Using Joint Models to Estimate Causal Effects for Salvage Therapy after Prostatectomy

Dimitris Rizopoulos¹, Jeremy M.G. Taylor² and Grigorios Papageorgiou¹

¹Department of Biostatistics, Erasmus Medical Center Rotterdam ²Department of Biostatistics, University of Michigan

d.rizopoulos@erasmusmc.nl jmgt@umich.edu

@drizopoulos

Aims, Models & Estimands

• Setting Patients treated with surgery after diagnosis of Prostate Cancer (PCa)

▷ remain at risk of metastasis

- Follow-up
 - ▷ PSA levels at frequent intervals
 - ▷ when PSA increases, physicians consider Salvage Therapy (ST)
 - \triangleright ST and rogen deprivation therapy, radiation therapy, chemotherapy, and combinations

- Important questions regarding Salvage Therapy
 - ▷ who should take it?
 - ▷ when to start?
 - ▷ does it work?

Quantify the amount by which Salvage Therapy reduces the risk of metastasis

University of Michigan Prostatectomy Data

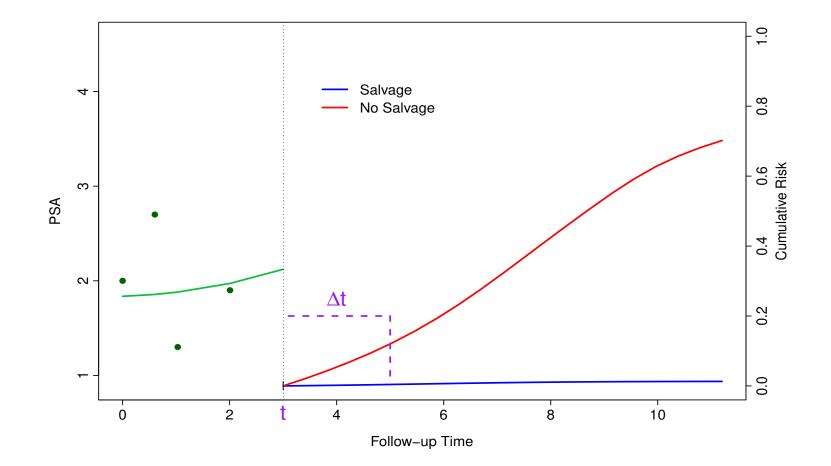
- ▷ 3634 PCa patients followed-up in 1996–2013
 - * aged 40 to 84 years with clinically localized cT1 to cT3 disease
 - * received radical prostatectomy

baseline variables: PSA, Gleason, T-stage, age, race, gland volume, perineural invasion, planned adjuvant therapy

Challenges

- ▷ Observational Data no RCT
 - * selection bias
 - * ascertainment bias
- ▷ Time-Varying Salvage Therapy
 - * depends on previous PSA
 - * PSA time-dependent confounder

- Standard assumptions for Causal Inference
 - Consistency: Observed outcomes equal the counterfactual outcomes for the actually assigned treatment
 - Sequential Exchangeability: The counterfactual outcomes are independent of the assigned treatment conditionally on the history of PSA measurements and baseline covariates



Which is the target group?

- Notation
 - $\triangleright T_m$: time to metastasis
 - $\triangleright T_d$: time to death
 - $\triangleright \mathcal{H}^*(t)$: a version of the PSA history up to t

▷
$$T_m^{(a)}$$
 and $T_d^{(a)}$ counterfactual outcomes
* $a = 1$, ST given at t
* $a = 0$, ST was not given in $[t, t + \Delta t]$

Marginal Salvage Therapy Effect

▷ we average over all PSA histories

 $ST^{M}(t + \Delta t, t) =$ $Pr\{T_{m}^{(1)} \le t + \Delta t \mid T_{m} > t, T_{d} > t\} - Pr\{T_{m}^{(0)} \le t + \Delta t \mid T_{m} > t, T_{d} > t\}$

• Notes:

