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1 Background & Motivation

Setting: Follow-up studies

◃ multiple longitudinal outcomes

* biomarkers

* patient parameters

* patient reported outcome scores

◃ one or multiple endpoints

* relapse of disease

* requirement for intervention

* death

Super Learning for Dynamic Predictions – D. Rizopoulos & J.M.G. Taylor 2



1 Background & Motivation (cont’d)

Obtain accurate predictions for the (cumulative) risk
of an event to guide decision making

Using the available longitudinal information
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1 Background & Motivation (cont’d)

University of Michigan Prostatectomy Data

◃ 3634 PCa patients followed-up in 1996–2013

* aged 40 to 84 years with clinically localized cT1 to cT3 disease

* received radical prostatectomy
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1 Background & Aim (cont’d)

University of Michigan Prostatectomy Data

Patients remain at risk of metastasis

◃ Follow-up

* PSA levels at frequent intervals

* when PSA increases, physicians consider Salvage Therapy (ST)

* ST androgen deprivation therapy, radiation therapy, chemotherapy, and
combinations

Super Learning for Dynamic Predictions – D. Rizopoulos & J.M.G. Taylor 5



1 Background & Motivation (cont’d)

University of Michigan Prostatectomy Data

Use the longitudinal PSA & baseline covariates to predict
the risk of metastasis
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1 Background & Motivation (cont’d)

� Two main frameworks to obtain such predictions

◃ Landmarking

* a series of Cox models at different landmark times

* biomarker last value as a baseline covariate or a mixed model

* Breslow estimator of survival probabilities

◃ Joint Models

* complete specification of the joint distribution of the outcomes

* direct derivation of conditional risk probabilities
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1 Background & Motivation (cont’d)

Landmarking

◃ Advantages

* easier to use, available in standard software

* can generalize to multiple biomarkers without (much) extra computational cost

◃ Disadvantages

* predictions not consistent

* not plausible LOCF for biomarkers

* does not account for measurement error and endogeneity

* not valid causal interpretation
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1 Background & Motivation (cont’d)

Joint Models

◃ Advantages

* consistent predictions

* accounts for measurement error and endogeneity

* biomarkers follow a trajectory

* valid causal interpretation

◃ Disadvantages

* computationally intensive

* sensitive to modeling assumptions

Super Learning for Dynamic Predictions – D. Rizopoulos & J.M.G. Taylor 9



1 Background & Motivation (cont’d)

� Sensitive to modeling assumptions

◃ Longitudinal profiles shape

* non-linear subject-specific trajectories

◃ Functional form

* how to link the hazard of the event with the longitudinal outcome
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2 Joint Models

Joint Models Framework - Basic Idea

◃ Use a model to describe the subject-specific longitudinal trajectories

◃ Use these trajectories in a hazard model for the event

◃ Random effects explain the association
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2 Joint Models (cont’d)

Time
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2 Joint Models (cont’d)

Some notation

◃ T ∗
i : True event time for patient i

◃ Ti: Observed event time for patient i

◃ δi: Event indicator, i.e., equals 1 for true events

◃ yi: Longitudinal covariate
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2 Joint Models (cont’d)

More formally

hi(t |Hi(t, bi)) = h0(t) exp{γ⊤wi+f (α,Hi(t, bi))},
Hi(t, bi) = {ηi(s, bi); 0 ≤ s ≤ t}

yi(t) = ηi(t, bi) + εi(t)

= x⊤
i (t)β + z⊤

i (t)bi + εi(t), εi(t) ∼ N (0, σ2),

bi ∼ N (0,D)
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2 Joint Models (cont’d)

� We follow a Bayesian estimation paradigm treating θ and {bi, i = 1, . . . , n} are
regarded as parameters

� Inference is based on the full posterior distribution

p(θ, b | T, δ, y) =

∏
i p(Ti, δi | bi, θ) p(yi | bi, θ) p(bi, θ) p(θ)∏

i p(Ti, δi, yi)

∝
n∏

i=1

{
p(Ti, δi | bi, θ) p(yi | bi, θ) p(bi, θ)

