Joint Models for Personalized Scheduling of Invasive Procedures

Dimitris Rizopoulos Lifetime Data Science, Pittsburgh, USA May 30, 2019

Background & Motivation

Prostate Cancer (PC)

- PC is the 2nd most frequently diagnosed cancer in males worldwide
 - the most frequent in economically developed countries

- Many countries run population screening programs using PSA blood tests
 - to identify men who have developed the disease
 - or men who have high risk of developing it

- However, these programs have resulted to high rates of over-diagnosis and overtreatment
 - standard treatments have serious side-effects

Prostate Cancer Active Surveillance

 To avoid over-treatment, men with low grade prostate cancer are advised active surveillance

- Cancer progression is tracked via:
 - Prostate-specific antigen measurements
 - Digital rectal examination
 - Biopsies

- Treatment is advised when cancer progression is observed
 - typically via biopsies

Biopsies vs. Delay in Cancer Detection

- Biopsies
 - are the current gold standard
 - but burdensome (pain, complications)

· Cancer Progression

can only be detected with a certain delay

Annual Biopsies

- Focus on minimizing delay
 - maximum delay can be 1 year
- Many unnecessary biopsies for patients who progress slow

Less Frequent Biopsies - 1

- PRIAS
 - every 3 years or
 - annually if PSA doubling time < 10 (try to find faster progressions)

Less Frequent Biopsies - 2

- Still unnecessary biopsies
 - based on simulations, 4-10 unnecessary biopsies for patients with progression >10 years

• PRIAS reports low compliance (~20%) for annual biopsy due to PSA-DT

Less Frequent Biopsies - 3

Considerable room to improve biopsy scheduling

A New Approach - 1

- Scheduling based on individualized risk predictions
 - Progression rate is not only different between patients but also dynamically changes over time for the same patient

- Risk predictions based upon
 - All available PSA (ng/mL) measurements
 - All available DRE (T1c / above T1c) measurements
 - Time and results of previous biopsies

A New Approach - 2

A New Approach - 3

How to better plan biopsies?

- · In steps:
 - How the longitudinal PSA & DRE are related to Gleason reclassification?
 - How to combine previous PSA & DRE measurements and biopsies to predict reclassification?
 - When to plan the next biopsy?

Modeling Framework

Time-varying Covariates

- To answer these questions we need to link
 - the time to Gleason reclassification (survival outcome)
 - the PSA measurements (longitudinal continuous outcome)
 - the DRE measurements (longitudinal binary outcome)

- Biomarkers are *endogenous* time-varying covariates
 - their future path depends on previous events
 - standard time-varying Cox model not appropriate

Time-varying Covariates (cont'd)

To account for endogeneity we use the framework of

Joint Models for Longitudinal & Survival Data

The Basic Joint Model

The Basic Joint Model (cont'd)

- · We need some notation
 - T_i^* the true reclassification time
 - T_i^L last biopsy time point Gleason Score was < 7
 - T_i^R first biopsy time point Gleason Score was ≥ 7
 - $T_i^R=\infty$ for patients who haven't been reclassified yet
 - \mathbf{y}_{i1} vector of longitudinal PSA measurements
 - $\mathcal{Y}_{i1}(t) = \{y_{i1}(s), 0 \leq s < t\}$
 - \mathbf{y}_{i2} vector of longitudinal DRE measurements
 - $\mathcal{Y}_{i2}(t) = \{y_{i2}(s), 0 \leq s < t\}$

The Basic Joint Model (cont'd)

Formally, we have

$$egin{cases} h_i(t) &= h_0(t) \exp\{\gamma^ op \mathbf{w}_i + lpha_1 \eta_{i1}(t) + lpha_2 \eta_{i2}(t)\} \ y_{i1}(t) &= \eta_{i1}(t) + arepsilon_i(t) \ &= \mathbf{x}_{i1}^ op (t) eta_1 + \mathbf{z}_{i1}^ op (t) \mathbf{b}_{i1} + arepsilon_i(t) \ \log rac{\Pr\{y_{i2}(t)=1\}}{1-\Pr\{y_{i2}(t)=1\}} &= \eta_{i2}(t) \ &= \mathbf{x}_{i2}^ op (t) eta_2 + \mathbf{z}_{i2}^ op (t) \mathbf{b}_{i2} \ \{b_{i1}, b_{i2}\} \sim \mathcal{N}(\mathbf{0}, \mathbf{D}), \quad arepsilon_i(t) \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

