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1 Introduction

Nowadays there is great interest in accurate risk assessment for prevention and treatment

of disease. Physicians use risk scores to reach appropriate decisions, such as prescribing

treatment, or extra medical tests or suggesting alternative therapies. Patients who are

informed about their health risk often decide to adjust their lifestyles to mitigate it. Risk

scores are typically based on several factors that describe the patients’ physical condition and

risk factors, such as age, sex, BMI, smoking, genetic predisposition, and the results of medical

tests. In this work we focus on the use of the results of such tests and more specifically on

biomarkers. The majority of prognostic models in the medical literature utilize only a small

fraction of the available biomarker information. In particular, even though biomarkers are

measured repeatedly over time, risk scores are typically based on the last available biomarker

measurement. It is evident that such an approach discards valuable information because it

does not take into account that the rate of change in the biomarker levels is not only different

from patient to patient but also dynamically changes over time for the same patient. Hence,

it is medically relevant to investigate whether repeated measurements of a biomarker can

provide a better understanding of disease progression and a better prediction of the risk for

the event of interest than a single biomarker measurement.

In line with the previous arguments, the motivation for this research comes from a study

conducted by the Department of Cardio-Thoracic Surgery of the Erasmus Medical Center

in the Netherlands. This study includes 285 patients who received a human tissue valve in

the aortic position in the hospital from 1987 until 2008 (Bekkers et al. 2011). Aortic allo-

graft implantation has been widely used for a variety of aortic valve or aortic root diseases.

Major advantages ascribed to allografts are the excellent hemodynamic characteristics as a

valve substitute; the low rate of thrombo-embolic complications, and, therefore, absence of

the need for anticoagulant treatment; and the resistance to endocarditis. A major disad-

vantage of using human tissue valves, however is the susceptibility to degeneration and the

concomitant need for re-interventions. The durability of a cryopreserved aortic allograft is

age-dependent, leading to a high lifetime risk of re-operation, especially for young patients.
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Re-operations on the aortic root are complex, with substantial operative risks, and mortality

rates in the range 4–12%. It is therefore of great interest for cardiologists and cardio-thoracic

surgeons to have at their disposal an accurate prognostic tool that will inform them about

the future prospect of a patient with a human tissue valve in order to optimize medical care,

carefully plan re-operation and minimize valve-related morbidity and mortality.

From the statistical analysis viewpoint the challenge is to utilize a technique capable

of updating estimates of survival probabilities for a new patient as additional longitudinal

information is recorded. An early approach in solving this problem has been landmarking

(Anderson et al. 1983; van Houwelingen 2007; van Houwelingen and Putter 2011). The

basic idea behind landmarking is to obtain survival probabilities from a Cox model fitted

to the patients from the original dataset who are still at risk at the time point of interest

(e.g., the last time point we know that the new patient was still alive). A relatively newer

method for producing dynamic predictions of survival probabilities is based on the class of

joint models for longitudinal and time-to-event data (Yu et al. 2008; Proust-Lima and Taylor

2009; Rizopoulos 2011, 2012). In these models we have a complete specification of the joint

distribution of the longitudinal response and the event times based on which the predictions

in question can be derived. The main aim of this paper is to further study and contrast these

two approaches. In particular, we show how survival probabilities are obtained under each

method and what the differences are in the underlying assumptions. In addition, we focus

on the functional relationship between the longitudinal and event time processes, and how

this may affect predictions. To assess the quality of the derived predictions from the two

approaches we present different measures of discrimination and calibration, suitably adjusted

to the context of longitudinal biomarkers.

The rest of the paper is organized as follows. Section 2 formally describes the context of

dynamic predictions and presents the landmarking and joint modeling approaches. Section 3

presents measures of discrimination and calibration adapted to the dynamic predictions

setting. Section 4 illustrates the use of joint modeling and landmarking in the Aortic Valve

dataset and Section 5 refers to the results of a simulation study. Finally, Section 6 concludes
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the paper.

2 Dynamic Individualized Predictions

Following the discussion in Section 1 and the motivation from the Aortic Valve dataset, we

present here the two frameworks for deriving dynamic individualized predictions. Let Dn =

{Ti, δi,yi; i = 1, . . . , n} denote a sample from the target population, where Ti = min(T ∗i , Ci)

denotes the observed event time for the i-th subject (i = 1, . . . , n), with T ∗i denoting the true

event time, Ci the censoring time, and δi = I(T ∗i ≤ Ci) the event indicator, with I(·) being

the indicator function that takes the value 1 when T ∗i ≤ Ci, and 0 otherwise. In addition,

we let yi denote the ni × 1 longitudinal response vector for the i-th subject, with element

yil denoting the value of the longitudinal outcome taken at time point til, l = 1, . . . , ni.

We are interested in deriving predictions for a new subject j from the same population

that has provided a set of longitudinal measurements Yj(t) = {yj(tjl); 0 ≤ tjl ≤ t, l =

1, . . . , nj}. The fact that biomarker measurements have been recorded up to t, implies

survival of this subject up to this time point, meaning that it is more relevant to focus on

the conditional subject-specific predictions, given survival up to t. In particular, for any

time u > t we are interested in the probability that this new subject j will survive at least

up to u, i.e.,

πj(u | t) = Pr(T ∗j ≥ u | T ∗j > t,Yj(t),Dn).

The time-dynamic nature of πj(u | t) is evident because when new information is recorded

for patient j at time t′ > t, we can update these predictions to obtain πj(u | t′), and therefore

proceed in a time-dynamic manner.

