Joint models for longitudinal and survival data What they are and when to use them

Dimitris Rizopoulos

Department of Biostatistics, Erasmus Medical Center, the Netherlands

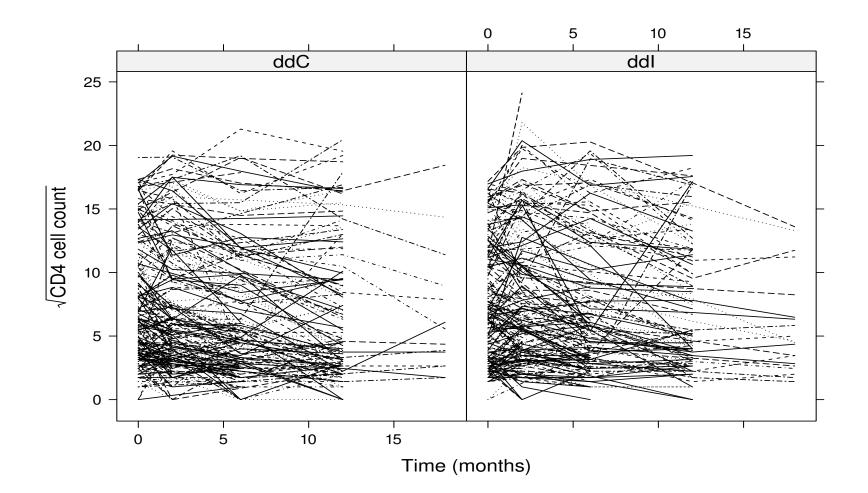
d.rizopoulos@erasmusmc.nl

Annual J&J Quantitative Sciences Statistics Conference

November 9th, 2016

- Often in follow-up studies different types of outcomes are collected
- Explicit outcomes
 - ▷ multiple longitudinal responses (e.g., markers, blood values)
 - b time-to-event(s) of particular interest (e.g., death, relapse)
- Implicit outcomes
 - missing data (e.g., dropout, intermittent missingness)
 random visit times

- 467 HIV infected patients who had failed or were intolerant to zidovudine therapy (AZT) (Abrams et al., NEJM, 1994)
- The aim of this study was to compare the efficacy and safety of two alternative antiretroviral drugs, didanosine (ddl) and zalcitabine (ddC)
- Outcomes of interest:
 - \triangleright time to death
 - ▷ randomized treatment: 230 patients ddl and 237 ddC
 - > CD4 cell count measurements at baseline, 2, 6, 12 and 18 months
 - ▷ prevOI: previous opportunistic infections



- Depending on the questions of interest, different types of statistical analysis are required
- We will distinguish between two general types of analysis
 - ▷ separate analysis per outcome
 - \triangleright joint analysis of outcomes
- Focus on each outcome separately

> does treatment affect survival?

 \triangleright are the average longitudinal evolutions different between males and females?

▷...

- Focus on multiple outcomes
 - Complex effect estimation: how strong is the association between the longitudinal outcome and the hazard rate of death?
 - > Handling implicit outcomes: focus on the longitudinal outcome but with **dropout**

In the AIDS dataset:

• Research Question:

> Investigate the longitudinal evolutions of CD4 cell count correcting for dropout

▷ Can we utilize CD4 cell counts to predict survival

- Methods for the separate analysis of such outcomes are well established in the literature
- Survival data:
 - ▷ Cox model, accelerated failure time models,
- Longitudinal data
 - ▷ mixed effects models, GEE, marginal models,

- Goals of this talk:
 - \triangleright introduce joint models
 - \triangleright link with missing data
 - ▷ sensitivity analysis

- A major challenge for the analysis of longitudinal data is the problem of missing data
 - studies are designed to collect data on every subject at a set of pre-specified follow-up times
 - ▷ often subjects miss some of their planned measurements for a variety of reasons
- We can have different patterns of missing data

Subject	Visits				
	1	2	3	4	5
1	x	X	X	X	X
2	x	X	X	?	?
3	?	x	x	x	x
4	?	X	?	X	?

