Joint Models with Multiple Longitudinal Outcomes

Dimitris Rizopoulos July 11, 2017

Outcomes in Follow-up Studies

- Often in follow-up studies different types of outcomes are collected
 - multiple longitudinal responses (e.g., markers, blood values)
 - time-to-event(s) of particular interest (e.g., death, relapse)

 Depending on the questions of interest, different types of statistical analysis are required

Outcomes in Follow-up Studies (cont'd)

- Focus simultaneously on multiple outcomes
 - association between longitudinal outcomes over time? (evolution of the association)
 - how longitudinal profiles interrelate with each other? (association of the evolutions)
 - which features of the longitudinal profiles are associated with the risk of death?

Goals of this talk

- · Our aims here are:
 - brief review of joint models
 - two of their extensions
 - functional form
 - multiple longitudinal outcomes

Illustrative Case Study

- Mayo Clinic PBC data: Primary Biliary Cirrhosis
 - a chronic, fatal but rare liver disease
 - characterized by inflammatory destruction of the small bile ducts within the liver

- · Outcomes of interest:
 - time to death and/or liver transplantation
 - longitudinal
 - bilirubin, cholesterol, prothrombin time (continuous)
 - ascites, hepatomegaly, spiders (dichotomous)

Illustrative Case Study (cont'd)

Kaplan-Meier Estimate

Illustrative Case Study (cont'd)

- · Research Questions:
 - How strong is the association between the longitudinal biomarkers and the risk of death?
 - How the observed biomarker levels could be utilized to provide predictions of survival probabilities?

Time-varying Covariates

- To answer these questions we need to link
 - the survival outcome
 - the longitudinal biomarkers

Biomarkers are endogenous time-varying covariates

Time-varying Covariates (cont'd)

To account for endogeneity we use the framework of

Joint Models for Longitudinal & Survival Data

The Basic Joint Model

- · We need some notation
 - T_i^* the true event times
 - T_i the observed event times
 - δ_i the event indicator
 - \mathbf{y}_i the vector of longitudinal measurements
 - $\mathcal{Y}_i(t) = \{y_i(s), 0 \leq s < t\}$

Formally, we have

$$egin{cases} h_i(t) &= h_0(t) \exp\{ \gamma^ op \mathbf{w}_i + lpha \eta_i(t) \} \ y_i(t) &= \eta_i(t) + arepsilon_i(t) \ &= \mathbf{x}_i^ op(t) eta + \mathbf{z}_i^ op(t) \mathbf{b}_i + arepsilon_i(t) \ &\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{D}), \quad arepsilon_i(t) \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

The longitudinal and survival outcomes are jointly modeled

$$p(y_i, T_i, \delta_i) = \int p(y_i \mid b_i) \, \left\{ h(T_i \mid b_i)^{\delta_i} \, \, S(T_i \mid b_i)
ight\} \, \, p(b_i) \, \, db_i$$

- the random effects b_i explain the interdependencies

- Estimation of joint models is based on either
 - Maximum likelihood (requires numerical integration)
 - Bayesian approaches (e.g., MCMC or HMC)

- · Here, we follow a Bayesian approach
 - more on this later...

- Example: A simple joint model for risk of death & serum bilirubin
 - Longitudinal outcome:

$$egin{array}{ll} \log(exttt{serBilir}_{ij}) &=& \eta_i(t_{ij}) + arepsilon_{ij} \ & eta_0 + eta_1 N(t_{ij})_1 + eta_2 N(t_{ij})_2 + eta_3 exttt{Female}_i + \ & eta_4 exttt{Age}_i + b_{i0} + b_{i1} N(t_{ij})_1 + b_{i2} N(t_{ij})_2 + arepsilon_{ij} \end{array}$$

where

- $N(t_{ij})_1$ and $N(t_{ij})_2$ denote the basis for a natural cubic spline with two degrees of freedom
- $b_i \sim \mathcal{N}(0,D)$ and $arepsilon_{ij} \sim \mathcal{N}(0,\sigma^2)$