2.1 Joint Modeling

In the framework of joint models for longitudinal and time-to-event data we have a com-

plete specification of the joint distribution of the two outcomes (Henderson et al. 2000;

Tsiatis and Davidian 2004; Rizopoulos 2012). For the longitudinal biomarker measurements
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mixed-effects models are typically employed to describe the subject-specific longitudinal tra-

jectories. For simplicity of exposition and because the marker that we are going to use for

the Aortic Valve dataset, namely the aortic gradient, is a continuous one, we focus here on

linear mixed-effects models,

yi(t) = mi(t) + εi(t) = x>i (t)β + z>i (t)bi + εi(t),

bi ∼ N (0,D), εi(t) ∼ N (0, σ2),
(1)

where yi(t) denotes the observed value of the longitudinal outcome at any particular time

point t, xi(t) and zi(t) denote the design vectors for the fixed-effects β and for the random

effects bi, respectively, and εi(t) the corresponding error terms that are assumed independent

of the random effects, and cov{εi(t), εi(t′)} = 0 for t′ 6= t. The fixed and random effects

design vectors are assumed to contain a mix of baseline and time-varying covariates. For the

survival process, we assume that the risk for an event depends on the ‘true’ and unobserved

value of the marker at time t (i.e., excluding the measurement error), denoted by mi(t) in

(1). More specifically, we have

hi(t | Mi(t),wi) = lim
∆t→0

1

∆t
Pr{t ≤ T ∗i < t+ ∆t | T ∗i ≥ t,Mi(t),wi}

= h0(t) exp
{
γ>wi + αmi(t)

}
, t > 0, (2)

where Mi(t) = {mi(s), 0 ≤ s < t} denotes the history of the true unobserved longitudinal

process up to t, h0(·) denotes the baseline hazard function, and wi is a vector of baseline co-

variates with corresponding regression coefficients γ. Parameter α quantifies the association

between the true value of the marker at t and the hazard for an event at the same time point.

Estimation of the joint model’s parameters can be based either on maximum likelihood or a

Bayesian approach using Markov chain Monte Carlo algorithms. The likelihood of the model

is derived under the conditional independence assumptions that given the random effects,

both the longitudinal and event time process are assumed independent, and the longitudinal

responses of each subject are assumed independent. More details regarding the estimation
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and properties of joint models can be found in Rizopoulos (2012) and Ibrahim et al. (2001,

Chapter 7).

Under this framework, estimation of πj(u | t) can be based on (asymptotic) Bayesian

arguments and the corresponding posterior predictive distribution:

πJMj (u | t) =

∫
Pr(T ∗j ≥ u | T ∗j > t,Yj(t),θ) p(θ | Dn) dθ, (3)

where θ denotes the vector of all model parameters. The calculation of the first term of the

integrand utilizes the aforementioned conditional independence assumptions. In particular,

the first term of the integrand of πJMj (u | t) can be written as:

Pr(T ∗j ≥ u | T ∗j > t,Yj(t),θ) =

∫
Pr(T ∗j ≥ u | T ∗j > t, bj,θ) p(bj | T ∗j > t,Yj(t),θ) dbj

=

∫
Sj
{
u | Mj(u, bj),θ

}
Sj
{
t | Mj(t, bj),θ

} p(bj | T ∗j > t,Yj(t),θ) dbj,

where

Sj
{
t | Mj(t, bj),θ

}
= exp

{∫ t

0

h0(s) exp{γ>wj + αmj(s)}
}
ds,

denotes the subject-specific survival function.

Combining these equations with the maximum likelihood estimates or with the MCMC

sample from the posterior distribution of the parameters for the original data Dn, we can

devise a simple simulation scheme to obtain a Monte Carlo estimate of πj(u | t). More

details can be found in Yu et al. (2008) and Rizopoulos (2011, 2012).

2.2 Standard Landmarking

The landmarking approach provides an estimate of πj(u | t) by selecting the subjects at risk

at t from the original dataset Dn, and using these to derive predictions. More formally, let

R(t) = {i : Ti > t} denote the risk set, including all subjects who were not censored or dead

by the landmark time t. Then a Cox model is fitted to these subjects by resetting time to
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zero being the landmark time, i.e.,

hi(u) = lim
∆t→0

1

∆t
Pr
{
u ≤ T ∗i < u+ ∆t | T ∗i ≥ u,Yi(t)

}
= h0(u) exp

{
γ>wi + αỹi(t)

}
, u > t,

where the baseline hazard function h0(·) is assumed completely unspecified, wi denotes a

vector of baseline covariates, and ỹi(t) denotes the last available longitudinal response that

also enters into the model as an ordinary baseline covariate. Having fitted this Cox model,

an estimate of πj(u | t) is simply obtained by means of the Breslow estimator:

π̂LMj (u | t) = exp
[
−Ĥ0(u) exp{γ̂>wj + α̂ỹj(t)}

]
, (4)

where

Ĥ0(u) =
∑
i∈R(t)

I(Ti ≤ u)δi∑
`∈R(u) exp{γ̂>w` + α̂ỹ`(t)}

.

van Houwelingen (2007) and Zheng and Heagerty (2005) discuss several extensions of this

approach that have greater flexibility by allowing the regression coefficient α to depend on

time, and also, allowing the baseline hazard to be not only a function of the time since the

last measurement u − t, but also a function of the measurement time t, relaxing thus the

proportional hazards assumption.

2.3 Mixed Model Landmarking

Compared to the joint modeling approach, the standard landmark approach does not account

for the fact that the longitudinal outcome that is included as a time-varying covariate in

the Cox model contains measurement error. In addition, by only including the last available

longitudinal measurement in the Cox model, the landmark approach essentially does not

utilize the measurements recorded earlier. Furthermore, the standard landmark approach

assumes that the event risk depends on the last observed marker value, neglecting the impact

of the time elapsed between the longitudinal measurements and the landmark time. To
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account for these issues, we could make a compromise between the joint modeling approach

and landmarking. In particular, for any landmark time t, we could fit a mixed-effects model

of the form (1) in the adjusted risk set R(t). Under the fitted mixed model, we subsequently

derive the empirical Bayes estimates of the random effects of the subjects at risk, namely,

b̂i = arg max
b

{∑
l

log p(yi(til) | b; θ̂) + log p(b; θ̂)
}
,

where θ̂ denotes the vector of maximum likelihood estimates from the mixed model. Based

on these empirical Bayes estimates and θ̂ we can obtain an estimate of mi(t) denoted by

m̂i(t). Following, in the landmark dataset we fit the Cox model

hi(u) = h0(u) exp
{
γ>wi + αm̂i(t)

}
, u > t.