▷ Subject 1: Completer

▷ Subject 2: dropout

▷ Subject 3: late entry

▷ Subject 4: intermittent

• Implications of missingness:

 \triangleright we collect less data than originally planned \Rightarrow *loss of efficiency*

 \triangleright not all subjects have the same number of measurements \Rightarrow *unbalanced datasets*

 \triangleright missingness may depend on outcome \Rightarrow *potential bias*

• For the handling of missing data, we introduce the missing data indicator

$$r_{ij} = \begin{cases} 1 & \text{if } y_{ij} \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$$

• We obtain a partition of the complete response vector y_i

 \triangleright observed data y_i^o , containing those y_{ij} for which $r_{ij} = 1$

 \triangleright missing data y_i^m , containing those y_{ij} for which $r_{ij} = 0$

• For the remaining we will focus on dropout \Rightarrow notation can be simplified

$$\triangleright$$
 Discrete dropout time: $r_i^d = 1 + \sum_{j=1}^{n_i} r_{ij}$ (ordinal variable)

 \triangleright **Continuous time**: T_i^* denotes the time to dropout

- To describe the probabilistic relation between the measurement and missingness processes Rubin (1976, Biometrika) has introduced three mechanisms
- Missing Completely At Random (MCAR): The probability that responses are missing is unrelated to both y_i^o and y_i^m

$$p(r_i \mid y_i^o, y_i^m) = p(r_i)$$

• Examples

- subjects go out of the study after providing a pre-determined number of measurements
- > laboratory measurements are lost due to equipment malfunction

- Features of MCAR:
 - \triangleright The observed data y_i^o can be considered a random sample of the complete data y_i
 - \triangleright We can use any statistical procedure that is valid for complete data
 - * sample averages per time point
 - * linear regression, ignoring the correlation (consistent, but not efficient)
 - * *t*-test at the last time point
 - * ...

• Missing At Random (MAR): The probability that responses are missing is related to y_i^o , but is unrelated to y_i^m

$$p(r_i \mid y_i^o, y_i^m) = p(r_i \mid y_i^o)$$

• Examples

b study protocol requires patients whose response value exceeds a threshold to be removed from the study

> physicians give rescue medication to patients who do not respond to treatment

- Features of MAR:
 - The observed data cannot be considered a random sample from the target population
 - \triangleright Not all statistical procedures provide valid results

Not valid under MAR	Valid under MAR
sample marginal evolutions	sample subject-specific evolutions
methods based on moments, such as GEE	likelihood based inference
mixed models with misspecified correlation structure	mixed models with correctly specified correlation structure
marginal residuals	subject-specific residuals

• Missing Not At Random (MNAR): The probability that responses are missing is related to y_i^m , and possibly also to y_i^o

$$p(r_i \mid \underline{y_i^m}) \quad \text{or} \quad p(r_i \mid \underline{y_i^o}, \underline{y_i^m})$$

• Examples

in studies on drug addicts, people who return to drugs are less likely than others to report their status

in longitudinal studies for quality-of-life, patients may fail to complete the questionnaire at occasions when their quality-of-life is compromised

- Features of MNAR
 - The observed data cannot be considered a random sample from the target population
 - \triangleright Only procedures that explicitly model the joint distribution $\{y_i^o, y_i^m, r_i\}$ provide valid inferences \Rightarrow analyses which are valid under MAR will not be valid under MNAR

We cannot tell from the data at hand whether the missing data mechanism is MAR or MNAR

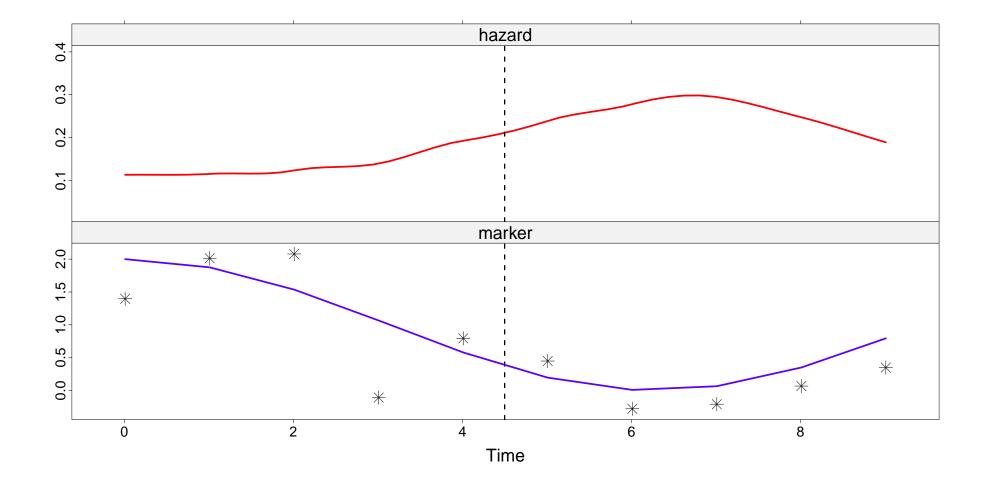
Note: We can distinguish between MCAR and MAR

