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Web Appendix A. Joint Model for Time to Event and Longitudinal Outcomes

We start with the definition of the joint modeling framework that will be used to fit a model

to the available dataset, and then to plan biopsies for future patients. Let T ∗i denote the true

Gleason reclassification (referred to as GR hereafter) time for the i-th patient enrolled in an

AS program. Let S be the schedule of biopsies prescribed to this patient. The corresponding

vector of time of biopsies is denoted by T Si = {T Si0, T Si1, . . . , T SiNS
i

;T Sij < T Sik, ∀j < k}, where

NS
i are the total number of biopsies conducted. Because of the periodical nature of biopsy

schedules, the true GR time T ∗i cannot be observed directly and it is only known to fall in an

interval li < T ∗i 6 ri, where li = T S
iNS

i −1
, ri = T S

iNS
i

if GR is observed, and li = T S
iNS

i
, ri = ∞

if GR is not observed yet. Further let yi denote the ni × 1 vector of PSA levels for the i-th

patient. For a sample of n patients the observed data is denoted by Dn = {li, ri,yi; i =

1, . . . , n}.

The longitudinal outcome of interest, namely PSA level, is continuous in nature and thus

to model it the joint model utilizes a linear mixed effects model (LMM) of the form:

yi(t) = mi(t) + εi(t)

= xTi (t)β + zTi (t)bi + εi(t),

where xi(t) denotes the row vector of the design matrix for fixed effects and zi(t) denotes

the same for random effects. Correspondingly the fixed effects are denoted by β and random

effects by bi. The random effects are assumed to be normally distributed with mean zero and

q×q covariance matrix D. The true and unobserved PSA level at time t is denoted by mi(t).

Unlike yi(t), the former is not contaminated with the measurement error εi(t). The error is

assumed to be normally distributed with mean zero and variance σ2, and is independent of

the random effects bi.

To model the effect of PSA on hazard of GR, joint models utilize a relative risk sub-model.

The hazard of GR for patient i at any time point t, denoted by hi(t), depends on a function
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of subject specific linear predictor mi(t) and/or the random effects:

hi(t | Mi(t),wi) = lim
∆t→0

Pr
{
t 6 T ∗i < t+ ∆t | T ∗i > t,Mi(t),wi

}
∆t

= h0(t) exp
[
γTwi + f{Mi(t), bi,α}

]
, t > 0,

where Mi(t) = {mi(v), 0 6 v 6 t} denotes the history of the underlying PSA levels up

to time t. The vector of baseline covariates is denoted by wi, and γ are the corresponding

parameters. The function f(·) parametrized by vector α specifies the functional form of PSA

levels (Brown, 2009; Rizopoulos, 2012; Taylor et al., 2013; Rizopoulos et al., 2014) that is

used in the linear predictor of the relative risk model. Some functional forms relevant to the

problem at hand are the following: f{Mi(t), bi,α} = αmi(t),

f{Mi(t), bi,α} = α1mi(t) + α2m
′
i(t), with m′i(t) = dmi(t)

dt
.

These formulations of f(·) postulate that the hazard of GR at time t may be associated

with the underlying level mi(t) of the PSA at t, or with both the level and velocity m′i(t)

of the PSA at t. Lastly, h0(t) is the baseline hazard at time t, and is modeled flexibly using

P-splines. More specifically:

log h0(t) = γh0,0 +

Q∑
q=1

γh0,qBq(t,v),

where Bq(t,v) denotes the q-th basis function of a B-spline with knots v = v1, . . . , vQ and

vector of spline coefficients γh0 . To avoid choosing the number and position of knots in the

spline, a relatively high number of knots (e.g., 15 to 20) are chosen and the corresponding

B-spline regression coefficients γh0 are penalized using a differences penalty (Eilers and Marx,

1996).

Web Appendix A.1 Parameter Estimation

We estimate parameters of the joint model using Markov chain Monte Carlo (MCMC)

methods under the Bayesian framework. Let θ denote the vector of the parameters of the



Supplementary Materials for “Personalized Schedules” 3

joint model. The joint model postulates that given the random effects, time to GR and

longitudinal responses taken over time are all mutually independent. Under this assumption

the posterior distribution of the parameters is given by:

p(θ, b | Dn) ∝
n∏
i=1

p(li, ri,yi | bi,θ)p(bi | θ)p(θ)

∝
n∏
i=1

p(li, ri | bi,θ)p(yi | bi,θ)p(bi | θ)p(θ),

p(bi | θ) =
1√

(2π)qdet(D)
exp(bTi D

−1bi),

where the likelihood contribution of longitudinal outcome conditional on random effects is:

p(yi | bi,θ) =
1(√

2πσ2
)ni

exp

(
− ‖yi −X iβ −Zibi‖2

σ2

)
,

X i = {xi(ti1)T , . . . ,xi(tini
)T}T ,

Zi = {zi(ti1)T , . . . ,zi(tini
)T}T .

