Optimizing Personalized Predictions using Joint Models

Dimitris Rizopoulos
Department of Biostatistics, Erasmus University Medical Center, the Netherlands

d.rizopoulos@erasmusmc.nl

Survival Analysis for Junior Researchers
April 3rd, 2014, Warwick

1.1 Introduction

- Over the last 10-15 years increasing interest in joint modeling of longitudinal and time-to-event data (Tsiatis \& Davidian, Stat. Sinica, 2004; Yu et al., Stat. Sinica, 2004)
- The majority of the biostatistics literature in this area has focused on:
\triangleright several extensions of the standard joint model, new estimation approaches, ...
- Recently joint models have been utilized to provide individualized predictions
\triangleright Rizopoulos (Biometrics, 2011); Proust-Lima and Taylor (Biostatistics, 2009); Yu et al. (JASA, 2008)

1.1 Introduction (cont'd)

- Goals of this talk:
\triangleright Introduce joint models
\triangleright Dynamic individualized predictions of survival probabilities;
\triangleright Study the importance of the association structure;
\triangleright Combine predictions from different joint models

1.2 Illustrative Case Study

- Aortic Valve study: Patients who received a human tissue valve in the aortic position
\triangleright data collected by Erasmus MC (from 1987 to 2008); 77 received sub-coronary implantation; 209 received root replacement
- Outcomes of interest:
\triangleright death and re-operation \rightarrow composite event
\triangleright aortic gradient
- Research Question:
\triangleright Can we utilize available aortic gradient measurements to predict survival/re-operation

2.1 Joint Modeling Framework

- To answer our questions of interest we need to postulate a model that relates
\triangleright the aortic gradient with
\triangleright the time to death or re-operation
- Problem: Aortic gradient measurement process is an endogenous time-dependent covariate (Kalbfleisch and Prentice, 2002, Section 6.3)
\triangleright Endogenous (aka internal): the future path of the covariate up to any time $t>s$ IS affected by the occurrence of an event at time point s, i.e.,

$$
\begin{aligned}
& \qquad \operatorname{Pr}\left\{\mathcal{Y}_{i}(t) \mid \mathcal{Y}_{i}(s), T_{i}^{*} \geq s\right\} \neq \operatorname{Pr}\left\{\mathcal{Y}_{i}(t) \mid \mathcal{Y}_{i}(s), T_{i}^{*}=s\right\} \\
& \text { where } 0<s \leq t \text { and } \mathcal{Y}_{i}(t)=\left\{y_{i}(s), 0 \leq s<t\right\}
\end{aligned}
$$

2.1 Joint Modeling Framework (cont'd)

- What is special about endogenous time-dependent covariates
\triangleright measured with error
\triangleright the complete history is not available
\triangleright existence directly related to failure status
- What if we use the Cox model?
\triangleright the association size can be severely underestimated
\triangleright true potential of the marker will be masked

2.1 Joint Modeling Framework (cont'd)

2.1 Joint Modeling Framework (cont'd)

- To account for the special features of these covariates a new class of models has been developed

Joint Models for Longitudinal and Time-to-Event Data

- Intuitive idea behind these models

1. use an appropriate model to describe the evolution of the marker in time for each patient
2. the estimated evolutions are then used in a Cox model

- Feature: Marker level is not assumed constant between visits

2.1 Joint Modeling Framework (cont'd)

2.1 Joint Modeling Framework (cont'd)

- Some notation
$\triangleright T_{i}^{*}$: True time-to-death for patient i
$\triangleright T_{i}$: Observed time-to-death for patient i
$\triangleright \delta_{i}$: Event indicator, i.e., equals 1 for true events
$\triangleright y_{i}$: Longitudinal aortic gradient measurements