- To account for possible MNAR dropout, we need to postulate a model that relates
 b the CD4 cell count, with
 - \triangleright the time to dropout

Joint Models for Longitudinal and Time-to-Event Data

- Intuitive idea behind these models
 - 1. use an appropriate model to describe the evolution of the marker in time for each patient
 - 2. the estimated evolutions are then used in a Cox model

- Some notation
 - $\triangleright y_i$: Longitudinal responses
 - $\triangleright T_i$: Dropout time for patient *i*
 - $\triangleright \delta_i$: Dropout indicator, i.e., equals 1 for MNAR events
- We will formulate the joint model in 3 steps in particular, ...



• We define a standard joint model

▷ Survival Part: Relative risk model

$$h_i(t) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\},\$$

where

- * $m_i(t)$ = underlying CD4 cell count at time t
- * α quantifies how strongly associated CD4 cell count with the risk of dropping out
- * w_i baseline covariates

▷ Longitudinal Part: Reconstruct $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$ using $y_i(t)$ and a mixed effects model (we focus on continuous markers)

 $y_i(t) = m_i(t) + \varepsilon_i(t)$

$$= x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \qquad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$$

where

*
$$x_i(t)$$
 and β : Fixed-effects part

* $z_i(t)$ and b_i : Random-effects part, $b_i \sim \mathcal{N}(0, D)$

- The two processes are associated \Rightarrow define a model for their joint distribution
- Joint Models for such joint distributions are of the following form (Tsiatis & Davidian, Stat. Sinica, 2004)

$$p(y_i, T_i, \delta_i) = \int p(y_i \mid b_i) \{ h(T_i \mid b_i)^{\delta_i} S(T_i \mid b_i) \} p(b_i) db_i,$$

where

 $\triangleright b_i$ a vector of random effects that explains the interdependencies $\triangleright p(\cdot)$ density function; $S(\cdot)$ survival function

- To show this connection more clearly
 - $\triangleright T_i^*$: true time-to-event
 - $\triangleright y_i^o$: longitudinal measurements before T_i^*
 - $\triangleright y_i^m$: longitudinal measurements after T_i^*
- Important to realize that the model we postulate for the longitudinal responses is for the complete vector $\{y_i^o, y_i^m\}$
 - > implicit assumptions about missingness

• Missing data mechanism:

$$p(T_i^* \mid y_i^o, y_i^m) = \int p(T_i^* \mid b_i) \ p(b_i \mid y_i^o, y_i^m) \ db_i$$

still depends on y_i^m , which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show different longitudinal evolutions than patients who do not

- What about censoring?
 - censoring also corresponds to a discontinuation of the data collection process for the longitudinal outcome
- Likelihood-based inferences for joint models provide valid inferences when censoring is MAR
 - ▷ a patient relocates to another country (MCAR)
 - > a patient is excluded from the study when her longitudinal response exceeds a pre-specified threshold (MAR)
 - ▷ censoring depends on random effects (MNAR)

• Joint models belong to the class of *Shared Parameter Models*

$$p(y_{i}^{o}, y_{i}^{m}, T_{i}^{*}) = \int p(y_{i}^{o}, y_{i}^{m} \mid b_{i}) \ p(T_{i}^{*} \mid b_{i}) \ p(b_{i}) db_{i}$$

the association between the longitudinal and missingness processes is explained by the *shared* random effects b_i

- The other two well-known frameworks for MNAR data are
 - \triangleright Selection models

$$p(y_i^o, y_i^m, T_i^*) = p(y_i^o, y_i^m) \ p(T_i^* \mid y_i^o, y_i^m)$$

▷ Pattern mixture models:

$$p(y_i^o, y_i^m, T_i^*) = p(y_i^o, y_i^m \mid T_i^*) \; p(T_i^*)$$

• These two model families are primarily applied with discrete dropout times and cannot be easily extended to continuous time

- Example: In the AIDS dataset
 - \triangleright 58 (5%) completers
 - \triangleright 184 (39%) died before completing the study
 - \triangleright 225 (48%) dropped out before completing the study

• A comparison between

- \triangleright linear mixed-effects model \Rightarrow all dropout MAR
- \triangleright joint model \Rightarrow death is set MNAR, and dropout MAR
- is warranted