}
p(θ)
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2 Joint Models (cont’d)

� Dynamic predictions from joint models

πi(u | t) = Pr
{
T ∗
i ≤ u | T ∗

i > t,Yi(t),Dn

}
, u > t,

where

◃ Yi(t) = {yi(s), 0 ≤ s ≤ t} available measurements up to t

◃ Dn the sample used to fit the model
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2 Joint Models (cont’d)

� Under the Bayesian formulation πi(u | t) is written as

Pr
{
T ∗
i ≤ u | T ∗

i > t,Yi(t),Dn

}
= 1−

∫
Pr
{
T ∗
i ≥ u | T ∗

i > t,Yi(t), θ
}
p(θ | Dn) dθ

� With the first term taking the form

Pr
{
T ∗
i ≥ u | T ∗

i > t,Yi(t), θ
}
=

=

∫
Si

{
u | Hi(u, bi, θ), θ

}
Si

{
t | Hi(t, bi, θ), θ

} p(bi | T ∗
i > t,Yi(t),θ) dbi
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2 Joint Models (cont’d)

Time after surgery (years)
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2 Joint Models (cont’d)
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2 Joint Models (cont’d)

� In the context of dynamic predictions,

◃ previous research has shown that predictive accuracy is compromised

◃ when the model does not adequately capture the subject-specific trajectories
shape

Advice

◃ use flexible models, e.g., splines in both fixed- and random-effects parts

◃ increased computational burden
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2 Joint Models (cont’d)

Time after surgery (years)
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2 Joint Models (cont’d)

Time after surgery (years)
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3 Functional Forms

There are different ways to link the longitudinal trajectories
to the risk of an event

◃ Some standard options are . . .
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3 Functional Forms (cont’d)

Value: The hazard of metastasis at t is associated with the level of PSA at t:

hi(t | Hi(t, bi)) = h0(t) exp
{
γ⊤wi + αηi(t, bi)

}
where

ηi(t, bi) = x⊤
i (t)β + z⊤

i (t)bi
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3 Functional Forms (cont’d)
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3 Functional Forms (cont’d)

Velocity:
The hazard of metastasis at t is associated with the slope of the PSA

trajectory at t:

hi(t | Hi(t, bi)) = h0(t) exp{γ⊤wi + αη′i(t, bi)},

where

η′i(t, bi) =
d

dt
{x⊤

i (t)β + z⊤
i (t)bi}
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3 Functional Forms (cont’d)
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3 Functional Forms (cont’d)

Average Effects:
The hazard of metastasis at t is associated with the average PSA

in the interval (t−∆t, t):

hi(t | Hi(t, bi)) = h0(t) exp

{
γ⊤wi + α

1

∆t

t∫
t−∆t

ηi(s, bi) ds

}

We account for the observation period
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3 Functional Forms (cont’d)
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3 Functional Forms (cont’d)

How significant is the choice of the functional form for
dynamic predictions?
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3 Functional Forms (cont’d)
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3 Functional Forms (cont’d)

1yr−window Predictions
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4 Super Learning

� The selected functional form and time effect for the longitudinal outcome can
influence the derived predictions

◃ especially for the survival outcome

How to select between the different functional forms and
trajectory shapes?
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4 Super Learning (cont’d)

� The standard answer is to employ information criteria, e.g., DIC, WAIC, . . .

� However, the longitudinal information dominates the joint likelihood
⇒ will not be sensitive enough wrt predicting survival probabilities

� In addition, will a single model be the most appropriate

◃ for all follow-up times?
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4 Super Learning (cont’d)

Solution

◃ Consider multiple plausible models with different

* longitudinal outcomes

* assumptions for the longitudinal profiles

* functional forms

* baseline covariates, interaction terms

* . . .

