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1.1 Motivating Case Study

• 467 HIV infected patients who had failed or were intolerant to zidovudine therapy
(AZT) (Abrams et al., NEJM, 1994)

• The aim of this study was to compare the efficacy and safety of two alternative
antiretroviral drugs, didanosine (ddI) and zalcitabine (ddC)

• Outcomes of interest:

◃ time to death

◃ randomized treatment: 230 patients ddI and 237 ddC

◃ CD4 cell count measurements at baseline, 2, 6, 12 and 18 months
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1.1 Motivating Case Study (cont’d)
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1.1 Motivating Case Study (cont’d)

• Research Question:

◃ Investigate the longitudinal evolutions of CD4 cell count correcting for dropout
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1.2 Goals

• Goals of this talk:

◃ introduce joint models

◃ link with missing data

◃ sensitivity analysis
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2.1 Missing Data in Longitudinal Studies

• A major challenge for the analysis of longitudinal data is the problem of missing data

◃ studies are designed to collect data on every subject at a set of pre-specified
follow-up times

◃ often subjects miss some of their planned measurements for a variety of reasons
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2.1 Missing Data in Longitudinal Studies (cont’d)

• Implications of missingness:

◃ we collect less data than originally planned ⇒ loss of efficiency

◃ not all subjects have the same number of measurements ⇒ unbalanced datasets

◃ missingness may depend on outcome ⇒ potential bias

• For the handling of missing data, we introduce the missing data indicator

rij =

 1 if yij is observed

0 otherwise
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2.1 Missing Data in Longitudinal Studies (cont’d)

• We obtain a partition of the complete response vector yi

◃ observed data yoi , containing those yij for which rij = 1

◃ missing data ymi , containing those yij for which rij = 0

• For the remaining we will focus on dropout ⇒ notation can be simplified

◃ Discrete dropout time: rdi = 1 +
ni∑
j=1

rij (ordinal variable)

◃ Continuous time: T ∗
i denotes the time to dropout
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2.2 Missing Data Mechanisms

• To describe the probabilistic relation between the measurement and missingness
processes Rubin (1976, Biometrika) has introduced three mechanisms

◃ Missing Completely At Random (MCAR)

◃ Missing At Random (MAR)

◃ Missing Not At Random (MNAR)

We focus on MNAR settings
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2.2 Missing Data Mechanisms (cont’d)

• Features of MNAR

◃ The observed data cannot be considered a random sample from the target
population

◃ Only procedures that explicitly model the joint distribution {yoi , ymi , ri} provide
valid inferences ⇒ analyses which are valid under MAR will not be valid
under MNAR
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2.2 Missing Data Mechanisms (cont’d)

We cannot tell from the data at hand whether the
missing data mechanism is MAR or MNAR

Note: We can distinguish between MCAR and MAR
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3.1 Joint Modeling Framework

• To account for possible MNAR dropout, we need to postulate a model that relates

◃ the CD4 cell count, with

◃ the time to dropout

Joint Models for Longitudinal and Time-to-Event Data

• Intuitive idea behind these models

1. use an appropriate model to describe the evolution of the marker in time for each
patient

2. the estimated evolutions are then used in a Cox model
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3.1 Joint Modeling Framework (cont’d)

• Some notation

◃ yi: Longitudinal responses

◃ Ti: Dropout time for patient i

◃ δi: Dropout indicator, i.e., equals 1 for MNAR events

• We will formulate the joint model in 3 steps – in particular, . . .
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3.1 Joint Modeling Framework (cont’d)
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3.1 Joint Modeling Framework (cont’d)

• We define a standard joint model

◃ Survival Part: Relative risk model

hi(t) = h0(t) exp{γ⊤wi + αmi(t)},

where

* mi(t) = underlying CD4 cell count at time t

* α quantifies how strongly associated CD4 cell count with the risk of dropping
out

* wi baseline covariates
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3.1 Joint Modeling Framework (cont’d)

