Dynamic predictions from Joint Models using Super Learning

Dimitris Rizopoulos 1 and Jeremy M.G. Taylor 2

¹Department of Biostatistics, Erasmus Medical Center Rotterdam ²Department of Biostatistics, University of Michigan

d.rizopoulos@erasmusmc.nl jmgt@umich.edu

@drizopoulos

Setting: Follow-up studies

- > multiple longitudinal outcomes
 - * biomarkers
 - * patient parameters
 - * patient reported outcome scores
- \triangleright one or multiple endpoints
 - * relapse of disease
 - * requirement for intervention
 - * death

Obtain accurate predictions for the (cumulative) risk of an event to guide decision making

Using the available longitudinal information

University of Michigan Prostatectomy Data

- ▷ 3634 PCa patients followed-up in 1996–2013
 - * aged 40 to 84 years with clinically localized cT1 to cT3 disease
 - * received radical prostatectomy

University of Michigan Prostatectomy Data

Patients remain at risk of metastasis

 \triangleright Follow-up

- * PSA levels at frequent intervals
- * when PSA increases, physicians consider Salvage Therapy (ST)
- * ST androgen deprivation therapy, radiation therapy, chemotherapy, and combinations

University of Michigan Prostatectomy Data

Use the longitudinal PSA & baseline covariates to predict the risk of metastasis

• Two main frameworks to obtain such predictions

▷ Landmarking

- * a series of Cox models at different landmark times
- * biomarker last value as a baseline covariate or a mixed model
- * Breslow estimator of survival probabilities

▷ Joint Models

- * complete specification of the joint distribution of the outcomes
- * direct derivation of conditional risk probabilities

Landmarking

▷ Advantages

- * easier to use, available in standard software
- * can generalize to multiple biomarkers without (much) extra computational cost

▷ *Disadvantages*

- * predictions not consistent
- * not plausible LOCF for biomarkers
- * does not account for measurement error and endogeneity
- * not valid causal interpretation

Joint Models

▷ Advantages

- * consistent predictions
- * accounts for measurement error and endogeneity
- * biomarkers follow a trajectory
- * valid causal interpretation

▷ Disadvantages

- * computationally intensive
- * sensitive to modeling assumptions

- Sensitive to modeling assumptions
 - Longitudinal profiles shape
 - * non-linear subject-specific trajectories

▷ Functional form

* how to link the hazard of the event with the longitudinal outcome

Joint Models Framework - Basic Idea

▷ Use a model to describe the subject-specific longitudinal trajectories

▷ Use these trajectories in a hazard model for the event

▷ Random effects explain the association

Some notation

- $\triangleright T_i^*$: True event time for patient *i*
- $\triangleright T_i$: Observed event time for patient *i*
- $\triangleright \delta_i$: Event indicator, i.e., equals 1 for true events
- $\triangleright y_i$: Longitudinal covariate

More formally

$$h_i(t \mid \mathcal{H}_i(t, \boldsymbol{b}_i)) = h_0(t) \exp\{\boldsymbol{\gamma}^\top \boldsymbol{w}_i + f(\alpha, \mathcal{H}_i(t, \boldsymbol{b}_i))\},\$$
$$\mathcal{H}_i(t, \boldsymbol{b}_i) = \{\eta_i(s, \boldsymbol{b}_i); 0 \le s \le t\}$$

$$y_i(t) = \eta_i(t, \boldsymbol{b}_i) + \varepsilon_i(t)$$

= $\boldsymbol{x}_i^{\top}(t)\boldsymbol{\beta} + \boldsymbol{z}_i^{\top}(t)\boldsymbol{b}_i + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$

 $\boldsymbol{b}_i \, \sim \, \mathcal{N}(\boldsymbol{0}, \boldsymbol{D})$

- We follow a Bayesian estimation paradigm treating θ and $\{b_i, i = 1, \ldots, n\}$ are regarded as parameters
- Inference is based on the full posterior distribution

$$p(\theta, b \mid T, \delta, y) = \frac{\prod_{i} p(T_{i}, \delta_{i} \mid b_{i}, \theta) \ p(y_{i} \mid b_{i}, \theta) \ p(b_{i}, \theta) \ p(\theta)}{\prod_{i} p(T_{i}, \delta_{i}, y_{i})}$$

$$\propto \prod_{i=1}^{n} \left\{ p(T_i, \delta_i \mid b_i, \theta) \ p(y_i \mid b_i, \theta) \ p(b_i, \theta) \right\} \ p(\theta)$$