Using a similar calculation, we can derive the empirical Bayes estimates of the random

effects for subject j for whom we want to calculate predictions. Finally, following the same

procedure as in the standard landmark approach, we combine the derived term m̂j(t) with the

Breslow estimator of the cumulative baseline hazard and the estimated regression coefficients

from the Cox model to obtain the predictions:

π̂LMmixed
j (u | t) = exp

[
−Ĥ0(u) exp{γ̂>wj + α̂m̂j(t)}

]
. (5)

2.4 Heuristic Comparison between Landmarking and Joint Mod-

eling

The previous two sections illustrated that both landmarking and joint modeling can be uti-

lized to derive dynamically updated estimates of conditional survival probabilities πj(u | t).

The landmark approach can be more easily implemented in practice because it only requires

fitting a standard Cox model, whereas joint models require specialized software (Rizopoulos

2010, 2012). In addition, joint models seem to make more modeling assumptions than the
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landmark approach, which poses a concern regarding how misspecification of these assump-

tions may affect predictions. On the other hand, the landmark approach uses less information

than joint modeling (i.e., only the subjects at risk at the landmark time), and hence may be

less efficient.

Two key concepts that relate to the prediction problem we investigate here are first,

the nature of the longitudinal outcome when seen as time-varying covariate for the survival

model, and, second, the consistency of the predictions we obtain. With respect to the

former concept, the exo-/endogeneity of the longitudinal outcome can be discerned using

the definition provided by Kalbfleisch and Prentice (2002, Section 6.3). More specifically, a

covariate process is defined exogenous when the following condition is satisfied:

Pr
{
s ≤ T ∗i < s+ ds | T ∗i ≥ s,Yi(s)

}
= Pr

{
s ≤ T ∗i < s+ ds | T ∗i ≥ s,Yi(t)

}
,

for all s, t such that 0 < s ≤ t, and ds → 0. This definition implies that yi(·) is associated

with the rate of failures over time, but its future path up to any time t > s is not affected

by the occurrence of failure at time s. This will hold for time-varying covariates, such as

environmental factors or the period of the year (e.g., summer or winter), but it will not hold

for the most often used time-varying covariates, such as biomarkers or patient parameters.

With respect to landmarking and joint modeling, the fact that the landmark approach does

not specify the joint distribution of the longitudinal outcome and the event process implies

that it will only be valid for exogenous covariates. On the other hand, the joint modeling

approach directly translates to an endogenous time-varying covariate. To see this we study

the posterior distribution of the random effects under a joint model:

p(bi | Yi(t), Ti, δi) ∝ p(Yi(t) | bi){hi(Ti | bi)δiSi(Ti | bi)}p(bi),

from which we see that occurrence of an event (i.e., δi = 1) alters the random effects estimates

we will obtain, and as a result this will also alter the estimated future path of the longitudinal

outcome. As an illustration of this issue, we show in Figure 1 the estimates of the linear
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random slopes from a linear mixed model and a joint model fitted to the Aortic Valve dataset.

[Figure 1 about here.]

From this figure it is evident that the joint model returns larger random slopes estimates

for patients with an event than the mixed model, and analogously, smaller random slopes

estimates for patients who were event-free.

The second concept has been formalized by Jewell and Nielsen (1993). In particular,

they defined that a valid prediction function must satisfy the consistency condition:

hi(t+ s | Yi(t)) = E{hi(0 | Yi(t+ s)) | Yi(t)},

where the expectation is taken with respect to the sample path of the longitudinal outcome

from t to t+s. This condition implies that prediction at time t+s should be obtainable from

the prediction we have available at t by integrating out over the probability distribution of

the longitudinal outcome in the interval (t, t + s). As Jewell and Nielsen (1993) explain,

to satisfy the consistency condition, a prediction function needs to be derived from the

joint distribution of the longitudinal and time-to-event outcomes. Hence, both the standard

landmark approach and the mixed model landmark approach will not satisfy this condition,

because, once again, they do not model the joint distribution of the longitudinal and event

time processes. On the other hand, a correctly specified joint model, will provide consistent

predictions.

3 Measuring Predictive Performance

The assessment of the predictive performance of time-to-event models has received a lot of

attention in the statistical literature. In general, the developed methodology has focused on

calibration, i.e., how well the model predicts the observed data (Schemper and Henderson

2000; Gerds and Schumacher 2006) or discrimination, i.e., how well can the model discrim-

inate between patients that had the event from patients that did not (Harrell et al. 1996;
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Pencina et al. 2008). In the following we present discrimination and calibration measures

suitably adapted to the dynamic prediction setting. It should be noted that these measures

require in essence an estimate of πj(u | t), and therefore they are applicable under both land-

marking and joint modeling. In the following we will use the term π̂j(u | t) to generically

denote either the Monte Carlo estimate of (3), (4) or (5).

Standard approaches for estimating these measures in the presence of censoring are based

on inverse probability weighted estimators using Kaplan-Meier-type nonparametric estima-

tors for the censoring distribution (Uno et al. 2007; Parast et al. 2012; Parast and Cai 2013).