• We fitted the following joint model

$$\begin{cases} y_i(t) = m_i(t) + \varepsilon_i(t) \\ = \beta_0 + \beta_1 t + \beta_2 \{t \times dd\mathbf{I}_i\} + b_{i0} + b_{i1}t + \varepsilon_i(t), \qquad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \\ h_i(t) = h_0(t) \exp\{\gamma dd\mathbf{I}_i + \alpha m_i(t)\}, \end{cases}$$

where

 $> h_0(t)$ is assumed piecewise-constant

• The MAR analysis entails only the linear mixed model

	LMM (MAR)	JM (MNAR)
	value (s.e.)	value (s.e)
Intercept	7.19 (0.22)	7.20 (0.22)
Time	-0.16 (0.02)	-0.23 (0.04)
Treat:Time	0.03 (0.03)	0.01 (0.06)

- ▷ We observe some sensitivity for the time effect
- > The interaction with treatment remains non significant under both analyses

• Turn focus on the link between CD4 cell count and risk of death

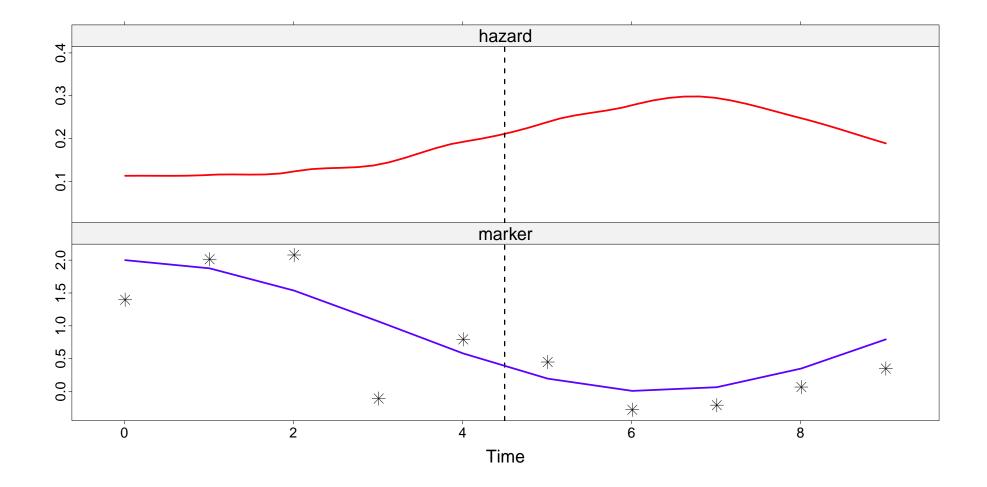
	JM	Cox	
	\log HR (std.err)	\log HR (std.err)	
Treat	0.33(0.16)	0.31 (0.15)	
$CD4^{1/2}$	-0.29(0.04)	-0.19(0.02)	

- A unit decrease in CD4 $^{1/2}$, results in a
 - ▷ Joint Model: 1.3-fold increase in risk (95% CI: 1.24; 1.43)
 - ▷ **Time-Dependent Cox**: 1.2-fold increase in risk (95% CI: 1.16; 1.27)
- Which one to believe?
 - b a lot of theoretical and simulation work has shown that the Cox model underestimates the true association size of markers

• The standard assumption is

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where
$$\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$$



• The standard assumption is

$$\begin{cases} h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < t\}$

Is this the only option? Is this the most optimal for prediction?

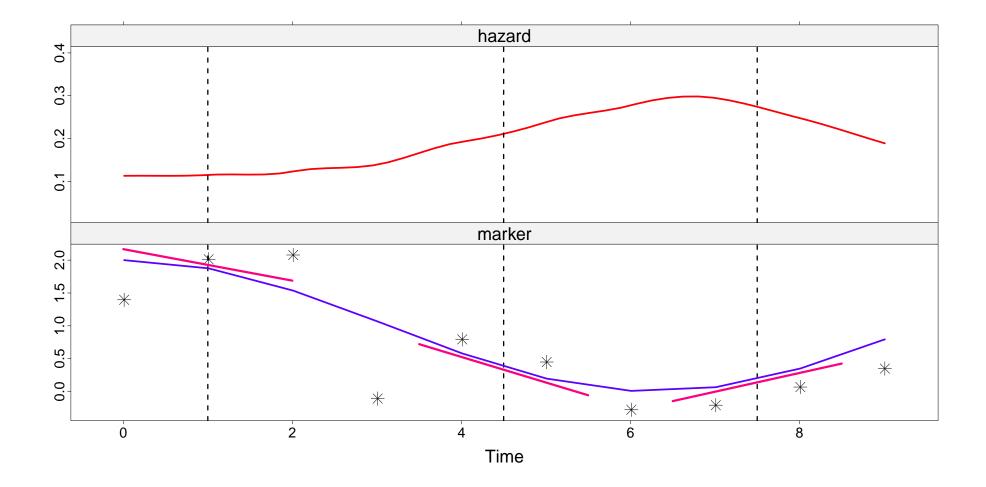
- <u>Note</u>: Inappropriate modeling of time-dependent covariates may result in surprising results
- Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to test the effect of cigarette smoking on survival of patients who underwent coronary artery surgery
 - b the estimated effect of current cigarette smoking was positive on survival although not significant (i.e., patient who smoked had higher probability of survival)
 - b most of those who had died were smokers but many stopped smoking at the last follow-up before their death