The likelihood contribution of the time to GR outcome is given by:

p(li, ri | bi,θ) = exp
{
−
∫ li

0

hi(s | Mi(s),wi)ds
}
− exp

{
−
∫ ri

0

hi(s | Mi(s),wi)ds
}
. (1)

The integral in (1) does not have a closed-form solution, and therefore we use a 15-point

Gauss-Kronrod quadrature rule to approximate it.

We use independent normal priors with zero mean and variance 100 for the fixed effects

β, and inverse Gamma prior with shape and rate both equal to 0.01 for the parameter σ2.

For the variance-covariance matrix D of the random effects we take inverse Wishart prior

with an identity scale matrix and degrees of freedom equal to q (number of random effects).

For the relative risk model’s parameters γ and the association parameters α, we use a a

global-local ridge-type shrinkage prior. For example, for the s-th element of α we assume

(similarly for γ):

αs ∼ N (0, τψs), τ−1 ∼ Gamma(0.1, 0.1), ψ−1
s ∼ Gamma(1, 0.01).

The global smoothing parameter τ has sufficiently mass near zero to ensure shrinkage, while
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the local smoothing parameter ψs allows individual coefficients to attain large values. For the

penalized version of the B-spline approximation to the baseline hazard, we use the following

prior for parameters γh0 (Lang and Brezger, 2004):

p(γh0 | τh) ∝ τ
ρ(K)/2
h exp

(
− τh

2
γTh0Kγh0

)
,

where τh is the smoothing parameter that takes a Gamma(1, 0.005) hyper-prior in order to

ensure a proper posterior for γh0 , K = ∆T
r ∆r + 10−6I, where ∆r denotes the r-th difference

penalty matrix, and ρ(K) denotes the rank of K.
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Web Appendix B. Derivations for Equation 6 and 7 of the Main Manuscript

In this section we present the derivations for Equation 6 and 7 of the main manuscript. To

this end, we first expand the formula for dynamic survival probability presented in Equation

4 of the main manuscript.

πj(u | t, s) = Pr
{
T ∗j > u | T ∗j > t,Yj(s

)
, Dn)

=

∫ ∫
Pr
(
T ∗j > u | T ∗j > t, bj,θ

)
p
{
bj | T ∗j > t,Yj(s),θ

}
p(θ | Dn)dbjdθ

=

∫ ∫
exp

{
−Hj(u|bj,θ)

}
exp

{
−Hj(t|bj,θ)

} p{bj | T ∗j > t,Yj(s),θ
}
p(θ | Dn)dbjdθ,

(2)

where Hj(u|bj,θ) =
∫ u

0
hi(s | bj,θ

)
ds is the cumulative hazard up to time point u.

Web Appendix B.1 Derivation of Equation 6 of the Main Manuscript

Eg(T
∗
j ) =

∫ ∞
t

T ∗j g(T ∗j )dT ∗j .

Using integration by parts, wherein d
{
− πj(T ∗j | t, s)

}
/dT ∗j = g(T ∗j ),

Eg(T
∗
j ) =

[
− T ∗j πj(T ∗j | t, s)

]∞
t

+

∫ ∞
t

πj(T
∗
j | t, s)

d(T ∗j )

dT ∗j
dT ∗j

= tπj(t | t, s)− lim
T ∗
j→∞

T ∗j πj(T
∗
j | t, s)

+

∫ ∞
t

πj(T
∗
j | t, s)dT ∗j ,

where πj(t | t, s) = Pr
{
T ∗j > t | T ∗j > t,Yj(s), Dn

}
= 1. As for limT ∗

j→∞ T
∗
j πj(T

∗
j | t, s), the

limit can be interchanged with the integral in Equation 2, because as T ∗j →∞ the integrand

in the equation converges uniformly on the domain of (bj,θ
)
. Thus,

lim
T ∗
j→∞

T ∗j πj(T
∗
j | t, s) =

∫ ∫
lim

T ∗
j→∞

T ∗j

exp
{
Hj(T ∗j |bj,θ)

