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1.1 Introduction

• Over the last 10-15 years increasing interest in joint modeling of longitudinal and
time-to-event data (Tsiatis & Davidian, Stat. Sinica, 2004; Yu et al., Stat. Sinica, 2004)

• The majority of the biostatistics literature in this area has focused on:

◃ several extensions of the standard joint model, new estimation approaches, . . .

• Recently joint models have been utilized to provide individualized predictions

◃ Rizopoulos (Biometrics, 2011); Proust-Lima and Taylor (Biostatistics, 2009);
Yu et al. (JASA, 2008)
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1.1 Introduction (cont’d)

• Goals of this talk:

◃ Introduce joint models

◃ Dynamic individualized predictions of survival probabilities;

◃ Study the importance of the association structure;

◃ Combine predictions from different joint models
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1.2 Illustrative Case Study

• Aortic Valve study: Patients who received a human tissue valve in the aortic position

◃ data collected by Erasmus MC (from 1987 to 2008);
77 received sub-coronary implantation; 209 received root replacement

• Outcomes of interest:

◃ death and re-operation → composite event

◃ aortic gradient

• Research Question:

◃ Can we utilize available aortic gradient measurements to predict
survival/re-operation
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2.1 Joint Modeling Framework

• To answer our questions of interest we need to postulate a model that relates

◃ the aortic gradient with

◃ the time to death or re-operation

• Problem: Aortic gradient measurement process is an endogenous time-dependent
covariate (Kalbfleisch and Prentice, 2002, Section 6.3)

◃ Endogenous (aka internal): the future path of the covariate up to any time t > s
IS affected by the occurrence of an event at time point s, i.e.,

Pr
{
Yi(t) | Yi(s), T

∗
i ≥ s

}
̸= Pr

{
Yi(t) | Yi(s), T

∗
i = s

}
,

where 0 < s ≤ t and Yi(t) = {yi(s), 0 ≤ s < t}
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2.1 Joint Modeling Framework (cont’d)

• What is special about endogenous time-dependent covariates

◃ measured with error

◃ the complete history is not available

◃ existence directly related to failure status

• What if we use the Cox model?

◃ the association size can be severely underestimated

◃ true potential of the marker will be masked
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2.1 Joint Modeling Framework (cont’d)
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2.1 Joint Modeling Framework (cont’d)

• To account for the special features of these covariates a new class of models has been
developed

Joint Models for Longitudinal and Time-to-Event Data

• Intuitive idea behind these models

1. use an appropriate model to describe the evolution of the marker in time for each
patient

2. the estimated evolutions are then used in a Cox model

• Feature: Marker level is not assumed constant between visits
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2.1 Joint Modeling Framework (cont’d)
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2.1 Joint Modeling Framework (cont’d)

• Some notation

◃ T ∗
i : True time-to-death for patient i

◃ Ti: Observed time-to-death for patient i

◃ δi: Event indicator, i.e., equals 1 for true events

◃ yi: Longitudinal aortic gradient measurements
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2.1 Joint Modeling Framework (cont’d)

• We define a standard joint model

◃ Survival Part: Relative risk model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

where

* mi(t) = the true & unobserved value of aortic gradient at time t

* Mi(t) = {mi(s), 0 ≤ s < t}
* α quantifies the effect of aortic gradient on the risk for death/re-operation

* wi baseline covariates

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick 10/50



2.1 Joint Modeling Framework (cont’d)

◃ Longitudinal Part: Reconstruct Mi(t) = {mi(s), 0 ≤ s < t} using yi(t) and a
mixed effects model (we focus on continuous markers)

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t), εi(t) ∼ N (0, σ2),

where

* xi(t) and β: Fixed-effects part

* zi(t) and bi: Random-effects part, bi ∼ N (0, D)
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2.1 Joint Modeling Framework (cont’d)

• The two processes are associated ⇒ define a model for their joint distribution

• Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

p(yi, Ti, δi) =

∫
p(yi | bi)

{
h(Ti | bi)δi S(Ti | bi)