• Dynamic predictions from joint models

$$\pi_i(u \mid t) = \mathsf{Pr}\big\{T_i^* \le u \mid T_i^* > t, \mathcal{Y}_i(t), \mathcal{D}_n\big\}, \quad u > t,$$

where

- $\triangleright \mathcal{Y}_i(t) = \{y_i(s), 0 \le s \le t\}$ available measurements up to t
- $\triangleright \mathcal{D}_n$ the sample used to fit the model

• Under the Bayesian formulation $\pi_i(u \mid t)$ is written as

$$\mathsf{Pr}\big\{T_i^* \le u \mid T_i^* > t, \mathcal{Y}_i(t), \mathcal{D}_n\big\} = 1 - \int \mathsf{Pr}\big\{T_i^* \ge u \mid T_i^* > t, \mathcal{Y}_i(t), \theta\big\} \ p(\theta \mid \mathcal{D}_n) \ \mathsf{d}\theta$$

• With the first term taking the form

$$\Pr\{T_i^* \ge u \mid T_i^* > t, \mathcal{Y}_i(t), \theta\} =$$
$$= \int \frac{S_i\{u \mid \mathcal{H}_i(u, b_i, \theta), \theta\}}{S_i\{t \mid \mathcal{H}_i(t, b_i, \theta), \theta\}} p(b_i \mid T_i^* > t, \mathcal{Y}_i(t), \theta) \, \mathrm{d}b_i$$

2 Joint Models (cont'd)

2 Joint Models (cont'd)

Follow-up Time

- In the context of dynamic predictions,
 - \triangleright previous research has shown that predictive accuracy is compromised
 - b when the model does not *adequately* capture the subject-specific trajectories shape

Advice

- ▷ use flexible models, e.g., splines in both fixed- and random-effects parts
- ▷ increased computational burden

2 Joint Models (cont'd)

There are different ways to link the longitudinal trajectories to the risk of an event

▷ Some standard options are ...

<u>Value</u>: The hazard of metastasis at t is associated with the level of PSA at t:

$$h_i(t \mid \mathcal{H}_i(t, \boldsymbol{b}_i)) = h_0(t) \exp\{\boldsymbol{\gamma}^\top \boldsymbol{w}_i + \boldsymbol{\alpha} \eta_i(t, \boldsymbol{b}_i)\}$$

where

$$\eta_i(t, \boldsymbol{b}_i) = \boldsymbol{x}_i^{\top}(t)\boldsymbol{\beta} + \boldsymbol{z}_i^{\top}(t)\boldsymbol{b}_i$$

Velocity: The hazard of metastasis at t is associated with the slope of the PSA trajectory at t:

$$h_i(t \mid \mathcal{H}_i(t, \boldsymbol{b}_i)) = h_0(t) \exp\{\boldsymbol{\gamma}^\top \boldsymbol{w}_i + \boldsymbol{\alpha} \eta_i'(t, \boldsymbol{b}_i)\},$$

where

$$\eta_i'(t, \boldsymbol{b}_i) = \frac{\mathsf{d}}{\mathsf{d}t} \{ \boldsymbol{x}_i^\top(t) \boldsymbol{\beta} + \boldsymbol{z}_i^\top(t) \boldsymbol{b}_i \}$$

Average Effects: The hazard of metastasis at t is associated with the average PSA in the interval $(t - \Delta t, t)$:

$$h_i(t \mid \mathcal{H}_i(t, \boldsymbol{b}_i)) = h_0(t) \exp\left\{\boldsymbol{\gamma}^\top \boldsymbol{w}_i + \boldsymbol{\alpha} \frac{1}{\Delta t} \int_{t-\Delta t}^t \eta_i(s, \boldsymbol{b}_i) \, \mathrm{d}s\right\}$$

We account for the observation period

How significant is the choice of the functional form for dynamic predictions?

3 Functional Forms (cont'd)

1yr-window Predictions

- The selected functional form and time effect for the longitudinal outcome can influence the derived predictions
 - ▷ especially for the survival outcome

How to select between the different functional forms and trajectory shapes?

- The standard answer is to employ information criteria, e.g., DIC, WAIC,
- However, the longitudinal information dominates the joint likelihood
 ⇒ will not be sensitive enough wrt predicting survival probabilities
- In addition, will *a single model* be the most appropriate
 - ▷ for all follow-up times?

Solution

- Consider multiple plausible models with different
 - * longitudinal outcomes
 - * assumptions for the longitudinal profiles
 - * functional forms
 - * baseline covariates, interaction terms
 - * ...
- ▷ Obtain the desired predictions from these models
- Combine predictions using weights
 - * how to select the weights?