◃ Obtain the desired predictions from these models

◃ Combine predictions using weights

* how to select the weights?
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4 Super Learning (cont’d)

� Previous research: Bayesian Model Averaging

◃ Assume we have a library of L models L = {M1, . . . ,ML}

◃ Weights: Posterior probability of a model given the data

p(Ml | Dn), l = 1, . . . , L

where

* Dn = {Ti, δi,yi; i = 1, . . . , n}
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4 Super Learning (cont’d)

� Issues with BMA weights

◃ Requires calculating the marginal likelihood

p(Dn | Ml) =

∫
p(Dn | θ,Ml)︸ ︷︷ ︸

Likelihood

p(θ | Ml)︸ ︷︷ ︸
Prior

dθ

⇒ Computationally demanding

◃ Weights not designed to optimize predictions

◃ Not clear if we account for over-fitting
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4 Super Learning (cont’d)

� Issues with BMA weights

◃ The likelihood of a model that fits the data a bit better can have a likelihood
value that is several units larger compared to the other models

◃ Often one model dominates the weights over the others
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4 Super Learning (cont’d)

Alternative Solution: Super Learning

◃ Select weights to optimize prediction metric of your choice

◃ Account for over-fitting using cross-validation
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4 Super Learning (cont’d)

How it works:

◃ Assume we have a library of L base-learners (models) L = {M1, . . . ,ML}

◃ Specify the landmark time t, and a relevant future time u, u > t

◃ Split Dn in V -folds

◃ For v ∈ {1, . . . , V }, train the learners in library L using D(−v)
n
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4 Super Learning (cont’d)

How it works:

◃ For the subjects in D(v)
n , not used when training the learner, calculate the

predictions

π̂
(v)
i (u | t,Ml) = Pr{T ∗

i < u | T ∗
i > t,Yi(t),Ml,D(−v)

n }

do this for all v = 1, . . . , V to get the cross-validated predictions
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4 Super Learning (cont’d)

How it works:

◃ We define the ensemble of cross-validated predictions

ˆ̃πv
i (u | t) =

L∑
l=1

ϖl(t)π̂
(v)
i (u | t,Ml), v = 1, . . . , V

* the weights depend on t ⇒ different weights at different follow-up times
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4 Super Learning (cont’d)

How it works:

◃ Select ϖl(t) to optimize your meta-learner (predictive accuracy metric), e.g.,

* Brier Score (Proper scoring rule)

* Expected Predictive Cross-Entropy (Proper scoring rule)

* AUC (Not a proper scoring rule)

* . . .

◃ Under the constraints

* ϖ̂l(t) > 0 for all l = 1, . . . , L

*
∑L

l=1 ϖ̂l(t) = 1
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5 UM Data Analysis

A library L with twelve joint models

� PSA models

◃ Ml1: linear subject-specific time trends that change after salvage

◃ Ml2: the same as Ml1 + covariates

◃ Ml3: nonlinear subject-specific time trends that change after salvage

◃ Ml4: the same as Ml3 + covariates

� Baseline covariates: age at surgery, Charlson’s index, Gleason score, and baseline PSA
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5 UM Data Analysis (cont’d)

A library L with twelve joint models

� Metastasis models

◃ Ms1: value of log(PSA + 1)

◃ Ms2: velocity of log(PSA + 1)

◃ Ms3: average log(PSA + 1)

� Time varying salvage therapy

� Baseline covariates: the same as in the PSA models
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5 UM Data Analysis (cont’d)

� We evaluated predictive accuracy in two time intervals

◃ (4, 7]: 2514 patients at risk; 28 metastasis

◃ (6, 9]: 1914 patients at risk; 16 metastasis

� Metrics - meta learners

◃ Integrated Brier Score

◃ Expected Predictive Cross-Entropy
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5 UM Data Analysis (cont’d)

Meta-learners

◃ Integrated Brier Score

IBS(u, t) =
1

u− t

∫ u

t

E
{
I(t < T ∗

i ≤ s)− πi(s | t)
}2

ds

◃ Expected Predictive Cross-Entropy

EPCE(u, t) = E

{
− log

[
p
{
T ∗
i | t < T ∗

i ≤ u,Yi(t)
}]}
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5 UM Data Analysis (cont’d)