}
p(bi) dbi

where

◃ bi a vector of random effects that explains the interdependencies

◃ p(·) density function; S(·) survival function
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3.1 Prediction Survival – Definitions

• We are interested in predicting survival probabilities for a new patient j that has
provided a set of aortic gradient measurements up to a specific time point t

• Example: We consider Patients 20 and 81 from the Aortic Valve dataset

◃ Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded
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3.1 Prediction Survival – Definitions (cont’d)
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3.1 Prediction Survival – Definitions (cont’d)

• More formally, we have available measurements up to time point t

Yj(t) = {yj(s), 0 ≤ s < t}

and we are interested in

πj(u | t) = Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
,

where

◃ where u > t, and

◃ Dn denotes the sample on which the joint model was fitted

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick 15/50



3.2 Prediction Survival – Estimation

• Joint model is estimated using MCMC or maximum likelihood

• Based on the fitted model we can estimate the conditional survival probabilities

◃ Empirical Bayes

◃ fully Bayes/Monte Carlo (it allows for easy calculation of s.e.)

• For more details check:

◃ Proust-Lima and Taylor (2009, Biostatistics), Rizopoulos (2011, Biometrics),
Taylor et al. (2013, Biometrics)
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3.2 Prediction Survival – Estimation (cont’d)

• It is convenient to proceed using a Bayesian formulation of the problem ⇒
πj(u | t) can be written as

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
=

∫
Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
p(θ | Dn) dθ

• The first part of the integrand using CI

Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t); θ
}
=

=

∫
Sj

{
u | Mj(u, bj, θ); θ

}
Si

{
t | Mi(t, bi, θ); θ

} p(bi | T ∗
i > t,Yi(t); θ) dbi

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick 17/50



3.2 Prediction Survival – Estimation (cont’d)

• A Monte Carlo estimate of πi(u | t) can be obtained using the following simulation
scheme:

Step 1. draw θ(ℓ) ∼ [θ | Dn] or θ
(ℓ) ∼ N (θ̂, Ĥ)

Step 2. draw b
(ℓ)
i ∼ {bi | T ∗

i > t,Yi(t), θ
(ℓ)}

Step 3. compute π
(ℓ)
i (u | t) = Si

{
u | Mi(u, b

(ℓ)
i , θ(ℓ)); θ(ℓ)

}/
Si

{
t | Mi(t, b

(ℓ)
i , θ(ℓ)); θ(ℓ)

}
• Repeat Steps 1–3, ℓ = 1, . . . , L times, where L denotes the number of Monte Carlo
samples

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick 18/50



3.3 Prediction Survival – Illustration

• Example: We fit a joint model to the Aortic Valve data

• Longitudinal submodel

◃ fixed effects: natural cubic splines of time (d.f.= 3), operation type, and their
interaction

◃ random effects: Intercept, & natural cubic splines of time (d.f.= 3)

• Survival submodel

◃ type of operation, age, sex + underlying aortic gradient level

◃ log baseline hazard approximated using B-splines
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3.3 Prediction Survival – Illustration (cont’d)

• Based on the fitted joint model we estimate πj(u | t) for Patients 20 and 81

• We used the fully Bayesian approach with 500 Monte Carlo samples, and we took as
estimate

π̂j(u | t) = 1

L

L∑
ℓ=1

π
(ℓ)
j (u | t)

and calculated the corresponding 95% pointwise CIs
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.3 Prediction Survival – Illustration (cont’d)
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3.4 Prediction Longitudinal

• In some occasions it may be also of interest to predict the longitudinal outcome

• We can proceed in the same manner as for the survival probabilities: We have
available measurements up to time point t

Yj(t) = {yj(s), 0 ≤ s < t}

and we are interested in

ωj(u | t) = E
{
yj(u) | T ∗

j > t,Yj(t),Dn

}
, u > t
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3.4 Prediction Longitudinal (cont’d)

• To estimate ωj(u | t) we can follow a similar approach as for πj(u | t) – Namely,
ωj(u | t) is written as:

E
{
yj(u) | T ∗

j > t,Yj(t),Dn

}
=

∫
E
{
yj(u) | T ∗

j > t,Yj(t),Dn; θ
}
p(θ | Dn) dθ

• With the first part of the integrand given by:

E
{
yj(u) | T ∗

j > t,Yj(t),Dn; θ
}
=

=

∫
{x⊤j (u)β + z⊤j (u)bj} p(bj | T ∗

j > t,Yj(t); θ) dbj
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4.1 Association Structures

• The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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4.1 Association structures (cont’d)
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4.1 Association Structures (cont’d)

• The standard joint model

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}

Is this the only option? Is this the most optimal for
prediction?
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4.1 Association Structures (cont’d)

• Note: Inappropriate modeling of time-dependent covariates may result in surprising
results

• Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to
test the effect of cigarette smoking on survival of patients who underwent coronary
artery surgery

◃ the estimated effect of current cigarette smoking was positive on survival although
not significant (i.e., patient who smoked had higher probability of survival)

◃ most of those who had died were smokers but many stopped smoking at the last
follow-up before their death
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4.3 Time-dependent Slopes

• The hazard for an event at t is associated with both the current value and the slope
of the trajectory at t (Ye et al., 2008, Biometrics):

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α1mi(t) + α2m
′
i(t)},

where

m′
i(t) =

d

dt
{x⊤i (t)β + z⊤i (t)bi}
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4.3 Time-dependent Slopes (cont’d)
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4.4 Cumulative Effects

• The hazard for an event at t is associated with area under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

mi(s) ds
}

• Area under the longitudinal trajectory taken as a summary of Mi(t)

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick 31/50



4.4 Cumulative Effects (cont’d)
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4.5 Weighted Cumulative Effects

• The hazard for an event at t is associated with the area under the weighted trajectory
up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

ϖ(t− s)mi(s) ds
}
,

where ϖ(·) appropriately chosen weight function, e.g.,

◃ Gaussian density

◃ Student’s-t density

◃ . . .
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4.6 Shared Random Effects

• The hazard for an event at t is associated with the random effects of the longitudinal
submodel:

hi(t | Mi(t)) = h0(t) exp(γ
⊤wi + α⊤bi)

Features

◃ time-independent (no need to approximate the survival function)

◃ interpretation more difficult when we use something more than random-intercepts
& random-slopes
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4.7 Parameterizations & Predictions
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4.7 Parameterizations & Predictions (cont’d)

• Five joint models for the Aortic Valve dataset

◃ the same longitudinal submodel, and

◃ relative risk submodels

hi(t) = h0(t) exp{γ1TypeOPi + γ2Sexi + γ3Agei + α1mi(t)},

hi(t) = h0(t) exp{γ1TypeOPi + γ2Sexi + γ3Agei + α1mi(t) + α2m
′
i(t)},

hi(t) = h0(t) exp
{
γ1TypeOPi + γ2Sexi + γ3Agei + α1

∫ t

0

mi(s)ds
}

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick 36/50



4.7 Parameterizations & Predictions (cont’d)

hi(t) = h0(t) exp
{
γ1TypeOPi + γ2Sexi + γ3Agei + α1

∫ t

0

ϖ(t− s)mi(s)ds
}
,

where ϖ(t− s) = ϕ(t− s)/{Φ(t)− 0.5}, with ϕ(·) and Φ(·) the normal pdf and cdf,
respectively

hi(t) = h0(t) exp(γ1TypeOPi + γ2Sexi + γ3Agei + α1bi0 + α2bi1 + α3bi2 + α4bi4)
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4.7 Parameterizations & Predictions (cont’d)
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4.7 Parameterizations & Predictions (cont’d)

• The chosen parameterization can influence the derived predictions

◃ especially for the survival outcome

How to choose between the competing association
structures?
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4.7 Parameterizations & Predictions (cont’d)

• The easy answer is to employ information criteria, e.g., AIC, BIC, DIC, . . .