2.1 Joint Modeling Framework (cont'd)

- We define a standard joint model
\triangleright Survival Part: Relative risk model

$$
h_{i}\left(t \mid \mathcal{M}_{i}(t)\right)=h_{0}(t) \exp \left\{\gamma^{\top} w_{i}+\alpha m_{i}(t)\right\},
$$

where

* $m_{i}(t)=$ the true \& unobserved value of aortic gradient at time t
* $\mathcal{M}_{i}(t)=\left\{m_{i}(s), 0 \leq s<t\right\}$
* α quantifies the effect of aortic gradient on the risk for death/re-operation
* w_{i} baseline covariates

2.1 Joint Modeling Framework (cont'd)

$>$ Longitudinal Part: Reconstruct $\mathcal{M}_{i}(t)=\left\{m_{i}(s), 0 \leq s<t\right\}$ using $y_{i}(t)$ and a mixed effects model (we focus on continuous markers)

$$
\begin{aligned}
y_{i}(t) & =m_{i}(t)+\varepsilon_{i}(t) \\
& =x_{i}^{\top}(t) \beta+z_{i}^{\top}(t) b_{i}+\varepsilon_{i}(t), \quad \varepsilon_{i}(t) \sim \mathcal{N}\left(0, \sigma^{2}\right),
\end{aligned}
$$

where

* $x_{i}(t)$ and β : Fixed-effects part
* $z_{i}(t)$ and b_{i} : Random-effects part, $b_{i} \sim \mathcal{N}(0, D)$

2.1 Joint Modeling Framework (cont'd)

- The two processes are associated \Rightarrow define a model for their joint distribution
- Joint Models for such joint distributions are of the following form
(Tsiatis \& Davidian, Stat. Sinica, 2004)

$$
p\left(y_{i}, T_{i}, \delta_{i}\right)=\int p\left(y_{i} \mid b_{i}\right)\left\{h\left(T_{i} \mid b_{i}\right)^{\delta_{i}} S\left(T_{i} \mid b_{i}\right)\right\} p\left(b_{i}\right) d b_{i}
$$

where
$\triangleright b_{i}$ a vector of random effects that explains the interdependencies
$\triangleright p(\cdot)$ density function; $S(\cdot)$ survival function

3.1 Prediction Survival - Definitions

- We are interested in predicting survival probabilities for a new patient j that has provided a set of aortic gradient measurements up to a specific time point t
- Example: We consider Patients 20 and 81 from the Aortic Valve dataset
\triangleright Dynamic Prediction survival probabilities are dynamically updated as additional longitudinal information is recorded

3.1 Prediction Survival - Definitions (cont'd)
 3.1 Predictir

3.1 Prediction Survival - Definitions (cont'd)

- More formally, we have available measurements up to time point t

$$
\mathcal{Y}_{j}(t)=\left\{y_{j}(s), 0 \leq s<t\right\}
$$

and we are interested in

$$
\pi_{j}(u \mid t)=\operatorname{Pr}\left\{T_{j}^{*} \geq u \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t), \mathcal{D}_{n}\right\}
$$

where
\triangleright where $u>t$, and
$\triangleright \mathcal{D}_{n}$ denotes the sample on which the joint model was fitted

3.2 Prediction Survival - Estimation

- Joint model is estimated using MCMC or maximum likelihood
- Based on the fitted model we can estimate the conditional survival probabilities
\triangleright Empirical Bayes
\triangleright fully Bayes/Monte Carlo (it allows for easy calculation of s.e.)
- For more details check:
\triangleright Proust-Lima and Taylor (2009, Biostatistics), Rizopoulos (2011, Biometrics), Taylor et al. (2013, Biometrics)

3.2 Prediction Survival - Estimation (cont'd)

- It is convenient to proceed using a Bayesian formulation of the problem \Rightarrow $\pi_{j}(u \mid t)$ can be written as

$$
\operatorname{Pr}\left\{T_{j}^{*} \geq u \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t), \mathcal{D}_{n}\right\}=\int \operatorname{Pr}\left\{T_{j}^{*} \geq u \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t) ; \theta\right\} p\left(\theta \mid \mathcal{D}_{n}\right) d \theta
$$