}
×
p
{
bj | T ∗j > t,Yj(s),θ

}
p(θ | Dn)

exp
{
−Hj(t|bj,θ)

} dbjdθ.
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Using L’Hospital’s rule,

lim
T ∗
j→∞

T ∗j πj(T
∗
j | t, s) =

∫ ∫
1

limT ∗
j→∞ exp

{
Hj(T ∗j |bj,θ)

}
H ′j(T

∗
j |bj,θ)

×
p
{
bj | T ∗j > t,Yj(s),θ

}
p(θ | Dn)

exp
{
−Hj(t|bj,θ)

} dbjdθ

=

∫ ∫
0×

p
{
bj | T ∗j > t,Yj(s),θ

}
p(θ | Dn)

exp
{
−Hj(t|bj,θ)

} dbjdθ

= 0.

In light of these results, we obtain:

Eg(T
∗
j ) = t+

∫ ∞
t

πj(T
∗
j | t, s)dT ∗j .

Web Appendix B.2 Derivation of Equation 7 of the Main Manuscript

Since varg(T
∗
j ) = Eg{(T ∗j )2} − Eg(T ∗j )2, we first show the derivation for Eg{(T ∗j )2}.

Eg{(T ∗j )2} =

∫ ∞
t

(T ∗j )2g(T ∗j )dT ∗j .

Using integration by parts, wherein d
{
− πj(T ∗j | t, s)

}
/dT ∗j = g(T ∗j ),

Eg
{

(T ∗j )2
}

=
[
− (T ∗j )2πj(T

∗
j | t, s)

]∞
t

+

∫ ∞
t

πj(T
∗
j | t, s)

d(T ∗j )2

dT ∗j
dT ∗j

= t2πj(t | t, s)− lim
T ∗
j→∞

(T ∗j )2πj(T
∗
j | t, s)

+ 2

∫ ∞
t

T ∗j πj(T
∗
j | t, s)dT ∗j

= t2 + 2

∫ ∞
t

T ∗j πj(T
∗
j | t, s)dT ∗j .

Therefore,

varg(T
∗
j ) = t2 + 2

∫ ∞
t

T ∗j πj(T
∗
j | t, s)dT ∗j

−
[
t2 +

{∫ ∞
t

πj(T
∗
j | t, s)dT ∗j

}2

+ 2t

∫ ∞
t

πj(T
∗
j | t, s)dT ∗j

]
= 2

∫ ∞
t

(T ∗j − t)πj(T ∗j | t, s)dT ∗j −
{∫ ∞

t

πj(T
∗
j | t, s)dT ∗j

}2

.
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Web Appendix C. Parameter Estimates for the PRIAS dataset

The posterior parameter estimates for the joint model we fitted to the PRIAS dataset are

shown in Web Table 1 (longitudinal sub-model) and Web Table 2 (relative risk sub-model),

and parameter estimates for the variance-covariance matrix from the longitudinal sub-model

are the following:

D =


0.409 0.105 −0.140

0.105 1.725 0.431

−0.140 0.431 1.326


The effect of age only affects the baseline log2 PSA score. However it is so small that it can

be ignored for all practical purposes. Since the longitudinal evolution of log2 PSA is modeled

with non-linear terms, the interpretation of the coefficients corresponding to time is not

straightforward. In lieu of the interpretation we present the fitted evolution of PSA (Web

Figure 1) over a period of 10 years for a hypothetical patient.

Web Table 1

Longitudinal sub-model estimates for mean and 95% credible interval, for the joint model fitted to the PRIAS dataset.

Mean Std. Dev 2.5% 97.5% P

Intercept 2.455 0.012 2.433 2.480 <0.000
(Age− 70) 0.003 0.001 4.9 ×10−4 0.006 0.032
(Age− 70)2 -0.001 1.4 ×10−4 -0.001 -3.5 ×10−4 <0.000
Spline: visitTimeYears[0.0, 0.1] -0.006 0.012 -0.031 0.017 0.674
Spline: visitTimeYears[0.1, 0.5] 0.228 0.019 0.192 0.265 <0.000
Spline: visitTimeYears[0.5, 4.0] 0.140 0.029 0.088 0.197 <0.000
Spline: visitTimeYears[4.0, 7.0] 0.303 0.039 0.227 0.379 <0.000
σ 0.324 0.001 0.321 0.326

For the relative risk sub-model, the parameter estimates in Web Table 2 show that only

log2 PSA velocity is strongly associated with hazard of GR. For any patient, a unit increase in

log2 PSA velocity corresponds to a 11 time increase in hazard of GR. The effect of log2 PSA

value and effect of age on hazard of GR are small enough to be safely ignored for all practical

purposes.
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Web Figure 1. Fitted evolution of log2 PSA over a period of 10 years with 95% credible

interval, for a patient who was inducted in AS at the Age of 70 years.