◃ Longitudinal Part: Reconstruct Mi(t) = {mi(s), 0 ≤ s < t} using yi(t) and a
mixed effects model (we focus on continuous markers)

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t), εi(t) ∼ N (0, σ2),

where

* xi(t) and β: Fixed-effects part

* zi(t) and bi: Random-effects part, bi ∼ N (0, D)
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3.1 Joint Modeling Framework (cont’d)

• The two processes are associated ⇒ define a model for their joint distribution

• Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004)

p(yi, Ti, δi) =

∫
p(yi | bi)

{
h(Ti | bi)δi S(Ti | bi)

}
p(bi) dbi,

where

◃ bi a vector of random effects that explains the interdependencies

◃ p(·) density function; S(·) survival function
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3.2 Link with Missing Data Mechanisms

• To show this connection more clearly

◃ T ∗
i : true time-to-event

◃ yoi : longitudinal measurements before T
∗
i

◃ ymi : longitudinal measurements after T
∗
i

• Important to realize that the model we postulate for the longitudinal responses is
for the complete vector {yoi , ymi }
◃ implicit assumptions about missingness
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3.2 Link with Missing Data Mechanisms (cont’d)

• Missing data mechanism:

p(T ∗
i | yoi , ymi ) =

∫
p(T ∗

i | bi) p(bi | yoi , ymi ) dbi

still depends on ymi , which corresponds to nonrandom dropout

Intuitive interpretation: Patients who dropout show
different longitudinal evolutions than patients who do not
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3.3 Link with Missing Data Mechanisms (cont’d)

• What about censoring?

◃ censoring also corresponds to a discontinuation of the data collection process for
the longitudinal outcome

• Likelihood-based inferences for joint models provide valid inferences when censoring is
MAR

◃ a patient relocates to another country (MCAR)

◃ a patient is excluded from the study when her longitudinal response exceeds a
pre-specified threshold (MAR)

◃ censoring depends on random effects (MNAR)
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3.3 Link with Missing Data Mechanisms (cont’d)

• Joint models belong to the class of Shared Parameter Models

p(yoi , y
m
i , T

∗
i ) =

∫
p(yoi , y

m
i | bi) p(T ∗

i | bi) p(bi)dbi

the association between the longitudinal and missingness processes is explained by
the shared random effects bi
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3.3 Link with Missing Data Mechanisms (cont’d)

• The other two well-known frameworks for MNAR data are

◃ Selection models

p(yoi , y
m
i , T

∗
i ) = p(yoi , y

m
i ) p(T

∗
i | yoi , ymi )

◃ Pattern mixture models:

p(yoi , y
m
i , T

∗
i ) = p(yoi , y

m
i | T ∗

i ) p(T
∗
i )

• These two model families are primarily applied with discrete dropout times and
cannot be easily extended to continuous time
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3.4 MNAR Analysis of the AIDS data

• Example: In the AIDS dataset

◃ 58 (5%) completers

◃ 184 (39%) died before completing the study

◃ 225 (48%) dropped out before completing the study

• A comparison between

◃ linear mixed-effects model ⇒ all dropout MAR

◃ joint model ⇒ death is set MNAR, and dropout MAR

is warranted
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3.4 MNAR Analysis of the AIDS data (cont’d)

• We fitted the following joint model

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t), εi(t) ∼ N (0, σ2),

hi(t) = h0(t) exp{γddIi + αmi(t)},

where

◃ h0(t) is assumed piecewise-constant

• The MAR analysis entails only the linear mixed model
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3.4 MNAR Analysis of the AIDS data (cont’d)

LMM (MAR) JM (MNAR)

value (s.e.) value (s.e)

Intercept 7.19 (0.22) 7.20 (0.22)

Time −0.16 (0.02) −0.23 (0.04)

Treat:Time 0.03 (0.03) 0.01 (0.06)

◃ We observe some sensitivity for the time effect

◃ The interaction with treatment remains non significant under both analyses
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4.1 Association Structures