- The first part of the integrand using Cl

$$
\begin{aligned}
& \operatorname{Pr}\left\{T_{j}^{*} \geq u \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t) ; \theta\right\}= \\
& \quad=\int \frac{S_{j}\left\{u \mid \mathcal{M}_{j}\left(u, b_{j}, \theta\right) ; \theta\right\}}{S_{i}\left\{t \mid \mathcal{M}_{i}\left(t, b_{i}, \theta\right) ; \theta\right\}} p\left(b_{i} \mid T_{i}^{*}>t, \mathcal{Y}_{i}(t) ; \theta\right) d b_{i}
\end{aligned}
$$

3.2 Prediction Survival - Estimation (cont'd)

- A Monte Carlo estimate of $\pi_{i}(u \mid t)$ can be obtained using the following simulation scheme:

Step 1. draw $\theta^{(\ell)} \sim\left[\theta \mid \mathcal{D}_{n}\right]$ or $\theta^{(\ell)} \sim \mathcal{N}(\hat{\theta}, \widehat{\mathcal{H}})$
Step 2. draw $b_{i}^{(\ell)} \sim\left\{b_{i} \mid T_{i}^{*}>t, \mathcal{Y}_{i}(t), \theta^{(\ell)}\right\}$
Step 3. compute $\pi_{i}^{(\ell)}(u \mid t)=S_{i}\left\{u \mid \mathcal{M}_{i}\left(u, b_{i}^{(\ell)}, \theta^{(\ell)}\right) ; \theta^{(\ell)}\right\} / S_{i}\left\{t \mid \mathcal{M}_{i}\left(t, b_{i}^{(\ell)}, \theta^{(\ell)}\right) ; \theta^{(\ell)}\right\}$

- Repeat Steps $1-3, \ell=1, \ldots, L$ times, where L denotes the number of Monte Carlo samples

3.3 Prediction Survival - Illustration

- Example: We fit a joint model to the Aortic Valve data
- Longitudinal submodel
\triangleright fixed effects: natural cubic splines of time (d.f. $=3$), operation type, and their interaction
\triangleright random effects: Intercept, \& natural cubic splines of time (d.f. $=3$)
- Survival submodel
\triangleright type of operation, age, sex + underlying aortic gradient level
$\triangleright \log$ baseline hazard approximated using B-splines

3.3 Prediction Survival - Illustration (cont'd)

- Based on the fitted joint model we estimate $\pi_{j}(u \mid t)$ for Patients 20 and 81
- We used the fully Bayesian approach with 500 Monte Carlo samples, and we took as estimate

$$
\hat{\pi}_{j}(u \mid t)=\frac{1}{L} \sum_{\ell=1}^{L} \pi_{j}^{(\ell)}(u \mid t)
$$

and calculated the corresponding 95% pointwise Cl s

3.3 Prediction Survival - Illustration (cont'd)
 Predit

3.3 Prediction Survival - Illustration (cont'd)

Patient 81

3.3 Prediction Survival - Illustration (cont'd)

Patient 20

Patient 81

3.3 Prediction Survival - Illustration (cont'd)

Patient 81

3.3 Prediction Survival - Illustration (cont'd)

Patient 20

Patient 81

3.3 Prediction Survival - Illustration (cont'd)

Patient 20

Patient 81

3.4 Prediction Longitudinal

- In some occasions it may be also of interest to predict the longitudinal outcome
- We can proceed in the same manner as for the survival probabilities: We have available measurements up to time point t

$$
\mathcal{Y}_{j}(t)=\left\{y_{j}(s), 0 \leq s<t\right\}
$$

and we are interested in

$$
\omega_{j}(u \mid t)=E\left\{y_{j}(u) \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t), \mathcal{D}_{n}\right\}, \quad u>t
$$

3.4 Prediction Longitudinal (cont'd)

- To estimate $\omega_{j}(u \mid t)$ we can follow a similar approach as for $\pi_{j}(u \mid t)$ - Namely, $\omega_{j}(u \mid t)$ is written as:

$$
E\left\{y_{j}(u) \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t), \mathcal{D}_{n}\right\}=\int E\left\{y_{j}(u) \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t), \mathcal{D}_{n} ; \theta\right\} p\left(\theta \mid \mathcal{D}_{n}\right) d \theta
$$