• Previous research: *Bayesian Model Averaging*

 \triangleright Assume we have a library of L models $\mathcal{L} = \{M_1, \ldots, M_L\}$

▷ Weights: Posterior probability of a model given the data

$$p(M_l \mid \mathcal{D}_n), \quad l = 1, \dots, L$$

where

* $\mathcal{D}_n = \{T_i, \delta_i, \boldsymbol{y}_i; i = 1, \dots, n\}$

• Issues with BMA weights

▷ Requires calculating the marginal likelihood

$$p(\mathcal{D}_n \mid M_l) = \int \underbrace{p(\mathcal{D}_n \mid \boldsymbol{\theta}, M_l)}_{\text{Likelihood}} \underbrace{p(\boldsymbol{\theta} \mid M_l)}_{\text{Prior}} \ \mathrm{d}\boldsymbol{\theta}$$

 \Rightarrow Computationally demanding

> Weights not designed to optimize predictions

▷ Not clear if we account for over-fitting

• Issues with BMA weights

- ▷ The likelihood of a model that fits the data a bit better can have a likelihood value that is several units larger compared to the other models
- ▷ Often one model dominates the weights over the others

Alternative Solution: Super Learning

Select weights to optimize prediction metric of your choice

▷ Account for over-fitting using cross-validation

- \triangleright Assume we have a library of *L* base-learners (models) $\mathcal{L} = \{M_1, \ldots, M_L\}$
- \triangleright Specify the landmark time t, and a relevant future time u, u>t
- \triangleright Split \mathcal{D}_n in *V*-folds
- \triangleright For $v \in \{1, \ldots, V\}$, train the learners in library \mathcal{L} using $\mathcal{D}_n^{(-v)}$

 \triangleright For the subjects in $\mathcal{D}_n^{(v)}$, not used when training the learner, calculate the predictions

$$\hat{\pi}_{i}^{(v)}(u \mid t, M_{l}) = \Pr\{T_{i}^{*} < u \mid T_{i}^{*} > t, \mathcal{Y}_{i}(t), M_{l}, \mathcal{D}_{n}^{(-v)}\}$$

do this for all $v = 1, \ldots, V$ to get the *cross-validated predictions*

▷ We define the ensemble of *cross-validated predictions*

$$\hat{\tilde{\pi}}_{i}^{v}(u \mid t) = \sum_{l=1}^{L} \varpi_{l}(t) \hat{\pi}_{i}^{(v)}(u \mid t, M_{l}), \quad v = 1, \dots, V$$

* the weights depend on $t \Rightarrow$ different weights at different follow-up times

- \triangleright Select $\varpi_l(t)$ to optimize your *meta-learner* (predictive accuracy metric), e.g.,
 - * Brier Score (*Proper scoring rule*)
 - * Expected Predictive Cross-Entropy (*Proper scoring rule*)
 - * AUC (*Not a proper scoring rule*)

*

- \triangleright Under the constraints
 - * $\widehat{\varpi}_{l}(t) > 0$ for all $l = 1, \dots, L$ * $\sum_{l=1}^{L} \widehat{\varpi}_{l}(t) = 1$

A library $\mathcal L$ with twelve joint models

- PSA models
 - \triangleright M_{l1} : *linear* subject-specific time trends that change after salvage
 - $\triangleright M_{l2}$: the same as M_{l1} + covariates

 $\triangleright M_{l3}$: nonlinear subject-specific time trends that change after salvage $\triangleright M_{l4}$: the same as M_{l3} + covariates

• Baseline covariates: age at surgery, Charlson's index, Gleason score, and baseline PSA

A library $\mathcal L$ with twelve joint models

- Metastasis models
 - $\triangleright M_{s1}$: value of $\log(\mathsf{PSA}+1)$
 - $\triangleright M_{s2}$: velocity of $\log(\mathsf{PSA}+1)$
 - $\triangleright M_{s3}$: average $\log(\mathsf{PSA}+1)$
- Time varying salvage therapy
- Baseline covariates: the same as in the PSA models

- \bullet We evaluated predictive accuracy in two time intervals
 - \triangleright (4,7]: 2514 patients at risk; 28 metastasis
 - \triangleright (6,9]: 1914 patients at risk; 16 metastasis
- Metrics meta learners
 - ▷ Integrated Brier Score
 - Expected Predictive Cross-Entropy

Meta-learners

▷ Integrated Brier Score

$$\mathsf{IBS}(u,t) = \frac{1}{u-t} \int_t^u E\Big\{\mathbb{I}(t < T_i^* \le s) - \pi_i(s \mid t)\Big\}^2 \, \mathrm{d}s$$

