.com/ (http://www.drizopoulos.com/)

@drizopoulos (https://twitter.com/drizopoulos)