For joint models such estimators have been developed by Blanche et al. (2015). However,

in the context we consider here, it may very often be the case that the probability of cen-

soring depends on the observed longitudinal responses (e.g., a doctor decides to exclude a

patient from the study based on his biomarker values). In addition, most often in clinical

practice, censoring may also depend on other baseline covariates. In these cases, the afore-

mentioned estimators may produce biased estimates of predictive accuracy because they do

not account for these features. Hence, the predictive accuracy measures we present below

correct for censoring using model-based estimators of the censoring distribution. To account

for misspecification of the fitted model, we suggest that cross-validated versions of these

measures are considered in practice.

3.1 Discrimination

To take into account the dynamic nature of the longitudinal marker in discriminating between

subjects, we focus on a time interval of medical relevance within which the occurrence of

events is of interest. In this setting, a useful property of the model would be to successfully

discriminate between patients who are going to experience the event within this time frame

from patients who will not. To put this formally, as before, we assume that we have collected

longitudinal measurements Yj(t) = {yj(tjl); 0 ≤ tjl ≤ t, l = 1, . . . , nj} up to time point t

for subject j. We are interested in events occurring in the medically-relevant time frame

(t, t + ∆t] within which the physician can take an action to improve the survival chance
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of the patient. Under the assumed model and the methodology presented in Section 2,

we can define a prediction rule using πj(t + ∆t | t) that takes into account the available

longitudinal measurements Yj(t). In particular, for any value c in [0, 1] we can term subject

j as a case if πj(t+ ∆t | t) ≤ c (i.e., occurrence of the event) and analogously as a control if

πj(t+∆t | t) > c. For a randomly chosen pair of subjects {i, j}, in which both subjects have

provided measurements up to time t, the discriminative capability of the assumed model can

be assessed by the area under the receiver operating characteristic curve (AUC), which is

obtained for varying c and equals:

AUC(t,∆t) = Pr
[
πi(t+ ∆t | t) < πj(t+ ∆t | t) | {T ∗i ∈ (t, t+ ∆t]} ∩ {T ∗j > t+ ∆t}

]
,

that is, if subject i experiences the event within the relevant time frame whereas subject j

does not, then we would expect the assumed model to assign higher probability of surviving

longer than t+ ∆t for the subject who did not experience the event.

Estimation of AUC(t,∆t) is directly based on its definition, namely by appropriately

counting the concordant pairs of subjects. More specifically, we have the decomposition:

AÛC(t,∆t) = AÛC1(t,∆t) + AÛC2(t,∆t) + AÛC3(t,∆t) + AÛC4(t,∆t).

The first term AÛC1(t,∆t) refers to the pairs of subjects who are comparable (i.e., their

observed event times can be ordered),

Ω
(1)
ij (t) =

[
{Ti ∈ (t, t+ ∆t]} ∩ {δi = 1}

]
∩ {Tj > t+ ∆t},

where i, j = 1, . . . , n with i 6= j. For such comparable subjects i and j, we can estimate

and compare their survival probabilities πi(t + ∆t | t) and πj(t + ∆t | t), based on the

methodology presented in Section 2. This leads to a natural estimator for AUC1(t,∆t) as
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the proportion of concordant subjects out of the set of comparable subjects at time t:

AÛC1(t,∆t) =

∑n
i=1

∑n
j=1;j 6=i I{π̂i(t+ ∆t | t) < π̂j(t+ ∆t | t)} × I{Ω(1)

ij (t)}∑n
i=1

∑n
j=1;j 6=i I{Ω

(1)
ij (t)}

,

where I(·) denotes the indicator function. Analogously, AÛC2(t,∆t), AÛC3(t,∆t) and

AÛC4(t,∆t) refer to the pairs of subjects who due to censoring cannot be compared, namely

Ω
(2)
ij (t) =

[
{Ti ∈ (t, t+ ∆t]} ∩ {δi = 0}

]
∩ {Tj > t+ ∆t},

Ω
(3)
ij (t) =

[
{Ti ∈ (t, t+ ∆t]} ∩ {δi = 1}

]
∩
[
{Ti < Tj ≤ t+ ∆t} ∩ {δj = 0}

]
,

Ω
(4)
ij (t) =

[
{Ti ∈ (t, t+ ∆t]} ∩ {δi = 0}

]
∩
[
{Ti < Tj ≤ t+ ∆t} ∩ {δj = 0}

]
,

with again i, j = 1, . . . , n with i 6= j. Subjects in these sets contribute to the overall AUC

appropriately weighted with the probability that they would be comparable, i.e.,

AÛCm(t,∆t) = ∑n
i=1

∑n
j=1;j 6=i I{π̂i(t+ ∆t | t) < π̂j(t+ ∆t | t)} × I{Ω(m)

ij (t)} × ν̂(m)
ij∑n

i=1

∑n
j=1;j 6=i I{Ω

(m)
ij (t)} × ν̂(m)

ij

,

with m = 2, 3, 4 and ν̂
(2)
ij = 1− π̂i(t+ ∆t | Ti), ν̂(3)

ij = π̂j(t+ ∆t | Tj) and ν̂
(4)
ij = {1− π̂i(t+

∆t | Ti)} × π̂j(t+ ∆t | Tj).