- With the first part of the integrand given by:

$$
\begin{aligned}
& E\left\{y_{j}(u) \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t), \mathcal{D}_{n} ; \theta\right\}= \\
& =\int\left\{x_{j}^{\top}(u) \beta+z_{j}^{\top}(u) b_{j}\right\} p\left(b_{j} \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t) ; \theta\right) d b_{j}
\end{aligned}
$$

4.1 Association Structures

- The standard joint model

$$
\left\{\begin{aligned}
h_{i}\left(t \mid \mathcal{M}_{i}(t)\right) & =h_{0}(t) \exp \left\{\gamma^{\top} w_{i}+\alpha m_{i}(t)\right\}, \\
y_{i}(t) & =m_{i}(t)+\varepsilon_{i}(t) \\
& =x_{i}^{\top}(t) \beta+z_{i}^{\top}(t) b_{i}+\varepsilon_{i}(t),
\end{aligned}\right.
$$

where $\mathcal{M}_{i}(t)=\left\{m_{i}(s), 0 \leq s<t\right\}$

4.1 Association structures (cont'd)

4.1 Association Structures (cont'd)

- The standard joint model

$$
\left\{\begin{aligned}
h_{i}\left(t \mid \mathcal{M}_{i}(t)\right) & =h_{0}(t) \exp \left\{\gamma^{\top} w_{i}+\alpha m_{i}(t)\right\}, \\
y_{i}(t) & =m_{i}(t)+\varepsilon_{i}(t) \\
& =x_{i}^{\top}(t) \beta+z_{i}^{\top}(t) b_{i}+\varepsilon_{i}(t),
\end{aligned}\right.
$$

where $\mathcal{M}_{i}(t)=\left\{m_{i}(s), 0 \leq s<t\right\}$

Is this the only option? Is this the most optimal for prediction?

4.1 Association Structures (cont'd)

- Note: Inappropriate modeling of time-dependent covariates may result in surprising results
- Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to test the effect of cigarette smoking on survival of patients who underwent coronary artery surgery
\triangleright the estimated effect of current cigarette smoking was positive on survival although not significant (i.e., patient who smoked had higher probability of survival)
\triangleright most of those who had died were smokers but many stopped smoking at the last follow-up before their death

4.3 Time-dependent Slopes

- The hazard for an event at t is associated with both the current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

$$
h_{i}\left(t \mid \mathcal{M}_{i}(t)\right)=h_{0}(t) \exp \left\{\gamma^{\top} w_{i}+\alpha_{1} m_{i}(t)+\alpha_{2} m_{i}^{\prime}(t)\right\},
$$

where

$$
m_{i}^{\prime}(t)=\frac{d}{d t}\left\{x_{i}^{\top}(t) \beta+z_{i}^{\top}(t) b_{i}\right\}
$$

4.3 Time-dependent Slopes (cont'd)

4.4 Cumulative Effects

- The hazard for an event at t is associated with area under the trajectory up to t :

$$
h_{i}\left(t \mid \mathcal{M}_{i}(t)\right)=h_{0}(t) \exp \left\{\gamma^{\top} w_{i}+\alpha \int_{0}^{t} m_{i}(s) d s\right\}
$$

- Area under the longitudinal trajectory taken as a summary of $\mathcal{M}_{i}(t)$

4.4 Cumulative Effects (cont'd)

4.5 Weighted Cumulative Effects

- The hazard for an event at t is associated with the area under the weighted trajectory up to t :

$$
h_{i}\left(t \mid \mathcal{M}_{i}(t)\right)=h_{0}(t) \exp \left\{\gamma^{\top} w_{i}+\alpha \int_{0}^{t} \varpi(t-s) m_{i}(s) d s\right\}
$$

where $\varpi(\cdot)$ appropriately chosen weight function, e.g.,
\triangleright Gaussian density
\triangleright Student's- t density

```
\triangleright ...
```