• The hazard for an event at t is associated with both the current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\{\gamma^{\top} w_i + \alpha_1 m_i(t) + \alpha_2 m'_i(t)\},\$$

where

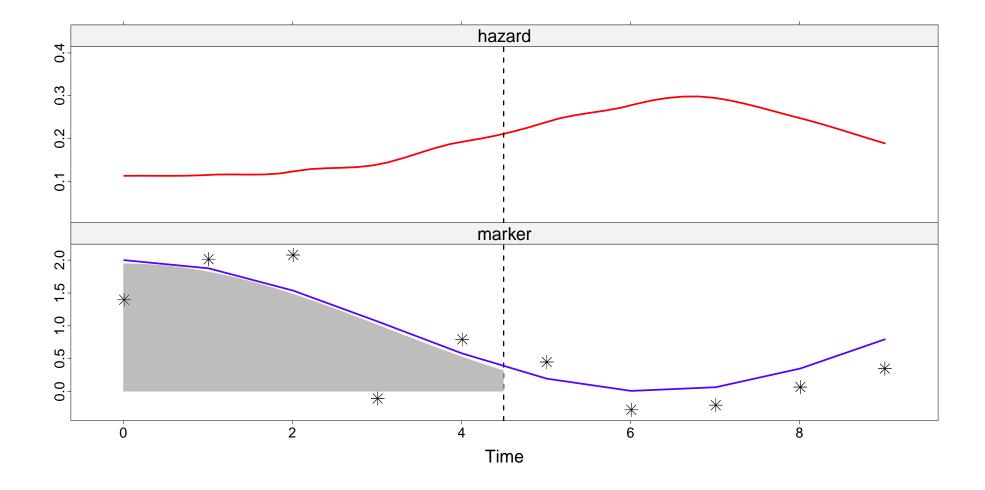
$$m_i'(t) = \frac{d}{dt} \{ x_i^{\mathsf{T}}(t)\beta + z_i^{\mathsf{T}}(t)b_i \}$$



• The hazard for an event at t is associated with area under the trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{\gamma^\top w_i + \alpha \int_0^t m_i(s) \, ds\right\}$$

• Area under the longitudinal trajectory taken as a summary of $\mathcal{M}_i(t)$



• The hazard for an event at t is associated with the area under the weighted trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{\gamma^\top w_i + \alpha \int_0^t \varpi(t-s) m_i(s) \, ds\right\},$$

where $\varpi(\cdot)$ appropriately chosen weight function, e.g.,

- ▷ Gaussian density
- \triangleright Student's-t density
- ▷...

- Example: Sensitivity of inferences for the longitudinal process to the choice of the parameterization for the AIDS data
- We use the same mixed model as before, i.e.,

$$y_i(t) = m_i(t) + \varepsilon_i(t)$$

$$= \beta_0 + \beta_1 t + \beta_2 \{ t \times \mathrm{ddI}_i \} + b_{i0} + b_{i1} t + \varepsilon_i(t)$$

and the following four survival submodels

• Model I (current value)

$$h_i(t) = h_0(t) \exp\{\gamma \mathrm{dd}\mathbf{I}_i + \alpha_1 m_i(t)\}$$

• Model II (current value + current slope)

$$h_i(t) = h_0(t) \exp\{\gamma \mathrm{dd}\mathbf{I}_i + \alpha_1 m_i(t) + \alpha_2 m'_i(t)\},\$$

where

$$\triangleright m_i'(t) = \beta_1 + \beta_2 \mathrm{ddI}_i + b_{i1}$$

• Model III (random slope)