3.2 Calibration

The assessment of the accuracy of predictions of survival models is typically based on the

expected error of predicting future events. In our setting, and again taking into account the

dynamic nature of the longitudinal outcome, it is of interest to predict the occurrence of

events at u > t given the information we have recorded up to time t (Schoop et al. 2011).
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This gives rise to expected prediction error:

PE(u | t) = E
[
L{Ni(u)− πi(u | t)}

]
,

where Ni(t) = I(T ∗i > t) is the event status at time t, L(·) denotes a loss function, such as

the absolute or square loss, and the expectation is taken with respect to the distribution of

the event times. An estimate of PE(u | t) that accounts for censoring has been proposed by

Henderson et al. (2002):

P̂E(u | t) = {n(t)}−1
∑
i:Ti≥t

I(Ti ≥ u)L{1− π̂i(u | t)}+ δiI(Ti < u)L{0− π̂i(u | t)}

+(1− δi)I(Ti < u)
[
π̂i(u | Ti)L{1− π̂i(u | t)}+ {1− π̂i(u | Ti)}L{0− π̂i(u | t)}

]
,

where n(t) denotes the number of subjects at risk at time t. The first two terms in the sum

correspond to patients who were alive after time u and dead before u, respectively; the third

term corresponds to patients who were censored in the interval [t, u]. Using the longitudinal

information up to time t, PE(u | t) measures the predictive accuracy at the specific time

point u. The estimated prediction error P̂E(u | t) can be used to provide a measure of

explained variation between nested models. Assuming model M1 is nested in model M2, we

can compute how much the extra structure in M2 improves accuracy by

R2
PE(u | t;M1,M2) = 1− P̂EM2(u | t)

/
P̂EM1(u | t).

4 Analysis of the Aortic Valve Dataset

We return to the Aortic Valve dataset introduced in Section 1. Our aim is to use the existing

data and provide accurate predictions of re-operation-free survival for future patients from

the same population, utilizing their baseline information, namely age, gender, BMI and the

type of operation they underwent, and their recorded aortic gradient levels. In our study,

a total of 77 (27%) patients received a sub-coronary implantation (SI) and the remaining
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208 patients a root replacement (RR). These patients were followed prospectively over time

with annual telephone interviews and biennial standardized echocardiographic assessment

of valve function until July 8, 2010. Echo examinations were scheduled at 6 months and 1

year postoperatively, and biennially thereafter, and at each examination, echocardiographic

measurements of aortic gradient (mmHg) were taken. By the end of follow-up, 1262 aortic

gradient measurements were recorded with an average of 4.3 measurements per patient (s.d.

2.4 measurements), 59 (20.7%) patients had died, and 73 (25.6%) patients required a re-

operation on the allograft. The composite event, re-operation or death, was observed for 125

(43.9%) patients, and the corresponding Kaplan-Meier estimator for the two intervention

groups is shown in Figure 2.

[Figure 2 about here.]

We can observe minimal differences in the re-operation-free survival rates between sub-

coronary implantation and root replacement, with only a slight advantage of sub-coronary

implantation towards the end of the follow-up. For the longitudinal process and because

aortic gradient exhibits right skewness, we will proceed in our analysis using the square root

transform of this outcome. Figure 3 depicts the subject-specific longitudinal profiles of the

square root aortic gradient for the two intervention groups.

[Figure 3 about here.]

We observe considerable variability in the shapes of these trajectories, but there are no

systematic differences apparent between the two groups.

We start by defining a set of joint models based on which predictions will be calculated.

For the longitudinal process we allow a flexible specification of the subject-specific square

root aortic gradient trajectories using cubic splines of time. More specifically, the linear

mixed model takes the form

yi(t) = β1SIi + β2RRi +
3∑

k=1

β2k+1{Bk(t, λ)× SIi}+ β2k+2{Bk(t, λ)× RRi}

+ bi0 +
3∑

k=1

bikBk(t, λ) + εi(t),
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where Bn(t, λ) denotes the B-spline basis for a natural cubic spline with boundary knots

at 0.5 and 13 years and two internal knots at λ = 2.5 and 6 years, SI and RR are the

dummy variables for the sub-coronary implantation and root replacement groups, respec-

tively, εi(t) ∼ N (0, σ2) and for the random effects bi ∼ N (0,D). Recent research in the

field of joint models has shown that different characteristics of the longitudinal profiles may

be more strongly associated with the risk of an event (Rizopoulos et al. 2014; Rizopoulos

2016). Following this work, for the survival process we consider three relative risk models,

each positing a different association structure between the two processes, namely:

M1 : hi(t) = h0(t) exp
{
γ1RRi + γ2Agei + γ3Femalei + α1mi(t)

}
,

M2 : hi(t) = h0(t) exp
{
γ1RRi + γ2Agei + γ3Femalei + α1mi(t) + α2m

′
i(t)
}
, m′i(t) =

dmi(t)

dt

M3 : hi(t) = h0(t) exp
{
γ1RRi + γ2Agei + γ3Femalei + α1

∫ t

0

mi(s)ds
}
,

where the baseline hazard is approximated with penalized B-splines, i.e.,

log h0(t) = γh0,0 +

Q∑
q=1

γh0,qBq(t,v),

with v denoting 13 internal knots placed at the corresponding percentiles of the observed

event times, and Female denotes the dummy variable for females. All computations have

been performed in R (version 3.3.2) using package JMbayes (Rizopoulos 2016) Tables 1

and 2 in the supplementary material show estimates and the corresponding 95% credible

intervals for the parameters in the longitudinal and survival submodels, respectively.

To assess the predictive ability of aortic gradient, but also to compare joint models with

the landmark approach, we consider three follow-up times, namely t∗ = 5.5, 7.5, and 9.5

years, and a medically relevant window of ∆t = 2 years. For each of the three follow-up times

we constructed the versions of the database with the patients at risk at the corresponding
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follow-up. Next, in these databases we fitted the Cox models:

M5 : hi(u) = h0(u) exp
{
γ1RRi + γ2Agei + γ3Femalei + α1ỹi(t

∗)
}
,

M6 : hi(u) = h0(u) exp
{
γ1RRi + γ2Agei + γ3Femalei

+ α1ỹi(t
∗) + α2ỹ

′
i(t
∗)
}
,

M7 : hi(u) = h0(u) exp
{
γ1RRi + γ2Agei + γ3Femalei

+ α1

t∗∑
s=0

yi(s)∆s
}
,

where u > t∗, variable ỹi(t
∗) denotes the last available square root aortic gradient value of

each patient before year t∗, ỹ′i(t
∗) denotes the slope defined from the last two available mea-

surements, and
∑

0≤s≤t∗ yi(s)∆s denotes the area under the step function defined from the

observed square root aortic gradient measurements up to t∗ years. The parameter estimates

and confidence intervals of these Cox models are presented in Table 3 in the supplementary

material.

