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Aims, Models & Estimands

Joint Models & Causal Inference – ISCB 2023, Milan, Italy 2



1 Background & Aim

�

Setting
Patients treated with surgery after diagnosis of Prostate Cancer (PCa)

◃ remain at risk of metastasis

� Follow-up

◃ PSA levels at frequent intervals

◃ when PSA increases, physicians consider Salvage Therapy (ST)

◃ ST androgen deprivation therapy, radiation therapy, chemotherapy, and
combinations
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1 Background & Aim (cont’d)

� Important questions regarding Salvage Therapy

◃ who should take it?

◃ when to start?

◃ does it work?
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1 Background & Aim (cont’d)

Quantify the amount by which Salvage Therapy
reduces the risk of metastasis
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1 Background & Aim (cont’d)

�

University of Michigan Prostatectomy Data

◃ 3634 PCa patients followed-up in 1996–2013

* aged 40 to 84 years with clinically localized cT1 to cT3 disease

* received radical prostatectomy

◃ baseline variables: PSA, Gleason, T-stage, age, race, gland volume,
perineural invasion, planned adjuvant therapy
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1 Background & Aim (cont’d)

�

Challenges

◃ Observational Data – no RCT

* selection bias

* ascertainment bias

◃ Time-Varying Salvage Therapy

* depends on previous PSA

* PSA time-dependent confounder
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2 Causal ST Effects

� Standard assumptions for Causal Inference

◃ Consistency: Observed outcomes equal the counterfactual outcomes for the
actually assigned treatment

◃ Sequential Exchangeability: The counterfactual outcomes are independent of the
assigned treatment conditionally on the history of PSA measurements and baseline
covariates
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2 Causal ST Effects (cont’d)
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2 Causal ST Effects (cont’d)

Which is the target group?

� Notation

◃ Tm: time to metastasis

◃ Td: time to death

◃ H∗(t): a version of the PSA history up to t

◃ T
(a)
m and T

(a)
d counterfactual outcomes

* a = 1, ST given at t

* a = 0, ST was not given in [t, t +∆t]
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2 Causal ST Effects (cont’d)

�

Marginal Salvage Therapy Effect

◃ we average over all PSA histories

STM(t +∆t, t) =

Pr{T (1)
m ≤ t +∆t | Tm > t, Td > t} − Pr{T (0)

m ≤ t +∆t | Tm > t, Td > t}

� Notes:

◃ of lesser relevance to the urologists because they decide who gets ST based on
PSA ⇒ more bias

◃ averages over a big group of patients ⇒ smaller variance
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2 Causal ST Effects (cont’d)

�

Conditional Salvage Therapy Effect

◃ we condition on the PSA history of a specific patient, i.e., H∗(t) = Hi(t)

STC(t +∆t, t) = Pr{T (1)
m ≤ t +∆t | Tm > t, Td > t,Hi(t)}

− Pr{T (0)
m ≤ t +∆t | Tm > t, Td > t,Hi(t)}

� Notes:

◃ much more relevant to the urologists ⇒ less bias

◃ averages over a narrow group of patients ⇒ larger variance
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2 Causal ST Effects (cont’d)

�

Marginal-Conditional Salvage Therapy Effect

◃ consider ST for patients who had PSA levels above the threshold value c at their
last visit, i.e., H∗(t) = {Y (t) : Y (t) > c}

STMC(t +∆t, t) = Pr{T (1)
m ≤ t +∆t | Tm > t, Td > t,H∗(t)}

− Pr{T (0)
m ≤ t +∆t | Tm > t, Td > t,H∗(t)}

� Notes:

◃ relevant to the urologists ⇒ compromised bias

◃ averages over a bigger group of patients ⇒ compromised variance
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3 Structural Models

Standard Cox models not appropriate

⇓

Joint Models for Longitudinal and
Time-to-Event Data
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3 Structural Models (cont’d)
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3 Structural Models (cont’d)

Joint models completely specify the joint distribution
of PSA, time-to-metastasis & time-to-death