 \triangleright of lesser relevance to the urologists because they decide who gets ST based on PSA \Rightarrow more bias

 \triangleright averages over a big group of patients \Rightarrow smaller variance

Conditional Salvage Therapy Effect

 \triangleright we condition on the PSA history of a specific patient, i.e., $\mathcal{H}^*(t) = \mathcal{H}_i(t)$

 $\mathsf{ST}^{C}(t + \Delta t, t) = \Pr\{T_{m}^{(1)} \le t + \Delta t \mid T_{m} > t, T_{d} > t, \mathcal{H}_{i}(t)\}$

 $-\Pr\{T_m^{(0)} \le t + \Delta t \mid T_m > t, T_d > t, \mathcal{H}_i(t)\}$

• Notes:

- \triangleright much more relevant to the urologists \Rightarrow less bias
- \triangleright averages over a narrow group of patients \Rightarrow **larger variance**

Marginal-Conditional Salvage Therapy Effect

 $\triangleright \text{ consider ST for patients who had PSA levels above the threshold value } c \text{ at their last visit, i.e., } \mathcal{H}^*(t) = \{Y(t) : Y(t) > c\}$

 $\mathsf{ST}^{MC}(t + \Delta t, t) = \Pr\{T_m^{(1)} \le t + \Delta t \mid T_m > t, T_d > t, \mathcal{H}^*(t)\}$

$$-\Pr\{T_m^{(0)} \le t + \Delta t \mid T_m > t, T_d > t, \mathcal{H}^*(t)\}$$

• Notes:

 \triangleright relevant to the urologists \Rightarrow compromised bias

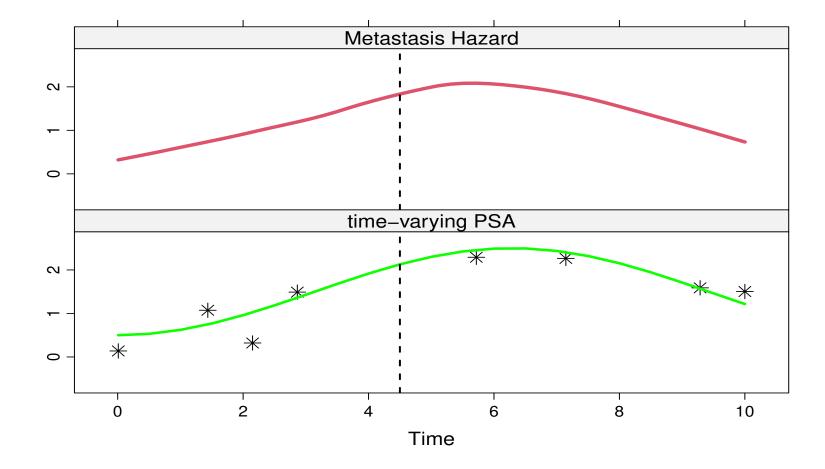
 \triangleright averages over a bigger group of patients \Rightarrow **compromised variance**

Standard Cox models not appropriate

\Downarrow

Joint Models for Longitudinal and Time-to-Event Data

3 Structural Models (cont'd)



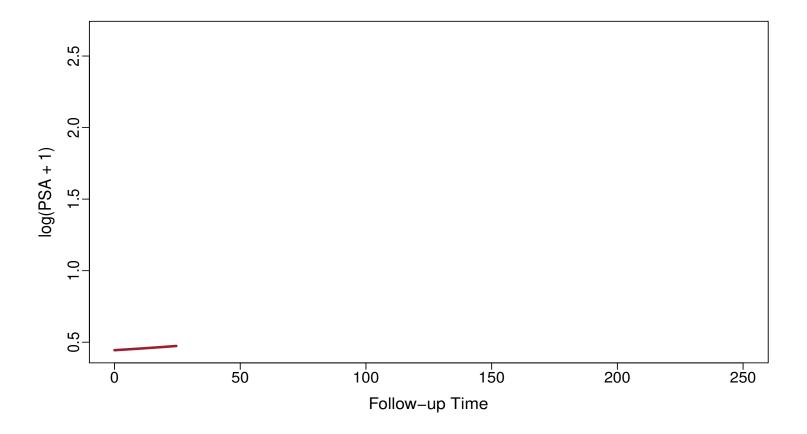
Joint models completely specify the joint distribution of PSA, time-to-metastasis & time-to-death