4.6 Shared Random Effects

- The hazard for an event at t is associated with the random effects of the longitudinal submodel:

$$
h_{i}\left(t \mid \mathcal{M}_{i}(t)\right)=h_{0}(t) \exp \left(\gamma^{\top} w_{i}+\alpha^{\top} b_{i}\right)
$$

Features
\triangleright time-independent (no need to approximate the survival function)
\triangleright interpretation more difficult when we use something more than random-intercepts \& random-slopes

4.7 Parameterizations \& Predictions

Patient 81

4.7 Parameterizations \& Predictions (cont'd)

- Five joint models for the Aortic Valve dataset
\triangleright the same longitudinal submodel, and
\triangleright relative risk submodels

$$
\begin{aligned}
& h_{i}(t)=h_{0}(t) \exp \left\{\gamma_{1} \operatorname{TypeOP}_{i}+\gamma_{2} \text { Sex }_{i}+\gamma_{3} \text { Age }_{i}+\alpha_{1} m_{i}(t)\right\}, \\
& h_{i}(t)=h_{0}(t) \exp \left\{\gamma_{1} \text { TypeOP }_{i}+\gamma_{2} \text { Sex }_{i}+\gamma_{3} \text { Age }_{i}+\alpha_{1} m_{i}(t)+\alpha_{2} m_{i}^{\prime}(t)\right\}, \\
& h_{i}(t)=h_{0}(t) \exp \left\{\gamma_{1} \text { TypeOP }_{i}+\gamma_{2} \text { Sex }_{i}+\gamma_{3} \text { Age }_{i}+\alpha_{1} \int_{0}^{t} m_{i}(s) d s\right\}
\end{aligned}
$$

4.7 Parameterizations \& Predictions (cont'd)

$$
h_{i}(t)=h_{0}(t) \exp \left\{\gamma_{1} \operatorname{TypeOP}_{i}+\gamma_{2} \operatorname{Sex}_{i}+\gamma_{3} \text { Age }_{i}+\alpha_{1} \int_{0}^{t} \varpi(t-s) m_{i}(s) d s\right\}
$$

where $\varpi(t-s)=\phi(t-s) /\{\Phi(t)-0.5\}$, with $\phi(\cdot)$ and $\Phi(\cdot)$ the normal pdf and cdf, respectively

$$
h_{i}(t)=h_{0}(t) \exp \left(\gamma_{1} \text { TypeOP }_{i}+\gamma_{2} \text { Sex }_{i}+\gamma_{3} \text { Age }_{i}+\alpha_{1} b_{i 0}+\alpha_{2} b_{i 1}+\alpha_{3} b_{i 2}+\alpha_{4} b_{i 4}\right)
$$

4.7 Parameterizations \& Predictions (cont'd)

4.7 Parameterizations \& Predictions (cont'd)

- The chosen parameterization can influence the derived predictions
\triangleright especially for the survival outcome

How to choose between the competing association structures?

4.7 Parameterizations \& Predictions (cont'd)

- The easy answer is to employ information criteria, e.g., AIC, BIC, DIC, ...
- However, a problem is that the longitudinal information dominates the joint likelihood \Rightarrow will not be sensitive enough wrt predicting survival probabilities
- In addition, thinking a bit more deeply, is the same single model the most appropriate
\triangleright for all future patients?
\triangleright for the same patient during the whole follow-up?

> The most probable answer is No

4.8 Combining Joint Models

- To address this issue we will use Bayesian Model Averaging (BMA) ideas
- In particular, we assume M_{1}, \ldots, M_{K}
\triangleright different association structures
\triangleright different baseline covariates in the survival submodel
\triangleright different formulation of the mixed model
$\triangleright \ldots$
- Typically, this list of models will not be exhaustive