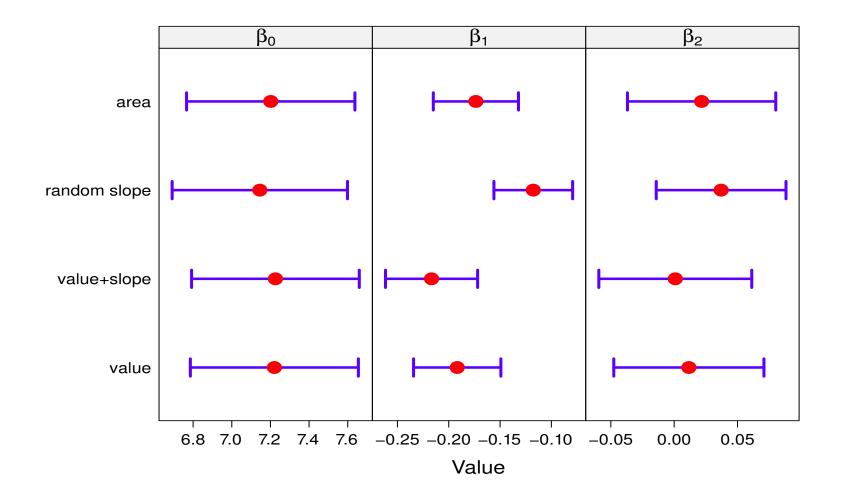
$$h_i(t) = h_0(t) \exp\{\gamma \mathrm{dd}\mathbf{I}_i + \alpha_3 b_{i1}\}$$

• Model IV (area)

$$h_i(t) = h_0(t) \exp\Big\{\gamma \mathrm{dd}\mathbf{I}_i + \alpha_4 \int_0^t m_i(s) \ ds\Big\},\$$

where

$$\triangleright \int_0^t m_i(s) \ ds = \beta_0 t + \frac{\beta_1}{2} t^2 + \frac{\beta_2}{2} \{ t^2 \times \mathrm{dd} \mathbf{I}_i \} + b_{i0} t + \frac{b_{i1}}{2} t^2$$



R> Joint models are fitted using function jointModel() from package JM. This function accepts as main arguments a linear mixed model and a Cox PH model based on which it fits the corresponding joint model

```
lmeFit <- lme(CD4 ~ obstime + obstime:drug,
    random = ~ obstime | patient, data = aids)
```

```
coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)</pre>
```

```
jointFit <- jointModel(lmeFit, coxFit, timeVar = "obstime",
    method = "piecewise-PH-aGH")
```

```
summary(jointFit)
```


R> The data frame given in lme() should be in the long format, while the data frame given to coxph() should have one line per subject*

▷ the ordering of the subjects needs to be the same

- R> In the call to coxph() you need to set x = TRUE (or model = TRUE) such that the design matrix used in the Cox model is returned in the object fit
- **R>** Argument timeVar specifies the time variable in the linear mixed model

^{*} Unless you want to include exogenous time-varying covariates or handle competing risks

R> Argument method specifies the type of relative risk model and the type of numerical integration algorithm – the syntax is as follows:

<baseline hazard>-<parameterization>-<numerical integration>

Available options are:

- > "piecewise-PH-GH": PH model with piecewise-constant baseline hazard
- ▷ "spline-PH-GH": PH model with B-spline-approximated log baseline hazard
- ▷ "weibull-PH-GH": PH model with Weibull baseline hazard
- ▷ "weibull-AFT-GH": AFT model with Weibull baseline hazard
- ▷ "Cox-PH-GH": PH model with unspecified baseline hazard

GH stands for standard Gauss-Hermite; using aGH invokes the pseudo-adaptive Gauss-Hermite rule

• Software: R package **JM** freely available via http://cran.r-project.org/package=JM

 \triangleright it can fit a variety of joint models + many other features

• More info available at:

Rizopoulos, D. (2012). *Joint Models for Longitudinal and Time-to-Event Data, with Applications in R*. Boca Raton: Chapman & Hall/CRC.

Web site: http://jmr.r-forge.r-project.org/

• Software: R package **JMbayes** freely available via http://cran.r-project.org/package=JMbayes

 \triangleright it can fit a variety of multivariate joint models + many other features

GUI interface for dynamic predictions using package shiny

• SAS macro %JM by Alberto Garcia-Hernandez & D. Rizopoulos http://www.jm-macro.com/ Thank you for your attention!