Integrated Brier Score

linear−Cov−mean

linear−Cov−slope

linear−Cov−value

linear−noCov−mean

linear−noCov−slope

linear−noCov−value

nonlinear−Cov−mean

nonlinear−Cov−slope

nonlinear−Cov−value

nonlinear−noCov−mean

nonlinear−noCov−slope

nonlinear−noCov−value

Super Learning

0.072 0.074 0.076 0.078

(t, u] = (4, 7]   (t, u] = (6, 9]
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5 UM Data Analysis (cont’d)

Expected Predictive Cross−Entropy

linear−Cov−mean

linear−Cov−slope

linear−Cov−value

linear−noCov−mean

linear−noCov−slope

linear−noCov−value

nonlinear−Cov−mean

nonlinear−Cov−slope

nonlinear−Cov−value

nonlinear−noCov−mean

nonlinear−noCov−slope

nonlinear−noCov−value

Super Learning

0.048 0.050 0.052 0.054 0.056 0.058

(t, u] = (4, 7]   (t, u] = (6, 9]
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5 UM Data Analysis (cont’d)

Observations (also from the simulation study)

◃ ensemble Super Learning (eSL) often, but not always , outperforms the individual
models

◃ In some datasets and intervals (t, u], the discrete Super Learner (dSL) beats the
eSL
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5 UM Data Analysis (cont’d)

Recommendation

Regard eSL as an extra member of the library L and use CV
to select the optimal strategy
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6 Software

� Available in JMbayes2

◃ cross-validated fitting of models

◃ combination of dynamic predictions
https://drizopoulos.github.io/JMbayes2/articles/Super Learning.html
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Thank for your attention!

https://www.drizopoulos.com/
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7 Choice of the Meta-Learner

We focus on two meta-learners

◃ Integrated Brier Score

IBS(t +∆t, t) =
1

∆t

∫ t+∆t

t

E

[{
I(T ∗

i ≤ s)− πi(s | t)
}2 ∣∣∣ T ∗

i > t

]
ds

◃ Expected Predictive Cross-Entropy

EPCE(t +∆t, t) = E

{
− log

[
p
{
T ∗
i | t < T ∗

i ≤ t +∆t,Yi(t)
}]}

Super Learning for Dynamic Predictions – D. Rizopoulos & J.M.G. Taylor 54



7 Choice of the Meta-Learner (cont’d)

� For the estimation of the Brier score, we need to account for censoring in [t, t +∆t)

* inverse probability of censoring weighting

* model-based weights
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7 Choice of the Meta-Learner (cont’d)

� Brier Score with IPCW

B̂SIPCW (t +∆t, t) =
1

n

n∑
i=1

Ŵi(t +∆t, t)
{
I(Ti ≤ t +∆t)− ˆ̃πv

i (t +∆t | t)
}2

where

Ŵi(t +∆t, t) =
I(t < Ti ≤ t +∆t)δi

Ĝ(Ti | t)
+
I(Ti > t +∆t)

Ĝ(t +∆t | t)
,

with Ĝ(·) denoting Kaplan-Meier estimate of the censoring distribution Pr(Ci > t)
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7 Choice of the Meta-Learner (cont’d)

� Brier Score with model-weights

B̂Smodel(t +∆t, t) =
1

nt

∑
i:Ti>t

δiI(Ti ≤ t +∆t)
{
1− ˆ̃πv

i (t +∆t | t)
}2

+ I(Ti > t +∆t)
{
ˆ̃πv
i (t +∆t | t)

}2

+(1− δi)I(Ti ≤ t +∆t)

[
ˆ̃πv
i (t +∆t | Ti)

{
1− ˆ̃πv

i (t +∆t | t)
}2

+
{
1− ˆ̃πv

i (t +∆t | Ti)
}{

ˆ̃πv
i (t +∆t | t)

}2
]
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7 Choice of the Meta-Learner (cont’d)

� IPCW

◃ Advantage: it provides unbiased estimates even when the model is misspecified

◃ Disadvantage: it requires that the model for the weights is correct

* challenging because censoring may depend on the longitudinal outcomes in a
complex manner

* sensitive to (unobserved) instrument by confounder interactions
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7 Choice of the Meta-Learner (cont’d)

� Model-based Weights

◃ Advantage: it allows censoring to depend on the longitudinal history (in any
possible manner)