• The standard assumption is

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}
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4.1 Association structures (cont’d)

Time

0.
1

0.
2

0.
3

0.
4

hazard

0.
0

0.
5

1.
0

1.
5

2.
0

0 2 4 6 8

marker

Joint Models & Missing Data – August 30th, 2017 CEN-ISBS 26/39



4.1 Association Structures (cont’d)

• The standard assumption is

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + αmi(t)},

yi(t) = mi(t) + εi(t)

= x⊤i (t)β + z⊤i (t)bi + εi(t),

where Mi(t) = {mi(s), 0 ≤ s < t}

Is this the only option? What is the impact on
longitudinal inferences?
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4.2 Time-dependent Slopes

• The hazard for an event at t is associated with both the current value and the slope
of the trajectory at t (Ye et al., 2008, Biometrics):

hi(t | Mi(t)) = h0(t) exp{γ⊤wi + α1mi(t) + α2m
′
i(t)},

where

m′
i(t) =

d

dt
{x⊤i (t)β + z⊤i (t)bi}
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4.2 Time-dependent Slopes (cont’d)
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4.3 Cumulative Effects

• The hazard for an event at t is associated with area under the trajectory up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

mi(s) ds
}

• Area under the longitudinal trajectory taken as a summary of Mi(t)
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4.3 Cumulative Effects (cont’d)
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4.4 Weighted Cumulative Effects

• The hazard for an event at t is associated with the area under the weighted trajectory
up to t:

hi(t | Mi(t)) = h0(t) exp
{
γ⊤wi + α

∫ t

0

ϖ(t− s)mi(s) ds
}
,

where ϖ(·) appropriately chosen weight function, e.g.,

◃ Gaussian density

◃ Student’s-t density

◃ . . .
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4.5 Parameterizations & Sensitivity Analysis

• Example: Sensitivity of inferences for the longitudinal process to the choice of the
parameterization for the AIDS data

• We use the same mixed model as before, i.e.,

yi(t) = mi(t) + εi(t)

= β0 + β1t + β2{t× ddIi} + bi0 + bi1t + εi(t)

and the following four survival submodels
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4.5 Parameterizations & Sens. Analysis (cont’d)

• Model I (current value)

hi(t) = h0(t) exp{γddIi + α1mi(t)}

• Model II (current value + current slope)

hi(t) = h0(t) exp{γddIi + α1mi(t) + α2m
′
i(t)},

where

◃ m′
i(t) = β1 + β2ddIi + bi1
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4.5 Parameterizations & Sens. Analysis (cont’d)

• Model III (random slope)

hi(t) = h0(t) exp{γddIi + α3bi1}

• Model IV (area)

hi(t) = h0(t) exp
{
γddIi + α4

∫ t

0

mi(s) ds
}
,

where

◃
∫ t

0 mi(s) ds = β0t +
β1
2 t

2 + β2
2 {t

2 × ddIi} + bi0t +
bi1
2 t

2
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4.5 Parameterizations & Sens. Analysis (cont’d)

Value

value

value+slope

random slope

area

6.8 7.0 7.2 7.4 7.6

β0

−0.25 −0.20 −0.15 −0.10

β1

−0.05 0.00 0.05

β2

Joint Models & Missing Data – August 30th, 2017 CEN-ISBS 36/39



5. Software

• Software: R package JM freely available via
http://cran.r-project.org/package=JM

◃ it can fit a variety of joint models + many other features

• More info available at:

Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event
Data, with Applications in R. Boca Raton: Chapman & Hall/CRC.

Web site: http://jmr.r-forge.r-project.org/
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5. Software (cont’d)

• Software: R package JMbayes freely available via
http://cran.r-project.org/package=JMbayes

◃ it can fit a variety of multivariate joint models + many other features

• SAS macro %JM by Alberto Garcia-Hernandez & D. Rizopoulos
http://www.jm-macro.com/
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Thank you for your attention!

http://www.drizopoulos.com/
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