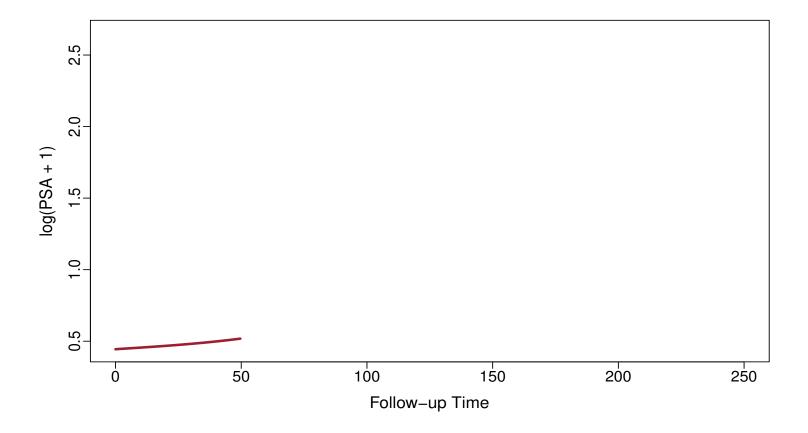
- Under sequential ignorability,
 - ▷ they provide valid marginal distributions
 - without requiring to model the treatment assignment mechanism

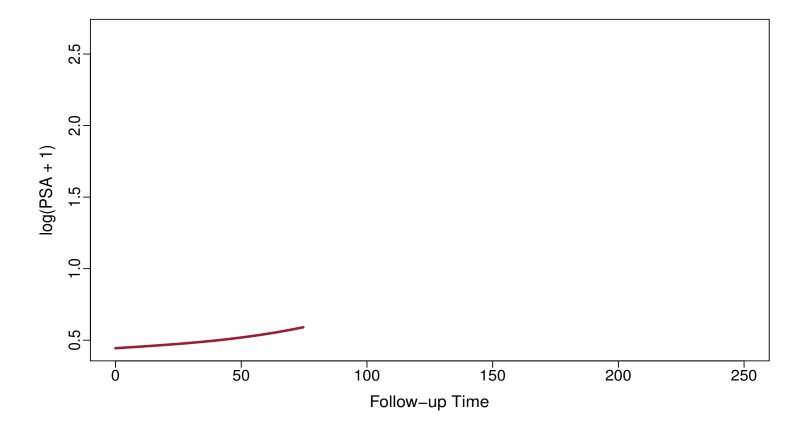
- As PSA increases, patients may receive ST
- We let S_i denote the time a patient initiated ST
 ▷ for patients who did not initiate ST, S_i = ∞
- After ST, PSA levels are expected to drop
 - ▷ but may rise again before metastasis