Furthermore, for the same follow-up times we also calculated predictions using the mixed-

model landmark approach presented in Section 2.3. In particular, we fitted in each of the

landmark datasets a linear mixed model for the square root transform aortic gradient with

the same specification as the longitudinal submodel from the joint models presented above.

From these mixed models and utilizing the empirical Bayes estimates of the random effects,

we obtain fully specification of the subject-specific profile m̂i(t), and based on that we fitted

the Cox models

M8 : hi(u) = h0(u) exp
{
γ1RRi + γ2Agei + γ3Femalei + α1m̂i(t

∗)
}
,

M9 : hi(u) = h0(u) exp
{
γ1RRi + γ2Agei + γ3Femalei

+ α1m̂i(t
∗) + α2m̂

′
i(t
∗)
}
,

M10 : hi(u) = h0(u) exp
{
γ1RRi + γ2Agei + γ3Femalei

+ α1

∫ u

0

m̂i(s)ds
}
.
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The parameter estimates and confidence intervals of these Cox models are also presented in

Table 3 in the supplementary material.

We evaluate both discrimination and calibration capabilities of the aforementioned mod-

els using the predictive accuracy measures presented in Section 3. For the calculation of the

prediction error we use the quadratic loss function, i.e., L(x) = x2. To account for potential

over-fitting in the calculation of these measures we utilize a repeated 5-fold cross-validation

procedure. More specifically, 20 times we have randomly split the original dataset in five

folds. For each of the 20 repetitions, we performed a cross-validation procedure, in which

each model was fitted 5 times in 4/5 of the patients in the training dataset, and the accuracy

measures were calculated on 1/5 of the patients in the test dataset. The results from the

repeated cross-validation procedure are presented in Table 1.

[Table 1 about here.]

With respect to the discrimination capability, we observe that the value, and value + slope

functional forms show higher AUCs than the cumulative effect parameterization. With

respect to the prediction error we observe minimal differences between the different functional

forms. A comparison between the landmark approaches and joint modeling in this particular

dataset shows that joint models perform marginally better in terms of both the prediction

error and discrimination.

5 Simulations

5.1 Design

We performed a series of simulations to compare landmarking with joint models in the

context of dynamic predictions. The design of our simulation study is motivated by the set

of models we fitted to the Aortic Valve dataset in Section 4. In particular, we assume 1000

patients who have been followed-up for a period of 15 years, and were planned to provide

longitudinal measurements at baseline and afterwards at 14 random follow-up times. For
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the longitudinal process, and similarly to the model fitted in the Aortic Valve dataset, we

used B-splines of time with two internal knots placed at 2.5 and 6 years, and boundary knots

placed at 0.5 and 13 years, i.e., the form of the model is as follows

yi(t) = β1Trt0i + β2Trt1i +
3∑

k=1

β2k+1{Bk(t, λ)× Trt0i}+ β2k+2{Bk(t, λ)× Trt1i}

+ bi0 +
3∑

k=1

bikBk(t, λ) + εi(t),

where Bn(t,λ) denotes the B-spline basis for a natural cubic spline with λ = (0.5, 2.5, 6, 13),

Trt0 and Trt1 are the dummy variables for the two treatment groups, εi(t) ∼ N (0, σ2)

and bi ∼ N (0,D). Figure 1 in the supplementary material gives a visual impression of the

subject-specific profiles under the posited model.

For the survival process, we have assumed three scenarios, each one corresponding to a

different functional form for the association structure between the two processes:

Scenario I: hi(t) = h0(t) exp
{
γ1Trt1i + α1mi(t)

}
,

Scenario II: hi(t) = h0(t) exp
{
γ1Trt1i + α1mi(t) + α2m

′
i(t)
}
,

Scenario III: hi(t) = h0(t) exp
{
γ1Trt1i + α1

∫ t

0

mi(s)ds
}
,

with h0(t) = exp(γ0)σtt
σt−1, i.e., the Weibull baseline hazard. The values for the regression

coefficients in the longitudinal and survival submodels, the variance of the error terms of

the mixed model, the covariance matrix for the random effects, and the scale of the Weibull

baseline risk function are given in Section 2.1 of the supplementary material, and have been

chosen such that the distribution of the event times and the distribution of the follow-

up longitudinal measurements were comparable across scenarios. To better reflect clinical

practice, the censoring distribution is allowed to depend on treatment. In particular, for

Trt0 censoring times were simulated from a uniform distribution in the interval (0, 10), and

for Trt1 from a uniform distribution in the interval (0, 14). This resulted in about 45%
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censoring in each scenario. For each scenario 1000 datasets were simulated.