• However, a problem is that the longitudinal information dominates the joint likelihood
⇒ will not be sensitive enough wrt predicting survival probabilities

• In addition, thinking a bit more deeply, is the same single model the most appropriate

◃ for all future patients?

◃ for the same patient during the whole follow-up?

The most probable answer is No
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4.8 Combining Joint Models

• To address this issue we will use Bayesian Model Averaging (BMA) ideas

• In particular, we assume M1, . . . ,MK

◃ different association structures

◃ different baseline covariates in the survival submodel

◃ different formulation of the mixed model

◃ . . .

• Typically, this list of models will not be exhaustive
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4.8 Combining Joint Models (cont’d)

• The aim is the same as before, using the available information for a future patient j
up to time t, i.e.,

◃ T ∗
j > t

◃ Yj(t) = {yj(s), 0 ≤ s ≤ t}

• We want to estimate

πj(u | t) = Pr
{
T ∗
j ≥ u | T ∗

j > t,Yj(t),Dn

}
,

by averaging over the posited joint models
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4.8 Combining Joint Models (cont’d)

• More formally we have

Pr
{
T ∗
j ≥ u | Dj(t),Dn

}
=

K∑
k=1

Pr(T ∗
j > u | Mk,Dj(t),Dn) p(Mk | Dj(t),Dn)

where

◃ Dj(t) = {T ∗
j > t, yj(s), 0 ≤ s ≤ t}

◃ Dn = {Ti, δi, yi, i = 1, . . . , n}

• The first part, Pr(T ∗
j > u | Mk,Dj(t),Dn), the same as before

◃ i.e., model-specific conditional survival probabilities
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4.8 Combining Joint Models (cont’d)

• Working out the marginal distribution of each competing model we found some very
attractive features of BMA,

p(Mk | Dj(t),Dn) =
p(Dj(t) | Mk) p(Dn | Mk) p(Mk)
K∑
ℓ=1

p(Dj(t) | Mℓ) p(Dn | Mℓ) p(Mℓ)

◃ p(Dn | Mk) marginal likelihood based on the available data

◃ p(Dj(t) | Mk) marginal likelihood based on the new data of patient j

Model weights are both patient- and
time-dependent
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4.8 Combining Joint Models (cont’d)

• For different subjects, and even for the same subject but at different times points,
different models may have higher posterior probabilities

⇓

Predictions better tailored to each subject than in standard
prognostic models

• In addition, the longitudinal model likelihood, which is

◃ hidden in p(Dn | Mk), and

◃ is not affected by the chosen association structure

will cancel out because it is both in the numerator and denominator
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4.8 Combining Joint Models (cont’d)

• Example: Based on the five fitted joint models

◃ we compute BMA predictions for Patient 81, and

◃ compare with the predictions from each individual model
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4.8 Combining Joint Models (cont’d)
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4.8 Combining Joint Models (cont’d)
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4.8 Combining Joint Models (cont’d)
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4.8 Combining Joint Models (cont’d)
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4.8 Combining Joint Models (cont’d)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patient 81

Time

R
e−

O
pe

ra
tio

n−
F

re
e 

S
ur

vi
va

l

Value
Value+Slope
Area
Weighted Area
Shared RE
BMA

Survival Analysis for Junior Researchers – April 3rd, 2014, Warwick 47/50



4.8 Combining Joint Models (cont’d)
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5. Software – I

• Software: R package JM freely available via
http://cran.r-project.org/package=JM

◃ it can fit a variety of joint models + many other features

◃ relevant to this talk: Functions survfitJM() and predict()

• More info available at:

Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event
Data, with Applications in R. Boca Raton: Chapman & Hall/CRC.

Web site: http://jmr.r-forge.r-project.org/
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5. Software – II

• Software: R package JMbayes freely available via
http://cran.r-project.org/package=JMbayes

◃ it can fit a variety of joint models + many other features

◃ relevant to this talk: Functions survfitJM(), predict() and bma.combine()

GUI interface for dynamic predictions using package
shiny
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Thank you for your attention!
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