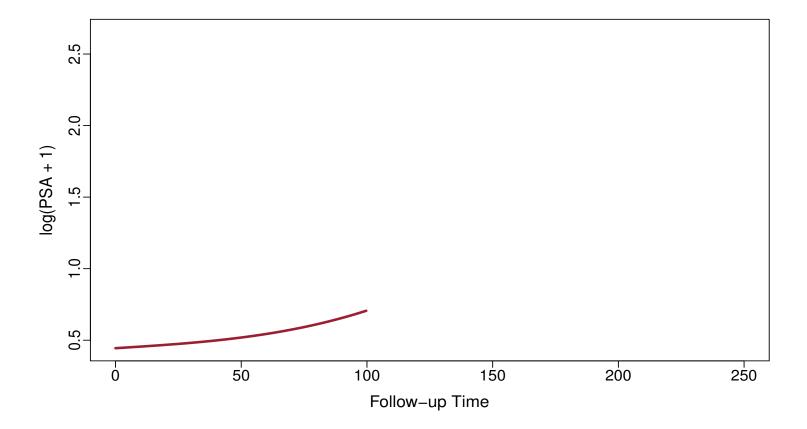
$$\log\{\mathsf{PSA}_{i}(t)+1\} = \begin{cases} \eta_{i}(t) + \varepsilon_{i}(t) = \boldsymbol{x}_{i}(t)\boldsymbol{\beta} + \boldsymbol{z}_{i}(t)\boldsymbol{b}_{i} + \varepsilon_{i}(t), \ t < S_{i} \\\\ \tilde{\eta}_{i}(t) + \varepsilon_{i}(t) = \\\\ \eta_{i}(t) + \left\{\tilde{\boldsymbol{x}}_{i}(\tilde{t})\tilde{\boldsymbol{\beta}} + \tilde{\boldsymbol{z}}_{i}(t)\tilde{\boldsymbol{b}}_{i}\right\} + \varepsilon_{i}(t), \ t \geq S_{i}, \end{cases}$$

$$oldsymbol{u}_i = (oldsymbol{b}_i, \widetilde{oldsymbol{b}}_i) \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Omega})$$