5.2 Analysis

Mimicking the real-life use of a prognostic model, and to assess any potential over-fitting

issues, the comparison between the landmark and joint modeling approaches is based on

subjects who were not used in fitting the corresponding models. More specifically, under

each scenario and for each simulated dataset, we randomly excluded 500 subjects that were

not used in fitting the models based on which the dynamic survival probabilities are com-

puted. Evaluation of predictive ability was performed at the same three follow-up times we

considered for the Aortic Valve dataset, namely t∗ = 5.5, 7.5, and 9.5 years, and a medically

relevant window of ∆t = 2 years. Furthermore, we assess two aspects of model misspecifica-

tion, namely, misspecification of the functional form that relates the longitudinal and survival

outcomes, and misspecification of the functional form of the time effect in the longitudinal

model. More specifically, for each simulated dataset we fitted:

• Three joint models, with the correct specification of the longitudinal submodel, and

survival submodels:

hi(t) = h0(t) exp
{
γ1Trt1i + α1mi(t)

}
,

hi(t) = h0(t) exp
{
γ1Trt1i + α1mi(t) + α2m

′
i(t)
}
,

hi(t) = h0(t) exp
{
γ1Trt1i + α1

∫ t

0

mi(s)ds
}
,

and, another three joint models with the same survival submodels as above, and a

misspecified longitudinal submodel assuming linear longitudinal evolutions instead of

splines, i.e.,

yi(t) = β1Trt0i + β2Trt1i + β3{t× Trt0i}+ β3{t× Trt1i}+ εi(t).

• For the standard landmark approach and for each of the three follow-up times t∗ we
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constructed the versions of the database with the patients at risk at the corresponding

follow-up. Following, in these databases we fitted the Cox models:

hi(u) = h0(u) exp
{
γTrt1i + α1ỹi(t

∗)
}
,

hi(u) = h0(u) exp
{
γTrt1i + α1ỹi(t

∗) + α2ỹ
′
i(t
∗)
}
,

hi(u) = h0(u) exp
{
γTrt1i + α1

t∗∑
s=0

yi(s)∆s
}
,

where u > t∗, the definitions of ỹi(t
∗) and ỹ′i(t

∗) are the same as in Section 4.

• For the same follow-up times we also calculated predictions using the mixed-model

landmark approach. In particular, in each of the landmark datasets we fitted the

correctly-specified linear mixed model, and utilizing the empirical Bayes estimates of

the random effects, we obtain a full specification of the subject-specific profile m̂i(t).

Using these terms we fitted the Cox models

hi(u) = h0(u) exp
{
γTrt1i + α1m̂i(t

∗)
}
,

hi(u) = h0(u) exp
{
γTrt1i + α1m̂i(t

∗) + α2m̂
′
i(t
∗)
}
,

hi(u) = h0(u) exp
{
γTrt1i + α1

∫ u

0

m̂i(s)ds
}
.

In addition, similarly to joint models above, predictions from the mixed-model land-

mark approach were also calculated from the misspecified longitudinal model that

assumes linear time evolutions.

For all the aforementioned combinations we evaluated both discrimination and calibration

capabilities using the predictive accuracy measures presented in Section 3. Similarly to the

Aortic Valve dataset, for all comparisons for the AUC we set ∆t = 2 and for PE u = t+2. In

addition, for the calculation of the prediction error we use again the quadratic loss function.

However, in order to obtain a more objective comparison between the two frameworks, the

censoring weights ν
(m)
ij ,m = 2, 3, 4 in the calculation of the AUC, and πi(u | Ti) in the

calculation of PE are based on the true model under each scenario, using the true parameter
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values and true values of the random effects.

5.3 Results

The results from the simulation study are presented in Figures 2–13 in Section 2.2 of the

supplementary material. Based on these results we can make the following observations:

First, when there is no misspecification of the functional form of the time effect in the

longitudinal submodel, in the majority of the cases the joint modeling approach seems to

outperform the landmark approaches. However, when there is a strong misspecification of

the time effect, the differences become smaller, and in a few cases the landmark approaches

outperformed joint models. Second, misspecification of the functional form that links the

two processes (i.e., current value, current value & current slopes and cumulative effect) did

not seem to particularly influence the relative performance between the joint modeling and

landmark approaches. The previous two observations are with respect to both the AUCs

and the prediction errors.

6 Discussion

In this work we have contrasted and compared two popular approaches, namely landmarking

and joint modeling, for producing dynamically-updated predictions of survival probabilities

with time-dependent covariates. Landmarking can effortlessly be implemented in practice

but to be valid it implies strong assumptions about the path of the time-varying covariate,

which may be unrealistic for longitudinal biomarker measurements. On the other hand, joint

modeling allows for greater flexibility in the attributes of time-dependent covariate process,

but requires more modeling assumptions to achieve this and is generally more computation-

ally intensive. Our simulation study and the analysis of the motivating Aortic Valve dataset

have shown that, in general, there is a gain from considering the joint modeling approach

instead of landmarking. However, it should be mentioned that only the standard landmark-

ing approach and its mixed models extensions have been considered due to the fact that this
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versions of the technique are predominantly used in practice. In the literature several other

extensions of landmarking have been proposed that may alleviate some of the shortcomings

of the standard landmarking but at the expense of extra computational complexity (van

Houwelingen and Putter 2011; Parast et al. 2012; Parast and Cai 2013; Nicolaie et al. 2013).

Similarly, several extensions of joint models have been proposed in the literature to further

improved predictions from joints models (Rizopoulos et al. 2014; Andrinopoulou et al. 2015;

Andrinopoulou and Rizopoulos 2016; Njeru Njagi et al. 2016).

Regarding the software implementation of the methodology presented in the paper, the

landmark approach is readily available in all statistical software that fit Cox models. The

fitting of joint models, the derivation of dynamic predictions (for the survival and longitudi-

nal outcomes) and the calculation of the calibration and discrimination measures presented

in Section 3 are implemented in the freely available R packages JM (Rizopoulos 2010, 2012)

and JMbayes (Rizopoulos 2016), which can be downloaded from CRAN at http://cran.

r-project.org/package=JM and http://cran.r-project.org/package=JMbayes, respec-

tively. Code to replicate the analysis in the paper is available on the GitHub repository

https://github.com/drizopoulos/jm_and_lm.

Supplementary material

Supplementary material referenced in Section 5 are available in SuppCompParam.pdf.
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Blanche, P., Proust-Lima, C., Loubére, L., Berr, C., Dartigues, J., and Jacqmin-Gadda, H.