Expected Predictive Cross-Entropy

$$\mathsf{EPCE}(u,t) = E\left\{-\log\left[p\left\{T_i^* \mid t < T_i^* \le u, \mathcal{Y}_i(t)\right\}\right]\right\}$$

Observations (also from the simulation study)

- be ensemble Super Learning (eSL) often, *but not always*, outperforms the individual models
- \triangleright In some datasets and intervals (t,u], the discrete Super Learner (dSL) beats the eSL

Recommendation

Regard eSL as an extra member of the library \mathcal{L} and use CV to select the optimal strategy

• Available in JMbayes2

- \triangleright cross-validated fitting of models
- \triangleright combination of dynamic predictions

https://drizopoulos.github.io/JMbayes2/articles/Super_Learning.html

Thank for your attention!

https://www.drizopoulos.com/

We focus on two meta-learners

▷ Integrated Brier Score

$$\mathsf{IBS}(t + \Delta t, t) = \frac{1}{\Delta t} \int_{t}^{t + \Delta t} E\left[\left\{\mathbb{I}(T_{i}^{*} \leq s) - \pi_{i}(s \mid t)\right\}^{2} \mid T_{i}^{*} > t\right] \mathsf{d}s$$

Expected Predictive Cross-Entropy

$$\mathsf{EPCE}(t + \Delta t, t) = E\left\{-\log\left[p\left\{T_i^* \mid t < T_i^* \le t + \Delta t, \mathcal{Y}_i(t)\right\}\right]\right\}$$

• For the estimation of the Brier score, we need to account for censoring in $[t, t + \Delta t)$

- * inverse probability of censoring weighting
- * model-based weights

• Brier Score with IPCW

$$\widehat{\mathsf{BS}}_{IPCW}(t + \Delta t, t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{W}_{i}(t + \Delta t, t) \Big\{ \mathbb{I}(T_{i} \le t + \Delta t) - \hat{\tilde{\pi}}_{i}^{v}(t + \Delta t \mid t) \Big\}^{2}$$

where

$$\widehat{W}_i(t + \Delta t, t) = \frac{\mathbb{I}(t < T_i \leq t + \Delta t)\delta_i}{\widehat{G}(T_i \mid t)} + \frac{\mathbb{I}(T_i > t + \Delta t)}{\widehat{G}(t + \Delta t \mid t)},$$

with $\hat{G}(\cdot)$ denoting Kaplan-Meier estimate of the censoring distribution $\Pr(C_i > t)$

• Brier Score with model-weights

$$\begin{aligned} \widehat{\mathsf{BS}}_{model}(t + \Delta t, t) &= \frac{1}{n_t} \sum_{i:T_i > t} \delta_i \mathbb{I}(T_i \le t + \Delta t) \Big\{ 1 - \hat{\pi}_i^v(t + \Delta t \mid t) \Big\}^2 \\ &+ \mathbb{I}(T_i > t + \Delta t) \Big\{ \hat{\pi}_i^v(t + \Delta t \mid t) \Big\}^2 \\ &+ (1 - \delta_i) \mathbb{I}(T_i \le t + \Delta t) \Big[\hat{\pi}_i^v(t + \Delta t \mid T_i) \Big\{ 1 - \hat{\pi}_i^v(t + \Delta t \mid t) \Big\}^2 \\ &+ \Big\{ 1 - \hat{\pi}_i^v(t + \Delta t \mid T_i) \Big\} \Big\{ \hat{\pi}_i^v(t + \Delta t \mid t) \Big\}^2 \Big] \end{aligned}$$

• IPCW

> *Advantage:* it provides unbiased estimates even when the model is misspecified

▷ *Disadvantage:* it requires that the model for the weights is correct

- * challenging because censoring may depend on the longitudinal outcomes in a complex manner
- * sensitive to (unobserved) instrument by confounder interactions

- Model-based Weights
 - Advantage: it allows censoring to depend on the longitudinal history (in any possible manner)
 - > *Disadvantage:* it requires that the model is well-specified

• An estimate of $\mathsf{EPCE}(t+\Delta t,t)$ that accounts for censoring

$$\mathsf{EPCE}(t + \Delta t, t) = \frac{1}{n_t} \sum_{i:T_i > t} -\log \left[p \{ \tilde{T}_i, \tilde{\delta}_i \mid T_i > t, \mathcal{Y}_i(t), \mathcal{D}_n \} \right]$$

with

$$\triangleright \tilde{T}_i = \min(T_i, t + \Delta t)$$
$$\triangleright \tilde{\delta}_i = \delta_i \mathbb{I}(t < T_i \le t + \Delta t)$$