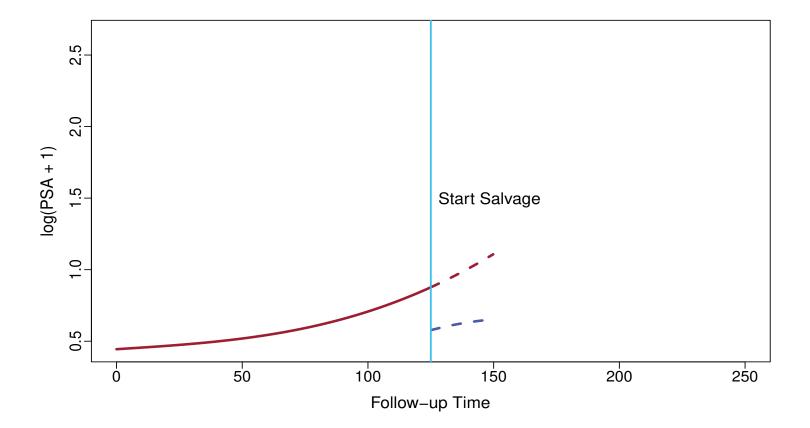


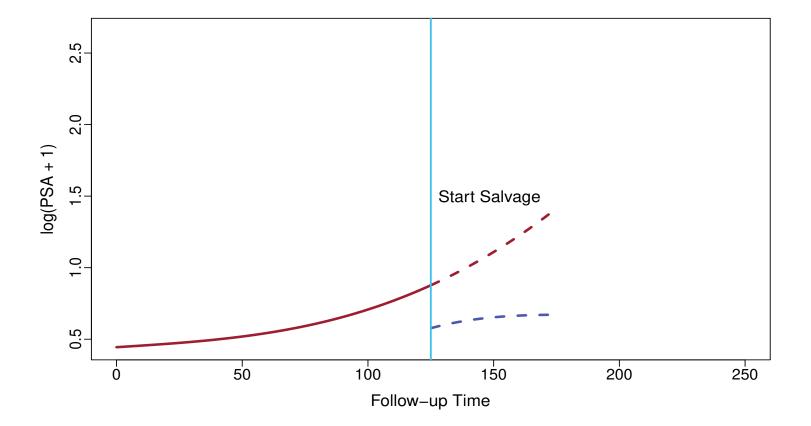


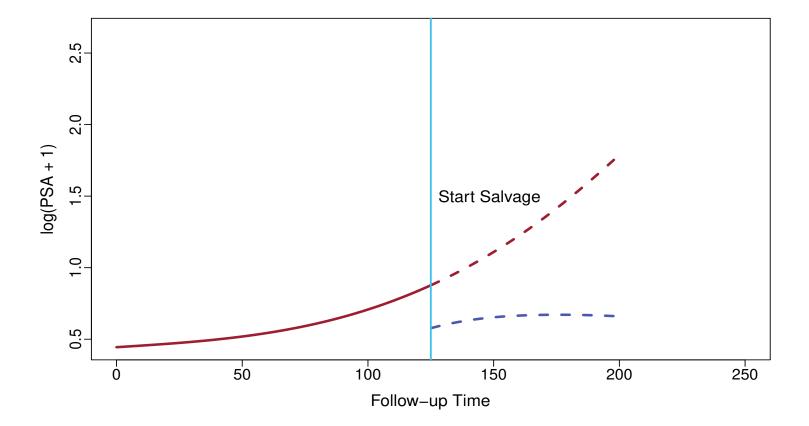


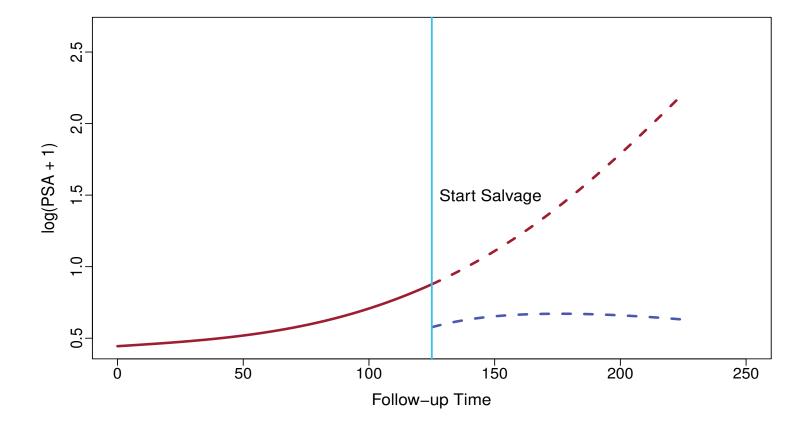


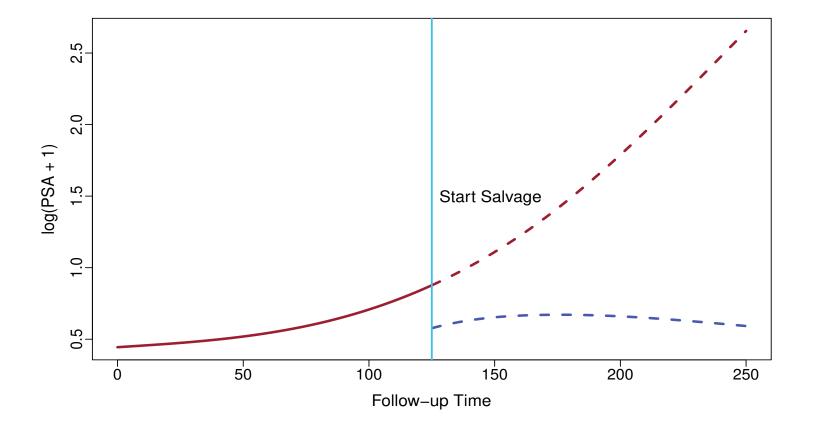












- Metastasis and Death treated as *Competing Risks*
- Separate hazard models for metastasis and death
 - \triangleright linked with PSA and ST
 - ▷ baseline covariates

• Metastasis Sub-Model linked to baseline covariates, Salvage and PSA

$$h_i^m(t) = \begin{cases} h_0^m(t) \exp\left(\boldsymbol{\psi}_m^\top \boldsymbol{w}_i + \boldsymbol{\alpha}_m^\top f\{\eta_i(t)\}\right), & t < S_i \\\\ h_0^m(t) \exp\left(\boldsymbol{\psi}_m^\top \boldsymbol{w}_i + \gamma_m(t - S_i) + \boldsymbol{\xi}_m^\top g\{\tilde{\eta}_i(t)\}\right), & t \ge S_i \end{cases}$$