(2015). Quantifying and comparing dynamic predictive accuracy of joint models for longi-

tudinal marker and time-to-event in presence of censoring and competing risks. Biometrics

71, 102–113.

Gerds, T. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in

general survival models with right-censored event times. Biometrical Journal 48, 1029 –

1040.

Harrell, F., Kerry, L., and Mark, D. (1996). Multivariable prognostic models: issues in

developing models, evaluating assumptions and adequacy, and measuring and reducing

errors. Statistics in Medicine 15, 361–387.

Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measure-

ments and event time data. Biostatistics 1, 465–480.

24



Henderson, R., Diggle, P., and Dobson, A. (2002). Identification and efficacy of longitudinal

markers for survival. Biostatistics 3, 33–50.

Ibrahim, J., Chen, M., and Sinha, D. (2001). Bayesian Survival Analysis. Springer-Verlag,

New York.

Jewell, N. and Nielsen, J. (1993). A framework for consistent prediction rules based on

markers. Biometrika 80, 153–164.

Kalbfleisch, J. and Prentice, R. (2002). The Statistical Analysis of Failure Time Data. Wiley,

New York, 2nd edition.

Nicolaie, M., van Houwelingen, J., de Witte, T., and Putter, H. (2013). Dynamic prediction

by landmarking in competing risks. Statistics in Medicine 32, 2031–2047.

Njeru Njagi, E., Molenberghs, G., Rizopoulos, D., Verbeke, G., Kenward, M., Dendale, P.,

and Willekens, K. (2016). A flexible joint modelling framework for longitudinal and time-

to-event data with overdispersion. Statistical Methods in Medical Research 25, 1661–1676.

Parast, L. and Cai, T. (2013). Landmark risk prediction of residual life for breast cancer

survival. Statistics in Medicine 32, 3459–3471.

Parast, L., Cheng, S.-C., and Cai, T. (2012). Landmark prediction of long term survival

incorporating short term event time information. Journal of the American Statistical

Association 107, 1492–1501.

Pencina, M., D’Agostino, Sr, R., D’Agostino, Jr, R., and Vasan, R. (2008). Evaluating the

added predictive ability of a new marker: From area under the ROC curve to reclassifica-

tion and beyond. Statistics in Medicine 27, 157–172.

Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic

tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint

modeling approach. Biostatistics 10, 535–549.

25



Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-

to-event data. Journal of Statistical Software 35 (9), 1–33.

Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for

longitudinal and time-to-event data. Biometrics 67, 819–829.

Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event Data, with Appli-

cations in R. Chapman & Hall/CRC, Boca Raton.

Rizopoulos, D. (2016). The R package JMbayes for fitting joint models for longitudinal and

time-to-event data using MCMC. Journal of Statistical Software 72 (7), 1–45.

Rizopoulos, D., Hatfield, L., Carlin, B., and Takkenberg, J. (2014). Combining dynamic

predictions from joint models for longitudinal and time-to-event data using Bayesian model

averaging. Journal of the American Statistical Association 109, 1385–1397.

Schemper, M. and Henderson, R. (2000). Predictive accuracy and explained variation in Cox

regression. Biometrics 56, 249–255.

Schoop, R., Schumacher, M., and Graf, E. (2011). Measures of prediction error for survival

data with longitudinal covariates. Biometrical Journal 53, 275–293.

Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data:

An overview. Statistica Sinica 14, 809–834.

Uno, H., Cai, T., Tian, L., and Wei, L. (2007). Evaluating prediction rules for t-year survivors

with censored regression models. Journal of the American Statistical Association 102,

527–537.

van Houwelingen, H. (2007). Dynamic prediction by landmarking in event history analysis.

Scandinavian Journal of Statistics 34, 70–85.

van Houwelingen, H. and Putter, H. (2011). Dynamic Prediction in Clinical Survival Anal-

ysis. Chapman & Hall/CRC, Boca Raton.

26



Yu, M., Taylor, J., and Sandler, H. (2008). Individualized prediction in prostate cancer

studies using a joint longitudinal-survival-cure model. Journal of the American Statistical

Association 103, 178–187.

Zheng, Y. and Heagerty, P. (2005). Partly conditional survival models for longitudinal data.

Biometrics 61, 379–391.

27



Random Slopes from Mixed Model
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Figure 1: Estimated random slopes from a linear mixed and a joint model split according to
event status.
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the sub-coronary implantation (SI) and root replacement (RR) groups.
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Figure 3: Subject-specific profiles for the square root aortic gradient separately for the sub-
coronary implantation (SI) and root replacement (RR) groups.
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Table 1: Cross-validated AUC and prediction error using the quadratic loss functions for the
joint models, the landmarking approach and the landmarking combined with a linear mixed
model for different functional forms. The accuracy measures are estimated for the follow-up
times 5.5, 7.5 and 9.5 years, and a medically-relevant window of 2 years. The results are
based on a 5-fold cross-validation repeated 20 times.

AUC(t∗, 2) PE(t∗ + 2 | t∗)
functional form t∗ JM LM LMmixed JM LM LMmixed

value 5.5 0.602 0.609 0.592 0.076 0.078 0.079
value+slope 5.5 0.605 0.557 0.516 0.076 0.079 0.078
cumulative 5.5 0.558 0.473 0.554 0.077 0.080 0.080
value 7.5 0.598 0.496 0.508 0.100 0.104 0.104
value+slope 7.5 0.591 0.462 0.500 0.100 0.104 0.104
cumulative 7.5 0.600 0.504 0.499 0.096 0.104 0.104
value 9.5 0.607 0.604 0.564 0.134 0.144 0.144
value+slope 9.5 0.618 0.611 0.594 0.132 0.147 0.141
cumulative 9.5 0.563 0.537 0.545 0.129 0.143 0.143
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