- Example: A simple joint model for risk of death & serum bilirubin
 - survival outcome:

$$h(t) = h_0(t) \exp\{\gamma_1 extsf{Female}_i + \gamma_2 extsf{Age}_i + lpha \eta_i(t)\}$$

where

$$\log h_0(t) = \sum_{q=1}^Q \gamma_{h_0,q} B_q(t,v)$$

with $B_q(t,v)$ denoting the q-th basis function of a B-spline with knots v_1,\ldots,v_Q

· Results: Survival submodel

	Post.Mean	2.5% CI	97.5% CI	P_tail
sex:Female	-0.016	-0.483	0.445	0.93
Age	0.066	0.047	0.084	0
lpha	1.257	1.063	1.463	0

• Interpretation: A unit increase of log(serBilir) at time t results in a 3.5-fold (95% CI: 2.9; 4.3) increase of the risk at t

Extensions

- · Several extensions have been proposed in the literature among others
 - competing risks & multistate models
 - frailty models
 - AFT models
 - latent classes
 - ...

• We focus on two ...

Functional Form

- The link between the two processes
 - the basic joint model assumes

$$\left\{egin{array}{lll} h_i(t) &=& h_0(t) \exp\{\gamma^ op \mathbf{w}_i + lpha \eta_i(t)\} \ y_i(t) &=& \eta_i(t) + arepsilon_i(t) \ &=& \mathbf{x}_i^ op(t)eta + \mathbf{z}_i^ op(t)\mathbf{b}_i + arepsilon_i(t) \end{array}
ight.$$

Is this the only option?

- Especially when interest
 - in studying the association structure
 - predictions

• Let's see some possibilities...

- Some options: Biomarker's rate of change
 - In prostate cancer, fast increasing PSA indicative of cancer

$$h_i(t) = h_0(t) \exp\{ \gamma^ op \mathbf{w}_i + lpha_1 \eta_i(t) + lpha_2 \eta_i'(t) \}$$

where
$$\eta_i'(t) = rac{d}{dt} \eta_i(t)$$

- · Some options: Biomarker's cumulative effect
 - In diabetes, the accumulated HbA1c levels are related to the risk of side effects

$$h_i(t) = h_0(t) \exp\Bigl\{ \gamma^ op \mathbf{w}_i + lpha \int_0^t \eta_i(s) ds \Bigr\}.$$

- or even weighted cumulative effects

$$h_i(t) = h_0(t) \exp\Bigl\{ \gamma^ op \mathbf{w}_i + lpha \int_0^t arpi(t-s) \eta_i(s) ds \Bigr\}.$$

- · Example: We extend the model we fitted for serum bilirubin
 - the same mixed model as before
 - Three functional forms for the relative risk model
 - current value (the one we have seen)
 - current value & current slope
 - cumulative effect

• We *dynamically* compare Patients 93 and 200

We compute the dynamic 2-year Risk Ratio

$$RR(t) = rac{\Pr\{T_i^* \leq t+2 \mid T_i^* > t, \mathcal{Y}_i(t)\}}{\Pr\{T_j^* \leq t+2 \mid T_j^* > t, \mathcal{Y}_j(t)\}}$$

where

- *i* denotes Patient 93 and *j* Patient 200
- $\mathcal{Y}_i(t)$, $\mathcal{Y}_j(t)$ denote their longitudinal measurements up to t

Multivariate Joint Models

Up to now we have focused on a single longitudinal outcome

- · However, very often, several biomarkers are relevant in predicting an event
 - e.g., in the PBC study
 - bilirubin, cholesterol, prothrombin time (continuous)
 - ascites, hepatomegaly, spiders (dichotomous)

We need an extension of the basic joint model

- Formally, we have
 - K possible longitudinal outcomes, i.e., $\mathbf{Y}_{1i}, \dots, \mathbf{Y}_{Ki}$
 - multivariate generalized linear mixed model

$$egin{cases} g_kigl[E\{y_{ki}(t)\mid \mathbf{b}_{ki}\}igr] &= \eta_{ki}(t) = \mathbf{x}_{ki}^ op(t)eta_k + \mathbf{z}_{ki}^ op(t)\mathbf{b}_{ki} \ \ h_i(t) &= h_0(t)\expigl\{\gamma^ op\mathbf{w}_i + \sum\limits_{k=1}^Klpha_k\eta_{ki}(t)igr\} \end{cases}$$