• Death Sub-Model linked to baseline covariates, Salvage *but not* PSA

$$h_i^d(t) = \begin{cases} h_0^d(t) \exp(\boldsymbol{\psi}_d^\top \boldsymbol{w}_i), & t < S_i \\\\ h_0^d(t) \exp(\boldsymbol{\psi}_d^\top \boldsymbol{w}_i + \gamma_d), & t \ge S_i \end{cases}$$

• From the joint model, we can obtain the conditional causal effect

$$\Pr\{T_{mi}^{(a)} \leq t + \Delta t \mid T_{mi} > t, T_{di} > t, \mathcal{H}_{i}(t), \mathcal{X}_{i}\} = \int \int \Pr\{T_{mi}^{(a)} \leq t + \Delta t \mid T_{mi} > t, T_{di} > t, \boldsymbol{u}_{i}, \mathcal{X}_{i}, \boldsymbol{\theta}\} \times p\{\boldsymbol{u}_{i} \mid T_{mi} > t, T_{di} > t, \mathcal{H}_{i}(t), \mathcal{X}_{i}, \boldsymbol{\theta}\} p(\boldsymbol{\theta} \mid \mathcal{D}) d\boldsymbol{u}_{i} d\boldsymbol{\theta} \\ \triangleright a = \{0, 1\} \\ \triangleright \mathcal{D} = \{T_{i}, \delta_{i}, Y_{i}; i = 1, \dots, n\} \\ \triangleright p(\boldsymbol{\theta} \mid \mathcal{D}) \text{ posterior}$$

• Monte Carlo scheme to estimate $\mathsf{ST}^C_i(t+\Delta t,t)$

hightarrow sample $reve{m{ heta}}^{(l)}$ from the posterior of the parameters $[m{ heta} \mid \mathcal{D}]$

▷ sample $\breve{\boldsymbol{u}}_{i}^{(l)}$ from the posterior of the random effects $[\boldsymbol{u}_{i} \mid T_{mi} > t, T_{di} > t, \mathcal{H}_{i}(t), \mathcal{X}_{i}, \breve{\boldsymbol{\theta}}^{(l)}]$

$$\triangleright \text{ calculate } \pi_i^{(l)}(t + \Delta t \mid t, a) = \Pr\{T_{mi}^{(a)} \leq t + \Delta t \mid T_{mi} > t, T_{di} > t, \breve{\boldsymbol{u}}_i^{(l)}, \mathcal{X}_i, \breve{\boldsymbol{\theta}}^{(l)}\}$$

• We repeat L times and get

$$\widehat{\mathsf{ST}}_i^C(t+\Delta t,t) = \frac{1}{L}\sum_{l=1}^L \pi_i^{(l)}(t+\Delta t\mid t,a=1) - \pi_i^{(l)}(t+\Delta t\mid t,a=0)$$

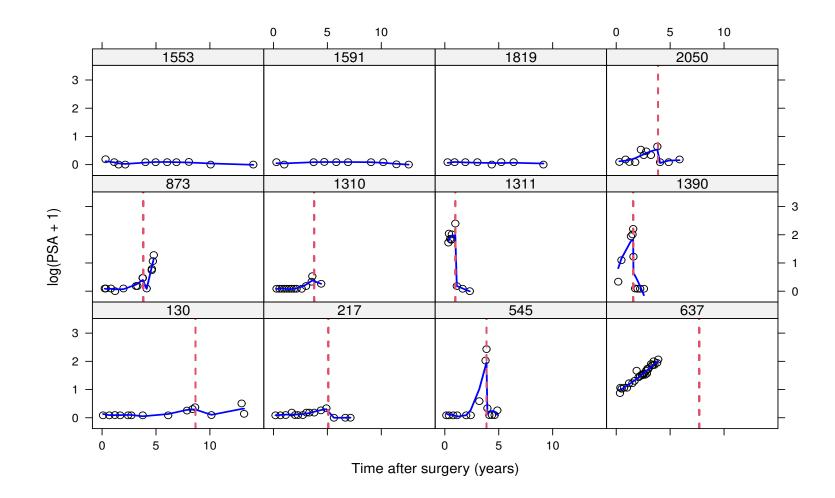
- Estimation of $ST^M(t + \Delta t, t)$ and $ST^{MC}(t + \Delta t, t)$ proceeds by averaging the conditional effects over the respective groups of patients
- For example, for $ST^M(t + \Delta t, t)$