◃ Disadvantage: it requires that the model is well-specified
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7 Choice of the Meta-Learner (cont’d)

� An estimate of EPCE(t +∆t, t) that accounts for censoring

EP̂CE(t +∆t, t) =
1

nt

∑
i:Ti>t

− log
[
p
{
T̃i, δ̃i | Ti > t,Yi(t),Dn

}]
with

◃ T̃i = min(Ti, t +∆t)

◃ δ̃i = δiI(t < Ti ≤ t +∆t)

� Features

◃ it allows censoring to depend on the longitudinal history

◃ problem: it is not written as a function of the predictions
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7 Choice of the Meta-Learner (cont’d)

� The conditional predictive log-likelihood

log
[
p
{
T̃i, δ̃i | Ti > t,Yi(t),Dn

}]
=

δ̃i log[hi{T̃i | Yi(t),Dn}] + log
Pr{T ∗

i > T̃i | Yi(t),Dn}
Pr{T ∗

i > t | Yi(t),Dn}

◃ the second term is log{πi(T̃i | t)}

◃ for the first term, we write the hazard function as

hi{T̃i | Yi(t),Dn} =
p(T̃i)

S(T̃i)
= −

d
dt

Pr{T ∗
i > t | Yi(t),Dn}

∣∣∣
t=T̃i

Pr{T ∗
i > T̃i | Yi(t),Dn}
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7 Choice of the Meta-Learner (cont’d)

� We approximate the derivative with a forward difference and we get

EP̂CE(t +∆t, t) =

− 1

nt

∑
i:Ti>t

δ̃i
[
log{1− ˆ̃πv

i (T̃i + ϵ | T̃i)} − log(ϵ)
]
+ log{ˆ̃πv

i (T̃i | t)}

that can be used to optimize ϖl(t)
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7 UM Data Analysis (cont’d)

(t, t+∆t] = (4, 7] (t, t+∆t] = (6, 9]

IBS weights IBS weights

SL 0.07584 0.07195

linear-noCov-value 0.07583 0.00000 0.07199 0.08333

linear-noCov-slope 0.07608 0.00000 0.07155 0.08340

linear-noCov-mean 0.07683 0.00000 0.07236 0.08332

linear-Cov-value 0.07584 1.00000 0.07201 0.08335

linear-Cov-slope 0.07608 0.00000 0.07160 0.08339

linear-Cov-mean 0.07686 0.00000 0.07231 0.08332

nonlinear-noCov-value 0.07693 0.00000 0.07200 0.08334

nonlinear-noCov-slope 0.07672 0.00000 0.07233 0.08331

nonlinear-noCov-mean 0.07760 0.00000 0.07266 0.08329

nonlinear-Cov-value 0.07708 0.00000 0.07218 0.08332

nonlinear-Cov-slope 0.07687 0.00000 0.07219 0.08333

nonlinear-Cov-mean 0.07788 0.00000 0.07277 0.08328
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7 UM Data Analysis (cont’d)

(t, t+∆t] = (4, 7] (t, t+∆t] = (6, 9]

EPCE weights EPCE weights

SL 0.05231 0.04696

linear-noCov-value 0.05865 0.08325 0.05003 0.00002

linear-noCov-slope 0.05412 0.08320 0.04861 0.00000

linear-noCov-mean 0.05777 0.08260 0.04764 0.39649

linear-Cov-value 0.05887 0.08215 0.04997 0.00000

linear-Cov-slope 0.05418 0.08333 0.04887 0.00000

linear-Cov-mean 0.05768 0.08270 0.04763 0.12793

nonlinear-noCov-value 0.05656 0.08337 0.04793 0.00136

nonlinear-noCov-slope 0.05199 0.08517 0.04785 0.44966

nonlinear-noCov-mean 0.05882 0.08296 0.04762 0.00961

nonlinear-Cov-value 0.05679 0.08315 0.04867 0.00000

nonlinear-Cov-slope 0.05188 0.08526 0.04820 0.01327

nonlinear-Cov-mean 0.05899 0.08288 0.04764 0.00166
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