4.8 Combining Joint Models (cont'd)

- The aim is the same as before, using the available information for a future patient j up to time t, i.e.,
$\triangleright T_{j}^{*}>t$
$\triangleright \mathcal{Y}_{j}(t)=\left\{y_{j}(s), 0 \leq s \leq t\right\}$
- We want to estimate

$$
\pi_{j}(u \mid t)=\operatorname{Pr}\left\{T_{j}^{*} \geq u \mid T_{j}^{*}>t, \mathcal{Y}_{j}(t), \mathcal{D}_{n}\right\}
$$

by averaging over the posited joint models

4.8 Combining Joint Models (cont'd)

- More formally we have

$$
\operatorname{Pr}\left\{T_{j}^{*} \geq u \mid \mathcal{D}_{j}(t), \mathcal{D}_{n}\right\}=\sum_{k=1}^{K} \operatorname{Pr}\left(T_{j}^{*}>u \mid M_{k}, \mathcal{D}_{j}(t), \mathcal{D}_{n}\right) p\left(M_{k} \mid \mathcal{D}_{j}(t), \mathcal{D}_{n}\right)
$$

where

$$
\begin{aligned}
& \triangleright \mathcal{D}_{j}(t)=\left\{T_{j}^{*}>t, y_{j}(s), 0 \leq s \leq t\right\} \\
& \triangleright \mathcal{D}_{n}=\left\{T_{i}, \delta_{i}, y_{i}, i=1, \ldots, n\right\}
\end{aligned}
$$

- The first part, $\operatorname{Pr}\left(T_{j}^{*}>u \mid M_{k}, \mathcal{D}_{j}(t), \mathcal{D}_{n}\right)$, the same as before
\triangleright i.e., model-specific conditional survival probabilities

4.8 Combining Joint Models (cont'd)

- Working out the marginal distribution of each competing model we found some very attractive features of BMA,

$$
p\left(M_{k} \mid \mathcal{D}_{j}(t), \mathcal{D}_{n}\right)=\frac{p\left(\mathcal{D}_{j}(t) \mid M_{k}\right) p\left(\mathcal{D}_{n} \mid M_{k}\right) p\left(M_{k}\right)}{\sum_{\ell=1}^{K} p\left(\mathcal{D}_{j}(t) \mid M_{\ell}\right) p\left(\mathcal{D}_{n} \mid M_{\ell}\right) p\left(M_{\ell}\right)}
$$

$\triangleright p\left(\mathcal{D}_{n} \mid M_{k}\right)$ marginal likelihood based on the available data
$\triangleright p\left(\mathcal{D}_{j}(t) \mid M_{k}\right)$ marginal likelihood based on the new data of patient j

Model weights are both patient- and time-dependent

4.8 Combining Joint Models (cont'd)

- For different subjects, and even for the same subject but at different times points, different models may have higher posterior probabilities

$$
\Downarrow
$$

Predictions better tailored to each subject than in standard prognostic models

- In addition, the longitudinal model likelihood, which is
\triangleright hidden in $p\left(\mathcal{D}_{n} \mid M_{k}\right)$, and
\triangleright is not affected by the chosen association structure
will cancel out because it is both in the numerator and denominator

4.8 Combining Joint Models (cont'd)

- Example: Based on the five fitted joint models
\triangleright we compute BMA predictions for Patient 81, and
\triangleright compare with the predictions from each individual model

4.8 Combining Joint Models (cont'd)

Patient 81

4.8 Combining Joint Models (cont'd)

4.8 Combining Joint Models (cont'd)

Patient 81

Patient 81

Patient 81

4.8 Combining Joint Models (cont'd)

Patient 81

- Software: R package JM freely available via http://cran.r-project.org/package=JM
\triangleright it can fit a variety of joint models + many other features
\triangleright relevant to this talk: Functions survfitJM() and predict()
- More info available at:

Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data, with Applications in R. Boca Raton: Chapman \& Hall/CRC.

Web site: http://jmr.r-forge.r-project.org/

- Software: R package JMbayes freely available via http://cran.r-project.org/package=JMbayes
\triangleright it can fit a variety of joint models + many other features
\triangleright relevant to this talk: Functions survfitJM(), predict() and bma.combine()

GUI interface for dynamic predictions using package shiny

Thank you for your attention!