 $\triangleright \mathcal{R}(t)$ the subset of patients at risk at time t

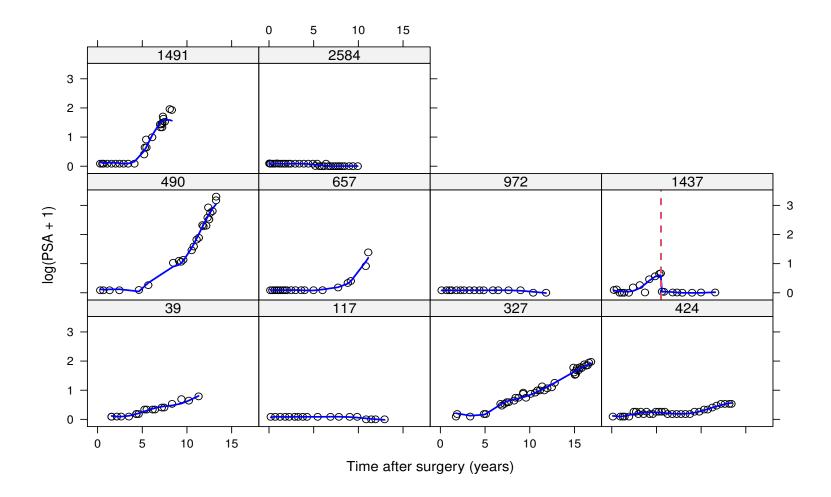
 \triangleright for each patient in $\mathcal{R}(t)$, we calculate $\widehat{\mathsf{ST}}_i^C(t + \Delta t, t)$

$$\widehat{\mathsf{ST}}^M(t+\Delta t,t) = n_r^{-1} \sum_{i:i \in R(t)} \widehat{\mathsf{ST}}^C_i(t+\Delta t,t),$$

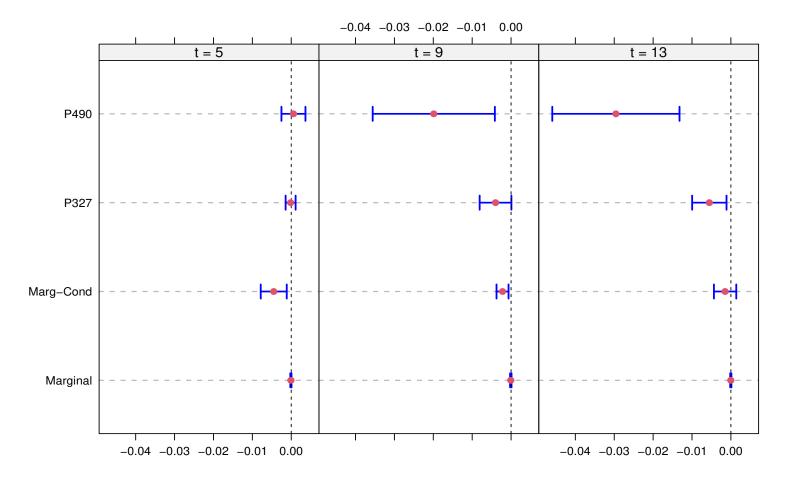
7 Results



7 Results (cont'd)



7 Results (cont'd)



- Implementation available in JMbayes2
 - > predict() cumulative incidence risks
 - > causal_effects() calculates the different causal effects
 (not yet in the package, but in GitHub)
- Shiny app...

Thank for your attention!

https://www.drizopoulos.com/