Web Table 2

Relative risk sub-model estimates for mean and 95% credible interval, for the joint model fitted to the PRIAS dataset.

Variable Mean Std. Dev 2.5% 97.5% P

(Age− 70) 0.037 0.006 0.025 0.0490 <0.000
(Age− 70)2 -0.001 0.001 -0.003 1.8 ×10−4 0.104
log2 PSA -0.049 0.064 -0.172 0.078 0.414
Slope(log2 PSA) 2.407 0.319 1.791 3.069 <0.000
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Web Appendix D. Personalized Schedules for the Demonstration Patients from

PRIAS.

In this section we demonstrate the application of personalized schedules on patients from

PRIAS. In Section 5.2 of the main manuscript we demonstrated personalized schedules for

the first demonstration patient. Here we demonstrate them for the remaining two patients.

The evolution of PSA, repeat biopsy history and proposed times of biopsies for the second

demonstration patient are shown in the top panel of Web Figure 2. It can be seen that the

schedule of biopsy based on expected time of GR adjusts the times of biopsy according to

the rise in hazard, which increases due to steep rise in log2 PSA velocity. More specifically,

at year two the proposed biopsy time is 12.5 years whereas at year four it decreases to 5.3

years. On average, a biopsy scheduled using expected time of GR at year two should have a

larger offset OS
j compared to the same at year four. This is because the standard deviation

of g(T ∗j ), given by SDg(T
∗
j ) =

√
varg(T ∗j ), is considerably lower at year four as shown in the

bottom panel of Figure 2. In the figure it can be seen that the standard deviation decreases

with sharp increase in PSA. As for the schedules based on dynamic risk of GR, the threshold

κ was automatically chosen using F1 score, and was estimated to be between 1 and 0.9 at

all time points. This value of κ corresponds to a time very close to the time of latest biopsy

(t = 0). Hence the biopsies are scheduled much earlier than those based on expected time of

GR.
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Web Figure 2. Top panel: Evolution of PSA, history of repeat biopsies and corresponding

personalized schedules for the second demonstration patient. Bottom Panel: History of repeat

biopsies and SDg(T
∗
j ) =

√
varg(T ∗j ) over time for the second demonstration patient.
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Patient 2340 presents a case where information from PSA levels and repeat biopsies is

conflicting. In Web Figure 3 we can see that the PSA for this patient increased by 100%

between year two and year 3.2. If only information from PSA is considered, then we can see

that proposed time of biopsy based on expected time of GR is preponed from 14.6 to 13.0

years during this period. However, if we also take into account the negative result from the

repeat biopsy at year 2.5, then the proposed time of biopsy is postponed from 14.6 years to

15 years. Thus more weight is given to a recent negative biopsy result than PSA, which is in

accordance with the clinical practice. The proposed time of biopsy based on dynamic risk of

GR is also postponed from 2.3 to 3.6 years in light of the negative biopsy result.
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Web Figure 3. Evolution of PSA, history of repeat biopsies and corresponding personal-

ized schedules for the third demonstration patient.
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Web Appendix E. Simulation Study

Web Appendix E.1 Simulation Results for Dynamic Risk of GR Based Approach With a

Fixed κ = 0.95

In the main manuscript, for the personalized schedules based on dynamic risk of GR we

chose κ on the basis of F1 score. However while conducting the simulation study, we also

tried a fixed κ of 0.95, which means that the next biopsy is scheduled at a time point where

the dynamic risk of GR is 5%. The results for this approach are presented in Web Table 3.