� Under sequential ignorability,

◃ they provide valid marginal distributions

◃ without requiring to model the treatment assignment mechanism

Joint Models & Causal Inference – ISCB 2023, Milan, Italy 16



4 PSA Sub-Model

� As PSA increases, patients may receive ST

� We let Si denote the time a patient initiated ST

◃ for patients who did not initiate ST, Si = ∞

� After ST, PSA levels are expected to drop

◃ but may rise again before metastasis
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4 PSA Sub-Model (cont’d)

log{PSAi(t) + 1} =



ηi(t) + εi(t) = xi(t)β + zi(t)bi + εi(t), t < Si

η̃i(t) + εi(t) =

ηi(t) +
{
x̃i(t̃)β̃ + z̃i(t)b̃i

}
+ εi(t), t ≥ Si,

ui = (bi, b̃i) ∼ N (0,Ω)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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4 PSA Sub-Model (cont’d)
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5 Metastasis and Death Sub-Models

� Metastasis and Death treated as Competing Risks

� Separate hazard models for metastasis and death

◃ linked with PSA and ST

◃ baseline covariates
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5 Metastasis and Death Sub-Models (cont’d)

�
Metastasis Sub-Model linked to baseline covariates, Salvage and PSA

hm
i (t) =


hm
0 (t) exp

(
ψ⊤

mwi +αm
⊤f{ηi(t)}

)
, t < Si

hm
0 (t) exp

(
ψ⊤

mwi + γm(t− Si) + ξm
⊤g{η̃i(t)}

)
, t ≥ Si
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5 Metastasis and Death (cont’d)

�
Death Sub-Model linked to baseline covariates, Salvage but not PSA

hd
i (t) =


hd
0(t) exp(ψ

⊤
dwi), t < Si

hd
0(t) exp(ψ

⊤
dwi + γd), t ≥ Si
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6 Causal Effect Estimation

� From the joint model, we can obtain the conditional causal effect

Pr{T (a)
mi ≤ t +∆t | Tmi > t, Tdi > t,Hi(t),Xi} =∫ ∫
Pr{T (a)

mi ≤ t +∆t | Tmi > t, Tdi > t,ui,Xi,θ}

× p{ui | Tmi > t, Tdi > t,Hi(t),Xi,θ} p(θ | D) duidθ

◃ a = {0, 1}

◃ D = {Ti, δi, Yi; i = 1, . . . , n}

◃ p(θ | D) posterior
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6 Causal Effect Estimation (cont’d)

� Monte Carlo scheme to estimate STC
i (t +∆t, t)

◃ sample θ̆
(l)

from the posterior of the parameters [θ | D]

◃ sample ŭ
(l)
i from the posterior of the random effects

[ui | Tmi > t, Tdi > t,Hi(t),Xi, θ̆
(l)
]

◃ calculate π
(l)
i (t +∆t | t, a) = Pr{T (a)

mi ≤ t +∆t | Tmi > t, Tdi > t, ŭ
(l)
i ,Xi, θ̆

(l)
}

� We repeat L times and get

ŜT
C

i (t +∆t, t) =
1

L

L∑
l=1

π
(l)
i (t +∆t | t, a = 1)− π

(l)
i (t +∆t | t, a = 0)
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6 Causal Effect Estimation (cont’d)

� Estimation of STM(t +∆t, t) and STMC(t +∆t, t) proceeds by averaging the
conditional effects over the respective groups of patients

� For example, for STM(t +∆t, t)

◃ R(t) the subset of patients at risk at time t

◃ for each patient in R(t), we calculate ŜT
C

i (t +∆t, t)

ŜT
M
(t +∆t, t) = n−1

r

∑
i:i∈R(t)

ŜT
C

i (t +∆t, t),
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7 Results

Time after surgery (years)
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7 Results (cont’d)

Time after surgery (years)
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7 Results (cont’d)

Marginal

Marg−Cond

P327

P490

−0.04 −0.03 −0.02 −0.01 0.00

t = 5

−0.04 −0.03 −0.02 −0.01 0.00

t = 9

−0.04 −0.03 −0.02 −0.01 0.00

t = 13
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7 Software (cont’d)

� Implementation available in JMbayes2

◃ predict() cumulative incidence risks

◃ causal effects() calculates the different causal effects
(not yet in the package, but in GitHub)

� Shiny app. . .
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Thank for your attention!

https://www.drizopoulos.com/
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