• Features

▷ it allows censoring to depend on the longitudinal history

▷ *problem:* it is not written as a function of the predictions

• The conditional predictive log-likelihood

$$\log \left[p \left\{ \tilde{T}_i, \tilde{\delta}_i \mid T_i > t, \mathcal{Y}_i(t), \mathcal{D}_n \right\} \right] = \\ \tilde{\delta}_i \log \left[h_i \left\{ \tilde{T}_i \mid \mathcal{Y}_i(t), \mathcal{D}_n \right\} \right] + \log \frac{\Pr \left\{ T_i^* > \tilde{T}_i \mid \mathcal{Y}_i(t), \mathcal{D}_n \right\}}{\Pr \left\{ T_i^* > t \mid \mathcal{Y}_i(t), \mathcal{D}_n \right\}}$$

- \triangleright the second term is $\log\{\pi_i(\tilde{T}_i \mid t)\}$
- \triangleright for the first term, we write the hazard function as

$$h_i\{\tilde{T}_i \mid \mathcal{Y}_i(t), \mathcal{D}_n\} = \frac{p(\tilde{T}_i)}{S(\tilde{T}_i)} = -\frac{\frac{\mathsf{d}}{\mathsf{d}t} \operatorname{Pr}\{T_i^* > t \mid \mathcal{Y}_i(t), \mathcal{D}_n\}\Big|_{t=\tilde{T}_i}}{\operatorname{Pr}\{T_i^* > \tilde{T}_i \mid \mathcal{Y}_i(t), \mathcal{D}_n\}}$$

• We approximate the derivative with a forward difference and we get

$$\begin{split} & \mathsf{E}\widehat{\mathsf{PCE}}(t + \Delta t, t) = \\ & -\frac{1}{n_t} \sum_{i:T_i > t} \tilde{\delta}_i \big[\log\{1 - \hat{\tilde{\pi}}_i^v(\tilde{T}_i + \epsilon \mid \tilde{T}_i)\} - \log(\epsilon) \big] + \log\{\hat{\tilde{\pi}}_i^v(\tilde{T}_i \mid t)\} \end{split}$$

that can be used to optimize $\varpi_l(t)$

	$(t, t + \Delta t] = (4, 7]$		$(t, t + \Delta t] = (6, 9]$	
	IBS	weights	IBS	weights
SL	0.07584		0.07195	
linear-noCov-value	0.07583	0.00000	0.07199	0.08333
linear-noCov-slope	0.07608	0.00000	0.07155	0.08340
linear-noCov-mean	0.07683	0.00000	0.07236	0.08332
linear-Cov-value	0.07584	1.00000	0.07201	0.08335
linear-Cov-slope	0.07608	0.00000	0.07160	0.08339
linear-Cov-mean	0.07686	0.00000	0.07231	0.08332
nonlinear-noCov-value	0.07693	0.00000	0.07200	0.08334
nonlinear-noCov-slope	0.07672	0.00000	0.07233	0.08331
nonlinear-noCov-mean	0.07760	0.00000	0.07266	0.08329
nonlinear-Cov-value	0.07708	0.00000	0.07218	0.08332
nonlinear-Cov-slope	0.07687	0.00000	0.07219	0.08333
nonlinear-Cov-mean	0.07788	0.00000	0.07277	0.08328

	$(t, t + \Delta t] = (4, 7]$		$(t, t + \Delta t] = (6, 9]$	
	EPCE	weights	EPCE	weights
SL	0.05231		0.04696	
linear-noCov-value	0.05865	0.08325	0.05003	0.00002
linear-noCov-slope	0.05412	0.08320	0.04861	0.00000
linear-noCov-mean	0.05777	0.08260	0.04764	0.39649
linear-Cov-value	0.05887	0.08215	0.04997	0.00000
linear-Cov-slope	0.05418	0.08333	0.04887	0.00000
linear-Cov-mean	0.05768	0.08270	0.04763	0.12793
nonlinear-noCov-value	0.05656	0.08337	0.04793	0.00136
nonlinear-noCov-slope	0.05199	0.08517	0.04785	0.44966
nonlinear-noCov-mean	0.05882	0.08296	0.04762	0.00961
nonlinear-Cov-value	0.05679	0.08315	0.04867	0.00000
nonlinear-Cov-slope	0.05188	0.08526	0.04820	0.01327
nonlinear-Cov-mean	0.05899	0.08288	0.04764	0.00166