The association between the longitudinal outcomes is build via random effects

$$\mathbf{b} = egin{bmatrix} \mathbf{b}_{1i} \ \mathbf{b}_{2i} \ dots \ \mathbf{b}_{Ki} \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{D})$$

· (very) high-dimensional random effects

- Several papers on multivariate joint models
 - a couple under (pseudo) maximum likelihood
 - but mainly under the Bayesian approach or two-stage approaches
- · Why?
 - high dimensional random effects
 - MCMC more robust than Gaussian quadrature

- Bayesian approach Practicalities
 - advantages:
 - it can be *generally* implemented in JAGS/WinBUGS
 - disadvantages:
 - zeros trick
 - painfully slow (2 hours even for just two longitudinal outcomes)

- ullet Even though in the majority of these papers the model is written for K longitudinal outcomes
- In practice it is only fitted for 2 or 3 outcomes ...

Hence, a practical deadlock!

- To overcome these difficulties some papers have proposed to work with two-stage approaches
 - fit the longitudinal outcomes in the first stage, and
 - then combine them with the survival one
- Computationally easier
 - it could be done with standard software
 - however biased results!

It sounds like a lost cause!

Our proposed solution

Corrected Two-Stage Approach

IS Two-Stage

- Why does the 2-stage approach give biased results?
 - because it does not work with the joint likelihood
- · Hence, to correct the two-stage approach we need the full likelihood
- · However, it is *not efficient* to work with the full joint likelihood due to the aforementioned computational problems

· However, under a Bayesian approach there is a possible solution, namely

Importance Sampling (IS)

• IS allows to use a sample from a *wrong* distribution, and adjust it to look like a sample from the *correct* one

· Stage I:

- Fit a multivariate mixed effects model to the longitudinal outcomes alone
- We obtain an MCMC sample from the distribution

$$\{ heta_y^{(m)}, \mathbf{b}^{(m)}; \; m=1,\ldots,M\} \; \sim \; [heta_y, \mathbf{b} \mid \mathbf{y}_{1i},\ldots,\mathbf{y}_{Ki}]$$

· Stage II:

- For each MCMC realization from the first stage we obtain a value for the parameters of the survival model

$$\{ heta_t^{(m)}; \; m=1,\ldots,M\} \; \sim \; [heta_t \mid T_i, \delta_i, \mathbf{b}^{(m)}, heta_y^{(m)}]$$

 The combined MCMC sample from the two-stage approach can be corrected with the weights

$$\widetilde{w}^{(m)} = rac{p(heta_t^{(m)}, heta_y^{(m)}, \mathbf{b}^{(m)} \mid T_i, \delta_i, \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki})}{p(heta_t^{(m)} \mid T_i, \delta_i, heta_y^{(m)}, \mathbf{b}^{(m)}) \; p(heta_y^{(m)}, \mathbf{b}^{(m)} \mid \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki})}$$

$$w^{(m)} = \widetilde{w}^{(m)} \Big/ \sum_{m=1}^{M} \widetilde{w}^{(m)}$$

· If you do the math ...

$$egin{aligned} \widetilde{w}^{(m)} &= p(T_i, \delta_i \mid \mathbf{b}^{(m)}, heta_y^{(m)}) \ &= \int p(T_i, \delta_i \mid heta_t, \mathbf{b}^{(m)}, heta_y^{(m)}) p(heta_t) \; d heta_t \end{aligned}$$

- Hence, a marginal likelihood calculation

- Approaches to estimate marginal likelihoods
 - Power posteriors
 - more accurate estimate of marginal likelihood
 - but computationally intensive
 - Laplace approximation

- Notes:
 - Stage I can be easily performed in STAN or JAGS/WinBUGS
 - quite fast; no requirement for the *zeros trick*

- Stage II separate sampling for each realization from Stage I
 - Embarrassingly parallel problem
 - parallel computing utilizing CPU cores