In the table, the abbreviation Dyn. risk GR (F1 score) corresponds to personalized schedules

based on dynamic risk of GR based approach, with κ chosen on the basis of F1 score. The

abbreviation Hybrid (F1 score) corresponds to the hybrid approach between median time of

GR and dynamic risk of GR (κ chosen on the basis of F1 score).
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Web Table 3

Estimated mean and standard deviation of the number of biopsies and offset (months).

a) All subgroups

Schedule E(NS
j ) E(OS

j ) SD(NS
j ) SD(OS

j )

Annual 5.24 6.01 2.53 3.46
PRIAS 4.90 7.71 2.36 6.31
Dyn. risk GR (F1 score) 4.69 6.66 2.19 4.38
Hybrid (F1 score) 3.75 9.70 1.71 7.25
Dyn. risk GR (κ = 0.95) 5.15 6.02 2.51 3.47
Med. GR time 2.06 13.88 1.41 11.80
Exp. GR time 1.92 15.08 1.19 12.11

b) Subgroup G1

Schedule E(NS
j ) E(OS

j ) SD(NS
j ) SD(OS

j )

Annual 4.32 6.02 3.13 3.44
PRIAS 4.07 7.44 2.88 6.11
Dyn. risk GR (F1 score) 3.85 6.75 2.69 4.44
Hybrid (F1 score) 3.25 10.25 2.16 8.07
Dyn. risk GR (κ = 0.95) 4.23 6.05 3.10 3.46
Med. GR time 1.84 20.66 1.76 14.62
Exp. GR time 1.72 21.65 1.47 14.75

c) Subgroup G2

Schedule E(NS
j ) E(OS

j ) SD(NS
j ) SD(OS

j )

Annual 5.18 5.98 2.13 3.47
PRIAS 4.85 7.70 2.00 6.29
Dyn. risk GR (F1 score) 4.63 6.66 1.82 4.37
Hybrid (F1 score) 3.68 10.32 1.37 7.45
Dyn. risk GR (κ = 0.95) 5.09 5.99 2.11 3.47
Med. GR time 1.89 12.33 1.16 9.44
Exp. GR time 1.77 13.54 0.98 9.83

d) Subgroup G3

Schedule E(NS
j ) E(OS

j ) SD(NS
j ) SD(OS

j )

Annual 6.20 6.02 1.76 3.46
PRIAS 5.76 7.98 1.71 6.51
Dyn. risk GR (F1 score) 5.58 6.58 1.56 4.33
Hybrid (F1 score) 4.32 8.55 1.26 5.91
Dyn. risk GR (κ = 0.95) 6.11 6.01 1.76 3.46
Med. GR time 2.45 8.70 1.15 6.32
Exp. GR time 2.27 10.09 0.99 7.47
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Web Appendix E.2 Variation in Estimated Mean and Standard Deviation, of Number of

Biopsies and Offset Across the 500 Simulations

In this section we present figures related to the simulation study results discussed in Section

6 of main manuscript. The figures we present next are population specific, i.e. subgroup level

differentiation is not done.

• Variation in estimated mean across the 500 simulations, for number of biopsies and offset

(months) for different methods is shown in Web Figure 4 and Web Figure 5.

• Variation in estimated standard deviation across the 500 simulations, for number of biopsies

and offset (months) for different methods is shown in Web Figure 6 and Web Figure 7.

Exp. GR Time

Med. GR Time

Hybrid

Dyn. risk GR

PRIAS

Annual

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Mean number of biopsies

S
c
h
e
d
u
le

Web Figure 4. Boxplot showing variation in estimated mean number of biopsies across

the 500 simulations, for different methods. Patients from all subgroups are considered.
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Web Figure 5. Boxplot showing variation in estimated mean of biopsy offset (months)

across the 500 simulations, for different methods. Patients from all subgroups are considered.
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Web Figure 6. Boxplot showing variation in estimated standard deviation of number of

biopsies across the 500 simulations, for different methods. Patients from all subgroups are

considered.



18 Biometrics, December 0000

Annual

Dyn. risk GR

PRIAS

Hybrid

Med. GR Time

Exp. GR Time

2.5 5.0 7.5 10.0 12.5 15.0

Standard Deviation of biopsy offset (months)

S
c
h
e
d
u
le

Web Figure 7. Boxplot showing variation in estimated standard deviation of biopsy offset

(months) across the 500 simulations, for different methods. Patients from all subgroups are

considered.
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Web Appendix F. Source code

The source code for the joint model fitted to the PRIAS data set can be found at:

https://goo.gl/phQkxG

The source code for the simulation study can be found at:

https://goo.gl/TpLTM8

A README file explaining the usage of the code can be found at:

https://goo.gl/h2pAep.
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