The Basic Joint Model (cont'd)

The longitudinal and survival outcomes are jointly modeled

$$egin{aligned} p(y_{i1}, y_{i2}, T_i^L, T_i^R) &= \int p(y_{i1} \mid b_{i1}) \; p(y_{i2} \mid b_{i2}) imes \ & \left\{ S(T_i^L \mid b_i) - S(T_i^R \mid b_i)
ight\} p(b_i) \; db_i \end{aligned}$$

- the random effects b_i explain the interdependencies

Functional Form

- Biomarker's rate of change
 - fast increasing PSA indicative of progression

$$h_i(t) = h_0(t) \exp\{\gamma^ op \mathbf{w}_i + lpha_1 \eta_{i1}(t) + lpha_2 \eta_{i1}'(t)\}$$

where
$$\eta_{i1}'(t)=rac{d}{dt}\eta_{i1}(t)$$

Functional Form (cont'd)

A Model for PRIAS

- Submodel for biomarkers
 - \log_2 PSA trajectories: Age effect + nonlinear evolutions over time
 - DRE > T1c trajectories: Age effect + linear evolutions over time

- · Submodel for Risk of Gleason reclassification
 - Age effect
 - log odds of DRE > T1c
 - \log_2 PSA level
 - log_2 PSA velocity

- Area under the receiver operating characteristic curve (AUC)
- · Discrimination ability (progression vs. others) in a 1 year time window

· Prediction Error for predicting progression vs. others, in a 1 year time window

Personalizing Biopsy Scheduling

Personalized Decision Methodology - 1

- · A new patient, a new visit
 - At some follow-up time, with a certain history of PSA, DRE and biopsies
 - We combine this information using the joint model, to obtain risk of cancer progression at that visit

- How to select when to perform a biopsy?
 - **Solution 1:** A fixed treshold, 15% within a year
 - however, the same for all time points

Personalized Decision Methodology - 2

- How to select when to perform a biopsy?
 - Solution 2: Dynamic treshold based on PRIAS
 - we want both high sensitivity and high positive predictive value
 - basically we don't want too many FP or FN

$$F1 = 2rac{SN imes PPV}{SN + PPV}$$

- we select the treshold that maximizes the F1 score

Performance via Simulations

• Is it better to work with personalized schedules?

- Simulation study:
 - The same characteristics as in PRIAS
 - 500 datasets x (750 training + 250 test) patients

- For illustration purposes, we define:
 - Slow progression: patients who never progress (50%)
 - Remaining 50%:
 - Fast progression: 30% progression in 0 to 3.5 years
 - Intermediate progression: 20% progression in 3.5 to 10 years

- Fixed:
 - PRIAS (biopsy every 3 years, and if PSA goes up too fast then annual biopsy)
 - Annual (annual biopsies)

- Personalized (risk based):
 - 5% risk threshold
 - 15% risk threshold
 - time dependent threshold based on F1 score

- · Comparison criteria
 - Number of biopsies until cancer progression
 - Delay in detection of cancer progression

Simulation Results

Discussion

- Things to improve
 - account for miss-classification

 Biometrics paper available at: https://onlinelibrary.wiley.com/doi/10.1111/biom.12940 (https://onlinelibrary.wiley.com/doi/10.1111/biom.12940)

- · Software: available in **JMbayes** on CRAN & GitHub
 - https://cran.r-project.org/package=JMbayes (https://cran.r-project.org/package=JMbayes)
 - https://github.com/drizopoulos/JMbayes (https://github.com/drizopoulos/JMbayes)

Thank you for your attention!

http://www.drizopoulos.com/ (http://www.drizopoulos.com/)