- OK, how to do it in practice?
- A suit of functions has been added in the JMbayes (https://cran.rproject.org/package=JMbayes) package
 - mvglmer() fits multivariate mixed models using JAGS or STAN using parallel computing for the multiple chains
 - Ime4 (https://cran.r-project.org/package=Ime4)-like syntax
 - for example, two longitudinal outcomes, one continuous & one binary using JAGS

To fit the same model with STAN, we simply set the engine argument

- The MCMC sample from multMixed is then used in mvJointModelBayes()
 - MCMC sampling of θ_t written in C++ based on Rcpp (https://cran.r-project.org/package=Rcpp) and RcppArmadillo (https://cran.r-project.org/package=RcppArmadillo)
 - parallel computing using package foreach (https://cran.rproject.org/package=foreach) with back-end package parallel (https://cran.r-project.org/)

```
CoxFit <- coxph(Surv(Time, event) ~ group, dat.id, model = TRUE)
multJM <- mvJointModelBayes(multMixed, CoxFit, timeVar = "time", update RE = FALSE)</pre>
```

• OK, how does it perform?

- Simulation study
 - 2 longitudinal outcomes (both normal)
 - compare corrected two-stage approach with full Bayesian
 - Stage I: JAGS 2 chains run in parallel
 - Stage II: run in parallel using 4 cores

- The correction does not seem to help much!!
- Why is that?
 - detective work ...

- · Stage I:
 - Fit a multivariate mixed effects model to the longitudinal outcomes alone
 - We obtain an MCMC sample from the distribution

$$\{ heta_y^{(m)}, \mathbf{b}^{(m)}; \; m=1,\ldots,M\} \; \sim \; [heta_y, \mathbf{b} \mid \mathbf{y}_{1i},\ldots,\mathbf{y}_{Ki}]$$

- · Stage II:
 - For each MCMC realization from the first stage we obtain a value for the parameters of the survival model **and** the random effects

$$\{ heta_t^{(m)}, \mathbf{b}^{(m)}; \; m = 1, \dots, M\} \; \sim \; [heta_t, \mathbf{b} \mid T_i, \delta_i, \mathbf{y}_{1i}, \dots, \mathbf{y}_{Ki}, heta_u^{(m)}]$$

- Now Stage II is more challenging
 - Stage II-a: $\mathbf{b}^* \sim [\mathbf{b} \mid T_i, \delta_i, \mathbf{y}_{1i}, \dots, \mathbf{y}_{Ki}, \theta_y^{(m)}, \theta_t^*]$
 - Stage II-b: $heta_t^* \sim [heta_t \mid T_i, \delta_i, heta_y^{(m)}, \mathbf{b}^*]$

 Stage II-a: entails calculating the multivariate density of all longitudinal outcomes

 The combined MCMC sample from the two-stage approach can be corrected with the weights

$$\widetilde{w}^{(m)} = rac{p(heta_t^{(m)}, heta_y^{(m)}, \mathbf{b}^{(m)} \mid T_i, \delta_i, \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki})}{p(heta_t^{(m)}, \mathbf{b}^{(m)} \mid T_i, \delta_i, \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki}, heta_y^{(m)}) \; p(heta_y^{(m)}, \mathbf{b}^{(m)} \mid \mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki})}$$

$$w^{(m)} = \widetilde{w}^{(m)} \Big/ \sum_{m=1}^M \widetilde{w}^{(m)}$$

Again we obtain a marginal likelihood computation

$$\widetilde{w}^{(m)} = rac{p(\mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki}, T_i, \delta_i \mid heta_y^{(m)})}{p(\mathbf{y}_{1i}, \ldots, \mathbf{y}_{Ki} \mid \mathbf{b}_i^{(m)}, heta_y^{(m)}) \, p(\mathbf{b}_i^{(m)} \mid heta_y^{(m)})}$$

where

$$p(\mathbf{y}_{1i},\ldots,\mathbf{y}_{Ki},T_i,\delta_i\mid heta_y^{(m)})=$$

$$\int \int p(\mathbf{y}_{1i},\ldots,\mathbf{y}_{Ki}\mid \mathbf{b}_i, heta_y^{(m)})p(T_i,\delta_i\mid \mathbf{b}_i, heta_t, heta_y^{(m)})p(\mathbf{b}_i\mid heta_y^{(m)})p(heta_t\mid d\mathbf{b}_id heta_t)$$

- Extra simulation study
 - 6 longitudinal outcomes (all normally distributed)

- Extra simulation study
 - 6 longitudinal outcomes
 - 3 continuous
 - 2 binary
 - 1 Poisson

- · Run with STAN
 - much better than JAGS for mixed-type multivariate mixed models

 Also implemented within mvJointModelBayes() by setting argument update_RE to TRUE (which is actually the default)

multJM <- mvJointModelBayes(multMixed, CoxFit, timeVar = "time", update RE = TRUE)</pre>

- Example: We fit a multivariate joint model for the PBC with the longitudinal outcomes
 - serum bilirubin (continuous)
 - serum cholesterol (continuous)
 - prothrombin time (continuous)
 - ascites (dichotomous)
 - hepatomegaly (dichotomous)
 - spiders (dichotomous)

	Post.Mean	2.5% CI	97.5% CI	P_tail
log_serBilir	0.176	-0.207	0.572	0.336
sqrt_serChol	-0.03	-0.09	0.09	0.984
prothro_time	1.235	0.55	1.659	0
ascites	0.336	0.003	0.5	0.046
hepatomegaly	-0.016	-0.084	0.251	0.288
spiders	-0.072	-0.168	0.062	0.368

Combo of Extensions

· So far we have considered the standard functional form, i.e.,

$$egin{cases} g_kigl[E\{y_{ki}(t)\mid \mathbf{b}_{ki}\}igr] &= \eta_{ki}(t) = \mathbf{x}_{ki}^ op(t)eta_k + \mathbf{z}_{ki}^ op(t)\mathbf{b}_{ki} \ \ h_i(t) &= h_0(t)\expigl\{\gamma^ op\mathbf{w}_i + \sum\limits_{k=1}^K lpha_k\eta_{ki}(t)igr\} \end{cases}$$

 ullet However, for each of the K outcomes we may consider several functional forms simultaneously

$$egin{cases} g_kigl[E\{y_{ki}(t)\mid \mathbf{b}_{ki}\}igr] &= \eta_{ki}(t) = \mathbf{x}_{ki}^ op(t)eta_k + \mathbf{z}_{ki}^ op(t)\mathbf{b}_{ki} \ \ h_i(t) &= h_0(t)\expigl\{\gamma^ op\mathbf{w}_i + \sum\limits_{k=1}^K\sum\limits_{l=1}^L f_{kl}(\mathcal{H}_{ki}(t),lpha_{kl})igr\} \end{cases}$$

 $\mathcal{H}_{ki}(t) = \{\eta_{ki}(s), 0 \leq s < t\}$ history k-th longitudinal outcome up to t

• Functions $\{f_{kl}(\cdot); l=1,\ldots,L\}$ define which components of the history of outcome k are associated with the hazard

- Choice of the optimal functional form(s) per longitudinal outcome using suitable priors for α_{kl} (Andrinopoulou and Rizopoulos, 2016, SiM, 4813–4823)
 - Bayesian lasso
 - elastic net
 - Horseshoe prior
 - ridge
 - ...

 mvJointModelBayes() offers the option for a global-local ridge-type shrinkage prior, i.e.,

$$egin{cases} lpha_{kl} \sim \mathcal{N}(0, au\psi_{kl}) \ & \ au^{-1} \sim Gamma(0.1, 0.1) \ & \ \psi_{kl}^{-1} \sim Gamma(1, 0.01) \end{cases}$$

using

mvJointModelBayes(..., priors = list(shrink alphas = TRUE))

- **Example:** We extend the multivariate joint model fitted to the PBC dataset
 - bilirubin, cholesterol, prothrombin time (continuous)
 - current value, current slope & cumulative effect
 - ascites, hepatomegaly, spiders (dichotomous)
 - current value & cumulative effect

Thank you for your attention!

http://www.drizopoulos.com/ (http://www.drizopoulos.com/)